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Abstract. For the first time, we combine concepts of theoretical food web modeling, the
metabolic theory of ecology, and ecological stoichiometry with the use of functional trait
databases to predict the coexistence of invertebrate taxa in streams. We developed a
mechanistic model that describes growth, death, and respiration of different taxa dependent
on various environmental influence factors to estimate survival or extinction. Parameter and
input uncertainty is propagated to model results. Such a model is needed to test our current
quantitative understanding of ecosystem structure and function and to predict effects of
anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate
monitoring data from a catchment of the Swiss Plateau. Even without fitting model
parameters, the model is able to represent key patterns of the coexistence structure of
invertebrates at sites varying in external conditions (litter input, shading, water quality). This
confirms the suitability of the model concept. More comprehensive testing and resulting model
adaptations will further increase the predictive accuracy of the model.

Key words: allometric scaling; Bayesian inference; biotic interactions; coexistence; food web model;
functional traits; invertebrates; stoichiometry; trait databases; uncertainty.

INTRODUCTION

The derivation of generic results that demonstrate the

instability of complex food webs (e.g., May 1973, Pimm

and Lawton 1978, Yodzis 1981) led to an intensive

‘‘diversity–stability debate’’ in ecology (e.g., McCann

2000). However, in recent years, some progress has been

made in finding explanations for stability of complex

food webs (e.g., Brose et al. 2006, Clark et al. 2007,

Heckmann et al. 2012). Such revised food web theories

include allometric scaling as summarized in the meta-

bolic theory of ecology (MTE; Brown et al. 2004) and

revised definitions of stability that allow for dynamic

equilibria (e.g., McCann 2000). Most of the conceptual

results about stability of complex food webs cited above

were derived from ensembles of food webs represented

by a sample of randomly generated structures. This is an

important research strategy to derive or verify generic

results that improve our general understanding of

phenomena in theoretical ecology. However, it is

possible that real networks have properties that signif-

icantly deviate from such randomly generated structures

(McCann 2000).

To profit from this generic knowledge for under-

standing real food webs and predicting their future

behavior, we go a step closer to reality by using

properties of real invertebrate taxa in a specific river

catchment. The theories mentioned above leave enough

freedom for such adaptations. It has been realized for

quite a long time that allometric scaling leads to

astonishingly good fits of basal metabolic rates over

about 20 orders of magnitude of individual biomass

(Brown et al. 2004):

~rbasal metab ¼ i0
M

M0

� �b

e�E=kT ð1Þ

where ~rbasal metab is the individual basal metabolic rate as

energy turnover per time (in watts, W), i0 a normaliza-

tion constant (W), E the activation energy (eV; 1 eV ¼
1.602 3 10�19 J), k Boltzmann’s constant 8.617343 3

10�5 eV/K, T is absolute temperature (K), b an

allometric scaling exponent, M the biomass of the

individual (g), and M0 is set to 1 g. However, much

variation over narrower ranges of biomass remains

unexplained. Brown et al. (2004) found variation in

normalization constants by a factor of up to 20 across

taxonomic groups. As there are many more influencing

factors on metabolic processes than temperature and

body mass, this variation is not surprising. But it is

important for understanding real ecosystems. There has

been a long debate on the allometric scaling exponent b

(Eq. 1), of being 2/3 (Rubner 1883) or 3/4 (Kleiber 1947,

Peters 1983, West et al. 1997, Savage et al. 2004). More

recent (and accurate) empirical evidence has clarified

that neither ‘‘law’’ is universal and there may not even be

a single universal exponent (Glazier 2009, White 2010).

Nevertheless, the use of such an approximate allometric

scaling relationship, possibly based on an empirical

exponent, has proven to be useful in food web models to

make them more realistic, reduce the number of free

parameters (Yodzis and Innes 1992, Traas et al. 1998)
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and increase their stability (Brose et al. 2006, Brose

2008). For the same reasons, we use the relationship in

Eq. 1 as the basis of our model.

Similarly, stoichiometric considerations lead to con-

straints, e.g., in achievable yields based on food quality

(e.g., Elser and Hassett 1994, Hessen et al. 2002,

Andersen et al. 2004), and allow coupling of organism

metabolic rates to nutrient cycling. However, stoichi-

ometry still leaves enough scope for taxonomic variation

(Elser et al. 2000a, b).

Functional trait databases offer new opportunities for

accessing functionally relevant knowledge about inver-

tebrate taxa that could help resolve part of this variation

(e.g., Doledec et al. 2011). Important environmental

factors controlling the distribution of stream dwelling

invertebrates are, for example, current speed, tempera-

ture regime (including altitude and season), substratum

type (including vegetation), and dissolved substances

(Hynes 1970). These factors act as so called ‘‘landscape

filters’’ (Poff 1997) determining the potential occurrence

of taxa dependent on their functional traits. However, it

has long been recognized that biotic interactions like

competition and predation also play an important role

in community structure (Hairston et al. 1960), which are

not included in classical habitat models (see review in

Guisan and Thuiller [2005]). Other factors influencing

the presence or absence of taxa are biogeography,

colonization potential, susceptibility to short-term dis-

turbance (e.g., drought and floods), and food availabil-

ity. It seems thus a relevant step to bring together food

web theories, allometric scaling and biological stoichi-

ometry with the use of functional trait databases and

geographical information to build-up meta-community

models that would account for these different, impor-

tant influencing factors.

