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Bridging the gap between theoretical ecology and real ecosystems:
modeling invertebrate community composition in streams

NELE SCHUWIRTH! AND PETER REICHERT

Eawag—Swiss Federal Institute of Aquatic Science and Technology, 8600 Diibendorf, Switzerland

Abstract. For the first time, we combine concepts of theoretical food web modeling, the
metabolic theory of ecology, and ecological stoichiometry with the use of functional trait
databases to predict the coexistence of invertebrate taxa in streams. We developed a
mechanistic model that describes growth, death, and respiration of different taxa dependent
on various environmental influence factors to estimate survival or extinction. Parameter and
input uncertainty is propagated to model results. Such a model is needed to test our current
quantitative understanding of ecosystem structure and function and to predict effects of
anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate
monitoring data from a catchment of the Swiss Plateau. Even without fitting model
parameters, the model is able to represent key patterns of the coexistence structure of
invertebrates at sites varying in external conditions (litter input, shading, water quality). This
confirms the suitability of the model concept. More comprehensive testing and resulting model

adaptations will further increase the predictive accuracy of the model.

Key words:

allometric scaling; Bayesian inference; biotic interactions, coexistence, food web model;

functional traits, invertebrates; stoichiometry, trait databases, uncertainty.

INTRODUCTION

The derivation of generic results that demonstrate the
instability of complex food webs (e.g., May 1973, Pimm
and Lawton 1978, Yodzis 1981) led to an intensive
“diversity—stability debate” in ecology (e.g., McCann
2000). However, in recent years, some progress has been
made in finding explanations for stability of complex
food webs (e.g., Brose et al. 2006, Clark et al. 2007,
Heckmann et al. 2012). Such revised food web theories
include allometric scaling as summarized in the meta-
bolic theory of ecology (MTE; Brown et al. 2004) and
revised definitions of stability that allow for dynamic
equilibria (e.g., McCann 2000). Most of the conceptual
results about stability of complex food webs cited above
were derived from ensembles of food webs represented
by a sample of randomly generated structures. This is an
important research strategy to derive or verify generic
results that improve our general understanding of
phenomena in theoretical ecology. However, it is
possible that real networks have properties that signif-
icantly deviate from such randomly generated structures
(McCann 2000).

To profit from this generic knowledge for under-
standing real food webs and predicting their future
behavior, we go a step closer to reality by using
properties of real invertebrate taxa in a specific river
catchment. The theories mentioned above leave enough
freedom for such adaptations. It has been realized for
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quite a long time that allometric scaling leads to
astonishingly good fits of basal metabolic rates over
about 20 orders of magnitude of individual biomass
(Brown et al. 2004):

- M\
Fbasal metab = 10 (—) e E/kT (1)
Mo

where Fpasal metab 18 the individual basal metabolic rate as
energy turnover per time (in watts, W), iy a normaliza-
tion constant (W), E the activation energy (eV; 1 eV =
1.602 x 107" I), k Boltzmann’s constant 8.617343 X
107° eV/K, T is absolute temperature (K), 5 an
allometric scaling exponent, M the biomass of the
individual (g), and M, is set to 1 g. However, much
variation over narrower ranges of biomass remains
unexplained. Brown et al. (2004) found variation in
normalization constants by a factor of up to 20 across
taxonomic groups. As there are many more influencing
factors on metabolic processes than temperature and
body mass, this variation is not surprising. But it is
important for understanding real ecosystems. There has
been a long debate on the allometric scaling exponent b
(Eq. 1), of being 2/3 (Rubner 1883) or 3/4 (Kleiber 1947,
Peters 1983, West et al. 1997, Savage et al. 2004). More
recent (and accurate) empirical evidence has clarified
that neither “law” is universal and there may not even be
a single universal exponent (Glazier 2009, White 2010).
Nevertheless, the use of such an approximate allometric
scaling relationship, possibly based on an empirical
exponent, has proven to be useful in food web models to
make them more realistic, reduce the number of free
parameters (Yodzis and Innes 1992, Traas et al. 1998)
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and increase their stability (Brose et al. 2006, Brose
2008). For the same reasons, we use the relationship in
Eq. 1 as the basis of our model.

Similarly, stoichiometric considerations lead to con-
straints, e.g., in achievable yields based on food quality
(e.g., Elser and Hassett 1994, Hessen et al. 2002,
Andersen et al. 2004), and allow coupling of organism
metabolic rates to nutrient cycling. However, stoichi-
ometry still leaves enough scope for taxonomic variation
(Elser et al. 2000a, b).