In this paper, we make a first step by constructing a

benthic macroinvertebrate community model Stream-

bugs 1.0 to test the feasibility of this concept. We start

by combining the theoretical models with actual

biological trait information to reproduce the benthic

community composition at sites in a catchment that

differ in their external driving conditions. Aim is to

predict, which taxa generally occur and which taxa never

occur at each site using a Bayesian approach. To do so,

we only need the stable steady-state (or potentially

oscillating) long-term solutions of the model that

represent the coexistence of different taxa at the site.

Process formulations for growth, respiration, and death

are similar to food web models for functional groups of

stream-dwelling organisms developed, e.g., by McIntire

and Colby (1978), Power et al. (1995), D’Angelo et al.

(1997), Spieles and Mitsch (2003), and Schuwirth et al.

(2008, 2011). These models intended to describe key

functions of the ecosystem, like primary production,

primary and secondary consumption, and turnover of

organic material. However, other features important for

river assessment, such as biodiversity and the occurrence

of sensitive species, are not captured by such models. To

address these issues, food web models describing the

coexistence of individual taxa are needed, as in this

study.

MATERIAL AND METHODS

Model development concept

To improve understanding of the factors determining

the composition of benthic macroinvertebrate (see Plate

1) communities in streams, we developed a model that

works at the taxonomic level instead of describing

functional groups and uses functional trait information

to parameterize processes. State variables can be species,

genera, or families (or even different taxonomic levels

for different taxa), depending on the available trait

information and on the taxonomic resolution of the

observational data the model results should be com-

pared with. To not increase the number of parameters

compared to the functional group approach, we use

allometric scaling according to MTE to parameterize the

basic specific growth, death, and respiration rates. Thus,

only an estimate of temperature and the mean body

mass for each taxonomic group is needed. The other

parameters are universal for all taxonomic groups.

However, to account for variation of individual taxa

around MTE predictions, we include one taxa-specific

modification parameter for the basal metabolic rate and

one for the growth rate. Process rates are furthermore

modified considering functional traits of the taxa. Our

concept of model development consists of the steps

outlined in the following subsections.

Step 1: Mass balances and stoichiometry.—The model

includes individual invertebrate taxa, periphyton, and

fine and coarse particulate organic matter (FPOM,

CPOM) as state variables. We chose benthic (bio)mass

per unit river length as dimension of the state variables,

as this quantity is conserved under water level changes.

The following processes are included in the food web

model: growth, respiration, and mortality of primary

producers and invertebrate consumers, and input of leaf

litter. Feeding types of invertebrate taxa were derived

from trait databases. Unless detailed feeding relation-

ships are known, predators were assumed to feed on all

taxa with a smaller mean biomass than themselves.

Based on the assumed composition and energy content

of invertebrates, periphyton, and organic matter, and on

the values of a few stoichiometric parameters, the

stoichiometric coefficients fmijg of these processes are

derived as outlined in Reichert and Schuwirth (2010).

They were automatically calculated with the R package

stoichcalc (Reichert and Schuwirth 2010). Nutrients and

oxygen were included in the mass balance to derive

stoichiometric coefficients, but they were not modeled as

state variables.

We denote the biomass per river length as B (g DM/

m, where DM is dry mass) and the biomass surface

density as D (g DM/m2) that can be derived from B

divided by the stream width w. The process rates and

stoichiometric coefficients are given in the form of a
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process table (Reichert and Schuwirth 2010) in Table 1.

The differential equations for the biomasses of all taxa

and of organic matter per river length B ¼ (B1, . . . , Bn)

can be constructed from the stoichiometric coefficients m

¼fmijg for the processes and organisms/substances given

in the process table (Table 1) and the dynamic rates r¼

(r1, . . . , rm) (g DM�m�2�yr�1), which depend on the

parameters h, according to

dB

dt
¼ m � r

B

w
; h

� �

w: ð2Þ

All parameters are summarized in Appendix: Table A1.

Formally, the growth process of invertebrates consists

of building reserves. Mineralization of the food is

combined with mineralization of reserves in the respira-

tion process. The yield Ygro describes assimilation

efficiency and takes into account differences in energy

content and elemental composition of the consumer and

its food source. Deriving or constraining stoichiometric

coefficients and yields by elemental mass balances allows

us to consider limitations of yield due to food quality

(e.g., Elser and Hassett 1994, Hessen et al. 2002,

Andersen et al. 2004) and prepares the model for a

later coupling with biogeochemical cycles. As long as no

detailed information about the elemental composition of

different organisms is available, we assume a Redfield

composition for all organic constituents:

Ygro ¼ min 1;
ECfood � fe 3ECFPOM

ECcons

;

�

aN food � fe 3aN FPOM

aN cons

;
aP food � fe 3aP FPOM

aP cons

�

ð3Þ

where EC denotes the energy content (J/g DM), and aP
and aN are the phosphorus and nitrogen contents,

respectively (g P/g DM, g N/g DM). The fraction of

FPOM produced by excretion and sloppy feeding is

characterized by the parameter fe. To close the mass

balances (for the elements C, N, P, O, H, and charge) the

remaining fraction of biomass is assumed to be released

as dissolved nutrients.

During the death process, living biomass is trans-

formed to organic matter. Since the model includes only

one state variable of FPOM and the elemental

composition and the energy content of organisms and

FPOM may be different, the mass balance of this

process is closed by introducing a ‘‘yield,’’ Ymort. This

term guarantees that as much as possible of the biomass

is transferred to FPOM, and the remaining fraction is

released as dissolved nutrients, similar to the growth

process:

Ymort ¼ min 1;
ECcons

ECFPOM

;
aN cons

aN FPOM

;
aP cons

aP FPOM

; YðmO2 ¼ 0Þ

� �

ð4Þ

where Y(mO2 ¼ 0) denotes the yield at which the

stoichiometric coefficient of oxygen is zero; this term

ensures, that no oxygen is consumed by the death

process. This is desirable, since the death process should

not depend on the presence of oxygen (in contrary,

organisms would die in the absence of oxygen). Such a

‘‘yield’’ for death could be avoided by introducing many

different fractions of FPOM with compositions corre-

sponding to the dying organisms. A more realistic

description of oxygen and nutrient transformation

during mineralization of organic material would be

possible by coupling this model to a water quality

model. This is beyond the scope of this study.

TABLE 1. Process table of the model including stoichiometric parameters and process rates.

State variables

Processes
Periphyton
(g DM)

Invert.
taxa (g DM)

Litter
(g DM)

FPOM
(g DM)

Food
(g DM) Nutrients Oxygen Process rates

pp gro 1 – þ rppgro (g DM�yr�1�m�2)

pp resp �1 þ – rppresp (g DM�yr�1�m�2)

pp mort �1 þYmort þ/0 þ/0 r
pp
mort (g DM�yr�1�m�2)

cons gro þ1 þfe/Ygro �1/Ygro þ/0 þ/– rconsgro (g DM�yr�1�m�2)

cons resp �1 þ – rconsresp (g DM�yr�1�m�2)

cons mort �1 þYmort þ/0 þ/0 rconsmort (g DM�yr�1�m�2)

Litter inp þ1 rlitterinp (g DM�yr�1�m�2)

Notes: The stoichiometric coefficients labeled with signs only are calculated as explained in Reichert and Schuwirth (2010).
Abbreviations for state variables are: invert. taxa, invertebrate taxa; litter, leaf litter; FPOM, fine particulate organic matter; DM
dry mass. Depending on the feeding type of the consumer, ‘‘food’’ can be other invertebrate taxa, periphyton, litter, FPOM, and/
or SusPOM (suspended particulate organic matter). Processes are growth of primary producers (pp gro), respiration of primary
producers (pp resp), mortality of primary producers (pp mort), growth of consumers (cons gro), respiration of consumers (cons
resp), mortality of consumers (cons mort), and input of leaf litter (litter inp). Process rates are growth rate of primary producers
(rppgro), respiration rate of primary producers (rppresp), mortality rate of primary producers (r

pp
mort), growth rate of invertebrate

consumers (rconsgro ), respiration rate of invertebrate consumers (rconsresp ), mortality rate of invertebrate consumers (rconsmort), and rate of
leaf litter input (rlitterinp ).Ygro is yield for growth according to Eq. 3, Ymort is yield for death process according to Eq. 4, fe is fraction
of fine particulate organic matter (FPOM) produced by excretion and sloppy feeding. Empty cells mean that the state variable in
that column is not involved in the process of that row.
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Step 2: Allometric scaling of rates.—The individual

basal metabolic rate as energy turnover per time is given

in Eq. 1. The basal metabolic rate of a population can be

estimated by multiplication with the number of individ-

uals n per area A and converted into g DM�m�2�s�1 by

division by the typical energy content EC (J/g DM) of

the biomass:

rbasal metab ¼
n

A
i0

M

M0

� �b

e�E=kT
1

EC
: ð5Þ

The number of individuals n per area A can be estimated

from the biomass density D (g DM/m2) and the mean

individual body mass M:

n

A
¼

D

M
ð6Þ

leading to

rbasal metab ¼ D3 i0
Mb�1

Mb
0

e�E=kT
1

EC
: ð7Þ

In most organisms the long-term sustained rate of

biological activity is some fairly constant multiple,

which is typically about two or three, of the basal

metabolic rate (Brown et al. 2004). We therefore

introduce the universal factor fresp and the taxa-specific

factors fbasal tax to estimate respiration rates:

rresp tax ¼ fresp 3 fbasal tax 3 rbasal metab: ð8Þ

Analogously, we formulate the mortality rate also as

proportional to the basal metabolic rate:

rmort tax ¼ fmort 3 fbasal tax 3 rbasal metab: ð9Þ

The growth of primary producers is formulated depen-

dent on the availability of light, I, concentration of

dissolved, inorganic phosphorus, CP, concentration of

dissolved inorganic nitrogen, CN, and a self-inhibition

term accounting for self-shading and diffusion limitation

when algal mats become thicker

rppgro ¼ fgro 3 fgro tax 3 fbasal tax 3 rbasal metab 3
I

KI þ I

3min
CP

KP þ CP

;
CN

KN þ CN

� �

3
Kdens

Kdens þ D

3ð1� fshadeÞ ð10Þ

where the light intensity at the river bed is given by I¼ I0
3 exp(–kh), k is the light extinction coefficient, h water

depth, fshade the shaded fraction of the river surface, KI,

KP and KN the half-saturation constants regarding light,

dissolved inorganic phosphorus, and nitrogen, and Kdens

the half-inhibition constant regarding self-shading or

diffusion limitation, fgro tax is a taxon-specific modifica-

tion factor of the growth rate.