Functional trait databases offer new opportunities for
accessing functionally relevant knowledge about inver-
tebrate taxa that could help resolve part of this variation
(e.g., Doledec et al. 2011). Important environmental
factors controlling the distribution of stream dwelling
invertebrates are, for example, current speed, tempera-
ture regime (including altitude and season), substratum
type (including vegetation), and dissolved substances
(Hynes 1970). These factors act as so called “landscape
filters” (Poff 1997) determining the potential occurrence
of taxa dependent on their functional traits. However, it
has long been recognized that biotic interactions like
competition and predation also play an important role
in community structure (Hairston et al. 1960), which are
not included in classical habitat models (see review in
Guisan and Thuiller [2005]). Other factors influencing
the presence or absence of taxa are biogeography,
colonization potential, susceptibility to short-term dis-
turbance (e.g., drought and floods), and food availabil-
ity. It seems thus a relevant step to bring together food
web theories, allometric scaling and biological stoichi-
ometry with the use of functional trait databases and
geographical information to build-up meta-community
models that would account for these different, impor-
tant influencing factors.

In this paper, we make a first step by constructing a
benthic macroinvertebrate community model Stream-
bugs 1.0 to test the feasibility of this concept. We start
by combining the theoretical models with actual
biological trait information to reproduce the benthic
community composition at sites in a catchment that
differ in their external driving conditions. Aim is to
predict, which taxa generally occur and which taxa never
occur at each site using a Bayesian approach. To do so,
we only need the stable steady-state (or potentially
oscillating) long-term solutions of the model that
represent the coexistence of different taxa at the site.
Process formulations for growth, respiration, and death
are similar to food web models for functional groups of
stream-dwelling organisms developed, e.g., by Mclntire
and Colby (1978), Power et al. (1995), D’Angelo et al.
(1997), Spieles and Mitsch (2003), and Schuwirth et al.
(2008, 2011). These models intended to describe key
functions of the ecosystem, like primary production,
primary and secondary consumption, and turnover of
organic material. However, other features important for
river assessment, such as biodiversity and the occurrence
of sensitive species, are not captured by such models. To
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address these issues, food web models describing the
coexistence of individual taxa are needed, as in this
study.

MATERIAL AND METHODS
Model development concept

To improve understanding of the factors determining
the composition of benthic macroinvertebrate (see Plate
1) communities in streams, we developed a model that
works at the taxonomic level instead of describing
functional groups and uses functional trait information
to parameterize processes. State variables can be species,
genera, or families (or even different taxonomic levels
for different taxa), depending on the available trait
information and on the taxonomic resolution of the
observational data the model results should be com-
pared with. To not increase the number of parameters
compared to the functional group approach, we use
allometric scaling according to MTE to parameterize the
basic specific growth, death, and respiration rates. Thus,
only an estimate of temperature and the mean body
mass for each taxonomic group is needed. The other
parameters are universal for all taxonomic groups.
However, to account for variation of individual taxa
around MTE predictions, we include one taxa-specific
modification parameter for the basal metabolic rate and
one for the growth rate. Process rates are furthermore
modified considering functional traits of the taxa. Our
concept of model development consists of the steps
outlined in the following subsections.

Step 1: Mass balances and stoichiometry.—The model
includes individual invertebrate taxa, periphyton, and
fine and coarse particulate organic matter (FPOM,
CPOM) as state variables. We chose benthic (bio)mass
per unit river length as dimension of the state variables,
as this quantity is conserved under water level changes.
The following processes are included in the food web
model: growth, respiration, and mortality of primary
producers and invertebrate consumers, and input of leaf
litter. Feeding types of invertebrate taxa were derived
from trait databases. Unless detailed feeding relation-
ships are known, predators were assumed to feed on all
taxa with a smaller mean biomass than themselves.
Based on the assumed composition and energy content
of invertebrates, periphyton, and organic matter, and on
the values of a few stoichiometric parameters, the
stoichiometric coefficients {v;} of these processes are
derived as outlined in Reichert and Schuwirth (2010).
They were automatically calculated with the R package
stoichcalc (Reichert and Schuwirth 2010). Nutrients and
oxygen were included in the mass balance to derive
stoichiometric coefficients, but they were not modeled as
state variables.

We denote the biomass per river length as B (g DM/
m, where DM is dry mass) and the biomass surface
density as D (g DM/m?) that can be derived from B
divided by the stream width w. The process rates and
stoichiometric coefficients are given in the form of a
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TaBLE 1. Process table of the model including stoichiometric parameters and process rates.
State variables
Periphyton Invert. Litter FPOM Food