The growth of consumers is assumed to depend on the

availability of food and on the habitat capacity. The fact

that many taxa can feed on different food sources is

accounted for by the introduction of one growth process

per food source j, a food-limitation term for the sum of

available food sources flim food and a preference term

fpref j that accounts for the availability of the different

food sources and on food preferences of the taxa and

describes adaptive foraging. Here, pj is the preference

coefficient for food source j. By setting all pj to unity (or

all pj to the same value), opportunistic foraging can be

simulated that depends only on the availability of food

sources:

rconsgro on j ¼ fgro 3 fgro tax 3 flim food 3 fpref j 3 fself inh

3 fbasal tax 3 rbasal metab ð11Þ

flim food ¼
D

q
food

K
q
food þ D

q
food

ð12Þ

fpref j ¼
Djpj

X

f

Df pf
: ð13Þ

Here, Dfood is the sum of the surface densities of all food

sources (g DM/m2), if food is SusPOM, we multiply the

concentration in g DM/m3 by the typical height of the

water column the organisms are able to filter (hfilt) and

Kfood is the half-saturation constant for food (g DM/

m2), q is a parameter to switch between different

functional forms of food limitation (q ¼ 1 leads to a

Monod or Holling Type II functional response, q ¼ 2

leads to a Holling Type III), fgro tax is a taxon-specific

modification factor of the growth rate. The different

feeding types of different invertebrate taxa were derived

from the trait databases freshwaterecology.info (avail-

able online)2 and CASiMiR (Kopecki and Schneider

2010; Institut für Wasserbau, Universität Stuttgart,

unpublished database).

To consider the limitation in habitat capacity leading

to intraspecific competition, a self-inhibition term is

introduced which decreases the growth rate with increas-

ing biomass density of the taxon. Kdens is a parameter to

characterize the density where the growth rate is reduced

to 50%. We implemented two versions, the Monod (Eq.

14) and the Blackman formulation (Eq. 15):

fself inh Monod ¼
Kdens

Kdens þ D
ð14Þ

fself inh Blackman ¼
1�

D

2Kdens

for D, 2Kdens

0 for D � 2Kdens:

8

<

:

ð15Þ

From the stoichiometric coefficients (Table 1) and the

dynamic rates, differential equations can be constructed

according to Eq. 2. An example is given for a consumer i

2 www.freshwaterecology.info
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feeding on only one food source j and having only one

predator k:

dBcons i

dt
¼

�

ð fgro 3 fgro tax i 3 flim food i 3 fpref ij 3 fself inh i

� fresp � fmortÞ3 fbasal tax i 3 rbasal metab i

�

�

1

Ygro
3 fgro 3 fgro tax k 3 flim food k 3 fpref ki

3 fself inh k 3 fbasal tax k 3 rbasal metab k

��

w:

ð16Þ

Note that we assume the factors fgro, fresp, and fmort as

well as the parameters i0, b, and E to be universal for all

invertebrate taxa (these parameters are different for

periphyton and invertebrates, however) and rbasal metab i

to depend via the individual body mass on the taxa. For

invertebrates, we used prior parameter estimates of i0, b,

and E from Ehnes et al. (2011) as they are based on the

largest collection of invertebrate data and because they

fitted all three parameters jointly. For periphyton, we

defined prior parameter distributions according to Tang

and Peters (1995) and Tang (1995).

Step 3: Modify rates based on trait information and

environmental conditions.—Different invertebrate taxa

are adapted to different environmental conditions.

Therefore, environmental factors like temperature,

current, and water quality have different effects on

invertebrate taxa. Suboptimal or even intolerable

conditions can influence growth and death rates or

induce drift.

We model the effect of habitat conditions regarding

current, temperature regime, and substrate/microhabitat

conditions on the community composition using infor-

mation from the trait database freshwaterecology.info

(see footnote 2) on the tolerance of different taxa:

Kdens ¼ hdens 3 fcurrent 3 ftemp 3 fsubstrate ð17Þ

with fcurrent the factor regarding current tolerance, ftemp

the factor regarding temperature tolerance, and fsubstrate
the factor regarding substrate/microhabitat tolerance.

These factors can take values between 0 and 1 depending

on environmental conditions. The parameterizations of

these factors are given in Appendix: Tables A2–A4.

Currently, information on temperature and substrate

tolerances is available only for Ephemeroptera, Plecop-

tera, Trichoptera, and partly for Chironomidae. For taxa

where this information is missing, the factors are set

to 1.

To account for toxic effects of organic contaminants

(e.g., pesticides, insecticides) on invertebrate taxa, we

implemented an increase of the mortality rate for

sensitive taxa at contaminated sites. As an estimation

of the sensitivity of taxa we used the SPEAR database

(Liess et al. 2008) that divides taxa into species at risk

and species not at risk according to four different traits

(database available online).3 The death rate (Eq. 9) is

extended by the factor forg contam (Eq. 18), which is

chosen dependent on the classification as species at risk

or species not at risk and the contamination of the site

rmort ¼ fmort 3 forg contam 3 fsaproby 3 fbasal tax 3 rbasal metab:

ð18Þ

TABLE 2. Model input: environmental conditions for each site.

Site

Symbol Description Unit

MA167,
Gossauerbach
up WWTP

T mean temperature 8C 10.3
Tclass temperature class moderate
L length of the river reach m 100
w mean width of the river reach m 2
I0 light intensity at the river bed without shading W/m2 125
fshade fraction of water surface shaded by trees 0.15
CSusPOM� typical concentration of SusPOM g DM/m3 0.9
LitInp� mean input of leaf litter g DM�m�2�yr�1 170
Curclass current regime high
Substrclass substrate/microhabitat classes, cf. Table A4 psa, aka, mil, mal,

hpe, alg, pom
OrgCont pollution with organic contaminants yes/no yes/no
Sapro saprobic zone oligo
CP phosphate concentration mg P/L 0.01
CN typical N concentration mg N/L 3.3

Notes: Included with site IDs is the name of the stream and whether it is upstream (up) or downstream (dn) of a wastewater
treatment plant (WWTP). Abbreviations are: psa, psammal; aka, akal; mil, micro-/mesolithal; mal, macro-/megalithal; hpe,
hygropetric habitats; alg, algae; pom, particulate organic matter; oligo, water quality corresponding to oligo-saprobic conditions;
b-meso, water quality corresponding to b-meso-saprobic conditions.

� Input with a relative standard deviation of 0.25.

3 http://www.systemecology.eu/SPEAR
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As the simplest implementation, we set the factor

forg contam for ‘‘insensitive’’ taxa to 1, for ‘‘sensitive’’

taxa to 1 at uncontaminated sites and to the value

corg contam crit at contaminated sites. This describes the

simplistic assumption that the death rate of sensitive

taxa is increased by a factor of corg contam crit at sites with

organic contaminants in the water. Tolerance to water

quality aspects described by the saprobic system is

implemented analogously using the information from

the Austrian saprobic system (cf Appendix: Table A5).

Step 4: Get site-specific information.—As a first test,

the model was applied to four sites in the catchment of

the Mönchaltorfer Aa river near Zurich on the Swiss

Plateau. The two pairs of sites from two streams are

each upstream and 300–400 m downstream of a

wastewater treatment plant (WWTP) with a fraction

of treated wastewater of about 40% (MA168) and 20%

(MA438), respectively. For these sites, invertebrate data

collected between 1982 and 2005 were provided by the

Office for Waste, Water, Energy, and Air of the Canton

of Zurich (AWEL Zurich). The estimated environmental

conditions used as model input are given in Table 2. A

description of how we estimated the conditions from

available cantonal monitoring data is given in Appen-

dix: Table A6.

As a first step, the source pool of taxa occurring in the

whole catchment were determined. This was done by

analyzing available monitoring data. Simulations were

run for a list of 28 macroinvertebrate taxa. Taxa

occurring in fewer than five of the 87 available samples

from the catchment were excluded. Further dispersal

filters were not applied since at the size of this catchment

(about 50 km2) we assume that dispersal limitation is not

a factor that influences long-term average community

composition. We performed the simulations at the genus

level since a higher taxonomic resolution was available

only for part of the observational data. For the source

pool taxa, the mean individual biomass was estimated

from length–mass relationships (Appendix: Table A1).

Step 5: Perform simulations.—The model calculates

the (bio)mass development of the state variables over

time under the forcing of external influence factors. For

the model test, we worked with constant external forcing

(Table 2) and assess local occurrence of taxa from the

long-term equilibrium. The term ‘‘occurrence’’ is used

here in the sense of an equilibrium biomass above an

abundance threshold of 0.5 individuals/m2 where

observation in the field would be likely. This threshold

depends on the sampling strategy and was estimated for

the cantonal monitoring data we use for inference in step

6. We chose the same initial biomass density of 1 g DM/

m2 for all invertebrate taxa of the source pool. However,

tests showed that model results are not sensitive to this

choice, since stable equilibria are reached irrespective of

the initial conditions.

To estimate uncertainty of model results due to

parameter uncertainty, we define marginal (prior)

probability distributions for the parameters given in

the Appendix: Table A1 and assume independence to

construct their joint distribution. We propagate this

distribution to the model results numerically by ran-

domly drawing from this distribution and calculating

corresponding model results.

The model was implemented with the statistics and

graphics software R (R Development Core Team 2011).

The code is given in the Supplement. The differential

equations were solved with the R package deSolve

(Soetaert et al. 2010).

Step 6: Bayesian inference.—For all sites, we deter-

mined those taxa that occurred in all samples and those

taxa that never occurred in any sample at that site. We

used only the observational data from 1995 to 2005. Data

from the 1980s were not included because the taxonomic

resolution of these samples was lower and environmental

influence factors changed by that time. We conditioned

the prior parameter distribution by the observed occur-

rence pattern of taxa rather than by quantitative density

estimates. Observed densities depend very much on short

term dynamics in the system. Since we estimated

occurrence of taxa by using constant environmental

influence factors, the short-term dynamics in biomass

development are not represented by the model and

quantitative density estimates are not expected to match

observed ones. The pattern-oriented conditioning is

numerically implemented by selecting those parameter

samples that correspond to simulations that fulfill the

following two criteria: (1) all taxa that occurred in all

observations at a specific site are predicted to occur by the

model run and (2) all taxa that never occur in the

observations at a specific site are predicted to not occur

by the model run. Note that this acceptance–rejection

technique is a simple form of a ‘‘likelihood-free’’ (without

evaluation of the likelihood function) implementation of

Bayesian inference as used in approximate Bayesian

computation (e.g., Marjoram et al. 2003). Due to the use

TABLE 2. Extended.

Site

MA168,
Gossauerbach
dn WWTP

MA437,
Lieburgerbach
up WWTP

MA438,
Lieburgerbach
dn WWTP

12.4 9.6 11.4
warm moderate warm
100 100 100
2 5 4.5
125 125 125
0.26 0.90 0.95
0.9 0.9 0.9
260 500 420
high high moderate
psa, aka, mil, mal,
hpe, alg, pom

psa, aka, mil,
mal, alg, pom

psa, aka, mil,
mal, alg, pom

yes no yes
b-meso oligo b-meso
0.03 0.05 0.04
8.0 2.1 7.6
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of discrete output pattern, it is not approximate in the

same sense in our context. Comparing the resulting

posterior parameter sample with the prior, we can

analyze for which parameters we can learn from the

data. If specific taxa are systematically over- or underes-

timated by the model for most of the prior parameter

samples, it can happen that the criteria are never fulfilled

and a posterior parameter sample cannot be derived.

Such cases are of special interest, since those systematic

differences can provide hints for model improvement or

indicate the need for the revision of model input

estimation. In such cases we excluded these taxa from

the criteria to derive a posterior parameter sample and

analyzed if we can learn something about the parameters

from the other taxa.

RESULTS

Even without fitting parameter values, the model is able

to predict key patterns of observed occurrence of taxa

quite well, as shown by food webs resulting from the

deterministic model with parameters fixed at the mean of

their marginal prior distributions (Fig. 1). Note, that it

was not known beforehand if site MA167 is polluted with

organic contaminants or not. We therefore ran the model

under both assumptions.Model results clearly show that a

compliance of model results with observations is achieved

only by assuming organic pollution at that site (Fig. 1,

Table 3). Model results were not sensitive to choosing a

value of q of 1 or 2 in Eq. 12 for food-limitation and to

choosing Eqs. 14 or 15 for self-inhibition, indicating high

structural stability of the model. Therefore, we show here

only the results for q¼ 1 and using Eq. 14.

To account for parameter uncertainty, we calculate

the probability to exceed the abundance threshold of 0.5

individuals/m2 for all taxa from Monte Carlo simula-

tions. Results are given in Table 3 for each site, grouped

according to the occurrence in observations. For most

taxa that occurred in all samples of a site, the model

predicts a high probability to occur, and for most taxa

never occurring in the samples of a site, the model

predicts a low probability to occur. However, there are

exceptions where the model is not in compliance with

observations. This is the case, e.g., for the leech

Glossiphonia, with a probability to occur between 0.4

and 0.54 at three sites where it was never observed (see

Discussion) and for Radix at site MA437. Taxa with a

low predicted probability to occur that occurred in all

samples are, e.g., Habroleptoides at site MA437 or

Ecdyonurus and Rhyacophila at site MA438.

The marginals of the prior and the posterior

parameter distribution resulting from conditioning with

the data of all four sites are shown in Fig. 2. We depicted

those parameters with pronounced differences between

prior and posterior marginals. As the model is relatively

PLATE 1. Benthic macroinvertebrates from a site close to the catchment of the Mönchaltorfer Aa, Switzerland. From left to
right (and from top to bottom): caddisfly (Trichoptera), amphipod (Amphipoda, Gammaridae), leech (Hirudinea), mayfly
(Ephemeroptera, Baetidae). Photo credits: Raoul Schaffner.
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FIG. 1. Food webs at four different sites (MA167, MA168, MA437, and MA438). Lines represent feeding links, dots represent
different invertebrate taxa, except four dots along the base represent periphyton, fine particulate organic matter (FPOM), leaf litter,
and suspended particulate organic matter (SusPOM) from left to right. The same invertebrate taxa appear in the same position on
each panel. Diagrams on the left-hand side show food webs constructed from observational data with taxa present in all samples
(blue), taxa absent in all samples (orange), and taxa occurring in part of the samples (green with grey lines for feeding links).
Diagrams on the right-hand side show food webs constructed from model results of deterministic simulations with parameters fixed
at the mean of the marginal prior distributions (Appendix: Table A1), with taxa with an equilibrium abundance of at least 0.5
individuals/m2 (blue), and other taxa (orange). Modeled data are shown for site MA167 assuming pollution with organic
contaminants (large diagram) and no pollution with organic contaminants (small diagram).
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complex and the data are scarce, these differences are

still quite small. Results indicate that the model fits

better to observed data when, e.g., the growth rates of

invertebrates fgro are shifted to lower values and the

respiration rates of invertebrates fresp, the normalization

constant i0, and the parameter that increases death rates

of sensitive taxa at sites polluted with organic contam-

inants, corg contam crit, are shifted to higher values. This

illustrates how we can update our knowledge about

parameters from comparison with observations. Note,

that for site MA437 the taxa Radix, Glossiphonia,

Habroleptoides, Atherix, Ecdyonurus, and Baetis and

for site MA438 the taxa Ecdyonurus, Rhyacophila,

Baetis, Hydropsyche, and Eiseniella had to be excluded

from the inference criteria to get an acceptable posterior

sample size. Thereby we lose information for inference

from data. However, by analyzing underlying reasons

for systematic deviations in prediction of these taxa that

cannot be explained by parameter uncertainty, indica-

tions for model improvement can be gained.

DISCUSSION

Results show that the model is able to reproduce key

patterns of coexistence of different invertebrate taxa.

This is remarkable and an indication that the suggested

model makes a relevant step towards fruitfully combin-

ing knowledge from theoretical ecology and real

invertebrate traits. A similar approach was followed by

Boit et al. (2012) who developed a mechanistic food web

model that describes 24 guilds of the pelagic zone of

Lake Constance based on allometric scaling to repro-

duce observed patterns of seasonal plankton succession.

This indicates that the combination of mechanistic food

web models with allometric scaling might be a promising

way to model other multi-trophic ecosystems as well.

The analysis of remaining discrepancies between our

model results and observations regarding the occurrence

of taxa helps improve the model in the future. Reasons

for such discrepancies can be model structure uncer-

tainty (e.g., missing environmental influence factors,

missing or wrong formulation of processes), parameter

uncertainty, missing or uncertain trait classification of

taxa, input uncertainty regarding environmental influ-

ence factors (e.g., organic pollution at site MA167), or

observation errors (i.e., missing or misclassification of

taxa, inadequate taxonomic resolution). For example, at

sites MA167, MA168, and MA437, the leech Glossipho-

nia was never observed but is predicted by the model to

TABLE 3. Predicted probability (Prob.) of exceeding an abundance of .0.5 individuals/m2 for taxa that occurred in all samples
(always observed), in none of the samples (never observed), and in some of the samples (sometimes observed) at the respective
sites.

MA167 MA168 MA437 MA438

Taxa
Prob.,
pest

Prob.,
no pest Taxa Prob. Taxa Prob. Taxa Prob.

Always observed Always observed Always observed Always observed
Gammarus 0.92 0.89 Baetis 0.61 Habroleptoides 0.01 Rhyacophila 0.01

Never observed Erpobdella 0.62 Atherix 0.18 Ecdyonurus 0.04
Habrophlebia 0 0.01 Gammarus 0.88 Ecdyonurus 0.42 Baetis 0.42
Stylodrilus 0.01 0.01 Radix 0.89 Baetis 0.49 Hydropsyche 0.47
Ephemera 0.01 0.02 Never observed Eiseniella 0.58 Eiseniella 0.48
Habroleptoides 0.02 0.01 Habrophlebia 0.00 Rhyacophila 0.89 Elmis 0.52
Dugesia 0.02 0.01 Ephemera 0.00 Gammarus 0.90 Erpobdella 0.57
Calopteryx 0.04 0.40 Stylodrilus 0.01 Never observed Gammarus 0.90
Rhithrogena 0.04 0.13 Habroleptoides 0.01 Habrophlebia 0.01 Never observed
Ecdyonurus 0.08 0.46 Rhithrogena 0.07 Dugesia 0.01 Habrophlebia 0.00
Dicranota 0.08 0.06 Dicranota 0.08 Rhithrogena 0.01 Rhithrogena 0.00
Paraleptophlebia 0.08 0.51 Ecdyonurus 0.09 Dicranota 0.04 Dugesia 0.01
Erpobdella 0.1 0.12 Paraleptophlebia 0.10 Erpobdella 0.13 Dicranota 0.02
Nemoura 0.23 0.83 Protonemura 0.18 Paraleptophlebia 0.48 Calopteryx 0.02
Protonemura 0.24 0.81 Nemoura 0.19 Glossiphonia 0.54 Gyraulus 0.02
Leuctra 0.26 0.87 Leuctra 0.22 Radix 0.94 Paraleptophlebia 0.04
Odontocerum 0.34 0.94 Odontocerum 0.32 Sometimes observed Protonemura 0.16
Glossiphonia 0.4 0.55 Glossiphonia 0.41 Simulium 0.01 Nemoura 0.20

Sometimes observed Sometimes observed Stylodrilus 0.01 Leuctra 0.19
Simulium 0.01 0.00 Simulium 0.00 Ephemera 0.02 Odontocerum 0.33
Atherix 0.02 0.20 Atherix 0.01 Gyraulus 0.04 Sometimes observed
Gyraulus 0.04 0.04 Calopteryx 0.02 Asellus 0.28 Simulium 0.00
Rhyacophila 0.28 0.87 Gyraulus 0.02 Calopteryx 0.38 Atherix 0.01
Asellus 0.29 0.27 Dugesia 0.03 Riolus 0.52 Ephemera 0.04
Baetis 0.57 0.53 Rhyacophila 0.07 Hydropsyche 0.55 Glossiphonia 0.33
Riolus 0.58 0.56 Hydropsyche 0.63 Elmis 0.56 Habroleptoides 0.36
Hydropsyche 0.59 0.57 Eiseniella 0.63 Protonemura 0.83 Stylodrilus 0.48
Eiseniella 0.6 0.61 Riolus 0.67 Nemoura 0.85 Riolus 0.48
Elmis 0.62 0.60 Elmis 0.71 Leuctra 0.88 Asellus 0.90
Radix 0.94 0.93 Asellus 0.88 Odontocerum 0.94 Radix 0.91

Note: For site MA167, model runs were performed assuming pollution by organic contaminants (pest) and no pollution by
organic contaminants (no pest).
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occur at these sites with a probability of 0.4–0.54. This

taxon is classified as predator in both trait databases

(CASiMiR and freshwaterecology.info) and there is no

severe food limitation. According to its trait classifica-

tion and the estimation of environmental conditions, the

taxon is not negatively affected by water quality.

However, only one of the four species from the genus

Glossiphonia has only one point assigned to oligotrophic

conditions. Therefore, it is possible that negative effects

of the saprobic conditions at sites MA167 and MA437

are underestimated by the model. A stricter implemen-

tation of the tolerance to environmental conditions and

a higher taxonomic resolution could improve model

accuracy. A classification regarding current, tempera-

ture and microhabitat tolerances is not available for this

taxon. This could be another reason for overestimating

its occurrence. Further investigating the reasons by

literature studies and application of the model to more

sites to test if this is a general deficiency of our model

regarding this taxon or if it is specific to the test sites,

would help improve our understanding and the predic-

tive capabilities of the model. Due to our implementa-

tion, missing trait information may lead to an

overestimation of the affected taxa. To overcome this

problem, phylogenetic information could be used to

estimate missing traits from related taxa, as it was done

by Bruggeman (2011) for phytoplankton.

In general, all environmental models are wrong (see

Box and Draper 1987) since they are always a

simplification of much more complex natural systems.

The art of model development is to find an adequate

compromise between complexity and simplicity. How-

ever, increasing the complexity of models is only

possible, if adequate knowledge is available, and it is

only desirable, if universality and/or predictive capabil-

ities of the model increase. Since knowledge about many

processes (e.g., the influence of chemical contaminants

on metabolic rates of macroinvertebrates) is incomplete,

we tried to find simple empirical descriptions that allow

us to reproduce observable patterns and avoid unjusti-

FIG. 2. Comparison of marginal prior (dashed lines) and posterior (solid lines with gray shading underneath) parameter
distributions. The posterior shown here is resulting from conditioning with the data of all four sites; the x-axis shows parameter
values for the taxon-specific multiplicative factors regarding growth ( fgro_Baetis, fgro_Paraleptophlebia, fgro_Glossiphonia), normalization
constant for metabolic rates of invertebrates i0, factor regarding current tolerance at current conditions not fitting to the trait of the
taxon ccurrent_nonfit, multiplicative factor of death rate for sensitive taxa at contaminated sites corg_contam_crit, and universal
multiplicative factor regarding growth and respiration for invertebrates fgro, fresp (dimensions given in Appendix A: Table A1); the
y-axis shows probability density of frequency of occurrence f.
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fiable assumptions. For example, we implemented

ecotoxic effects by a binary classification of taxa into

sensitive and insensitive taxa as well as a binary

classification of sites into polluted and unpolluted sites

using the database underlying the SPEAR concept

(Liess et al. 2008). A more precise description of

ecotoxic effects is desirable but so far impeded by the

limited availability of data regarding effects of a

multitude of contaminants on the variety of taxa,

unknown exposure patterns at the different sites, and

various factors that influence the transferability of

laboratory experiments to field conditions. Mechanisti-

cally more detailed approaches use state variables that

are not directly observable and involve many more

model parameters (e.g., the DEB and DEBtox models

[Kooijman and Bedaux 1996, Billoir et al. 2009, Kooij-

man 2010, Jager and Zimmer 2012]). This makes these

models difficult to apply for modeling benthic commu-

nities consisting of many different taxa with poorly

known properties. As we also have poor knowledge on

uptake and release rates of toxicants, relevant organs or

tissues where they accumulate, and critical concentra-

tions, we are also not considering internal toxicant

concentrations, as suggested by Jager et al. (2011). The

results presented in this paper indicate that our model is

based on an adequate compromise between complexity

and simplicity. However, if more detailed information

for the variety of invertebrate taxa and a better

characterization of field conditions becomes available,

the model could be improved to describe ecotoxic effects

more accurately.

The model Streambugs 1.0 requires mainly input that

can be estimated from data that are statewide available.

This is a huge advantage, since it can be tested at all sites

in an ecoregion where invertebrate monitoring data and

environmental influence factors are available or can be

estimated. Applying the model to a wider range of sites

will contribute to inference on model parameters,

improving process formulations, and potentially reveal

the need to include further processes like emergence of

insects or dispersal. Therefore, we see the current

relevance of this model as a scientific learning tool for

integration of quantitative ecological knowledge and

testing of hypotheses on ecosystem functionality.

Moreover, it has huge potential for practical applica-

tion. Moving on to a spatial explicit model that includes

dispersal and predicts the benthic meta-community in a

river network for given environmental conditions would

link to ecological theory of meta-communities and

contribute significantly to decision support in river

management.

So far, we concentrated on occurrence patterns and

their dependence on external influence factors. As we

calculate these as steady-state (or long-term dynamic)

solutions of a dynamic model, the model could also be

used for simulating the dynamics of benthic communi-

ties at the taxonomic level. This would considerably

extend current approaches at the functional group level

(McIntire and Colby 1978, D’Angelo et al. 1997, Spieles

and Mitsch 2003, Schuwirth et al. 2008, 2011). However,

to assess the model performance regarding temporal

dynamics, data with an appropriate temporal resolution

are required. If such data become available, the model

would be a very useful tool for assessing temporal

aspects of ecosystem functioning and disturbance

ecology. Other processes like emergence, flood-induced

drift, and recolonization could then be included in the

model.
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SUPPLEMENTAL MATERIAL

Appendix

Tables with model parameters, factors for current and temperature tolerance, substrate/microhabitat and water quality classes,
saprobic conditions, and estimation of environmental inputs (Ecological Archives E094-031-A1).

Supplement

Software implementation of Streambugs 1.0 in R (Ecological Archives E094-031-S1).
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