Processes (g DM) taxa (g DM) (g DM) (g DM) (g DM) Nutrients  Oxygen Process rates

pp gro 1 - + gk, (g DMyyr ~Im~?)
pp resp —1 + - ng;p (g DMyr 'm™?
pp mort -1 +Ymort +0 +0 hort (& DMeyr™''m ™)
cons gro +1 e/ Yero —1/Yg0 +/0 +/- ;f;‘s (g DM-yr~! m’z)
cons resp —1 + - reom (g DMeyr''m )
cons mort -1 4 Ymort +/0 +/0 roone (g DMeyr “Lm™?)
Litter inp +1 pliter (o DM-yr~!m—2

mp

Notes: The stoichiometric coefficients labeled with signs only are calculated as explained in Reichert and Schuwirth (2010).
Abbreviations for state variables are: invert. taxa, invertebrate taxa; litter, leaf litter; FPOM, fine particulate organic matter; DM
dry mass. Depending on the feeding type of the consumer, “food” can be other invertebrate taxa, periphyton, litter, FPOM, and/
or SusPOM (suspended particulate organic matter). Processes are growth of primary producers (pp gro), respiration of primary
producers (pp resp), mortality of primary producers (pp mort), growth of consumers (cons gro), respiration of consumers (cons
resp), mortality of consumers (cons mort), and input of leaf litter (litter inp) Process rates are growth rate of primary producers
(rBF,), respiration rate of primary producers (rff,), mortality rate of primary producers (P ), growth rate of invertebrate
consumers (rgm®), resplratlon rate of invertebrate consumers ()ﬁfs‘;f) mortality rate of invertebrate consumers (i), and rate of
leaf litter input (r; l“‘”) oro 18 yield for growth according to Eq. 3, Yo is yield for death process according to Eq. 4, f. is fraction
of fine particulate orgamc matter (FPOM) produced by excretion and sloppy feeding. Empty cells mean that the state variable in

that column is not involved in the process of that row.

process table (Reichert and Schuwirth 2010) in Table 1.
The differential equations for the biomasses of all taxa
and of organic matter per river length B= (B, ..., B,)
can be constructed from the stoichiometric coefficients v
= {v;} for the processes and organisms/substances given
in the process table (Table 1) and the dynamic rates r =
(r1, ..., ) (g DM-m 2yr "), which depend on the
parameters 0, according to

dB B
Ef\"r<;7e)w‘ (2)

All parameters are summarized in Appendix: Table Al.

Formally, the growth process of invertebrates consists
of building reserves. Mineralization of the food is
combined with mineralization of reserves in the respira-
tion process. The yield Y, describes assimilation
efficiency and takes into account differences in energy
content and elemental composition of the consumer and
its food source. Deriving or constraining stoichiometric
coefficients and yields by elemental mass balances allows
us to consider limitations of yield due to food quality
(e.g., Elser and Hassett 1994, Hessen et al. 2002,
Andersen et al. 2004) and prepares the model for a
later coupling with biogeochemical cycles. As long as no
detailed information about the elemental composition of
different organisms is available, we assume a Redfield
composition for all organic constituents:

ECtood — fe X ECrpom

ECCO"S '

Ygro = min (17

AN food

)

—fe X AN FPOM 0P food — fe X Olp FPOM)

QN cons AP cons

3)

where EC denotes the energy content (J/g DM), and op
and oy are the phosphorus and nitrogen contents,
respectively (g P/g DM, g N/g DM). The fraction of
FPOM produced by excretion and sloppy feeding is
characterized by the parameter f.. To close the mass
balances (for the elements C, N, P, O, H, and charge) the
remaining fraction of biomass is assumed to be released
as dissolved nutrients.

During the death process, living biomass is trans-
formed to organic matter. Since the model includes only
one state variable of FPOM and the elemental
composition and the energy content of organisms and
FPOM may be different, the mass balance of this
process is closed by introducing a “yield,” Yo This
term guarantees that as much as possible of the biomass
is transferred to FPOM, and the remaining fraction is
released as dissolved nutrients, similar to the growth
process:

ECCOHS
bl b
ECgpoMm " 0N FPOM ~ OlP FPOM

OIN cons AP cons

Yinort = min (1:

s Y(V02 = 0))
(4)

where Y(vo, = 0) denotes the yield at which the
stoichiometric coefficient of oxygen is zero; this term
ensures, that no oxygen is consumed by the death
process. This is desirable, since the death process should
not depend on the presence of oxygen (in contrary,
organisms would die in the absence of oxygen). Such a
“yield” for death could be avoided by introducing many
different fractions of FPOM with compositions corre-
sponding to the dying organisms. A more realistic
description of oxygen and nutrient transformation
during mineralization of organic material would be
possible by coupling this model to a water quality
model. This is beyond the scope of this study.
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Step 2: Allometric scaling of rates—The individual
basal metabolic rate as energy turnover per time is given
in Eq. 1. The basal metabolic rate of a population can be
estimated by multiplication with the number of individ-
uals n per area A and converted into g DM-m~>s~! by
division by the typical energy content EC (J/g DM) of
the biomass:

n. (M\" _ 1
T'basal metab :Zlo (]70) e E/kTE (5)

The number of individuals n per area 4 can be estimated
from the biomass density D (g DM/m?) and the mean
individual body mass M:

n D
A M (6)
leading to
) thl B 1
Tbasal metab = D X io Tg e E/kTE . (7)

In most organisms the long-term sustained rate of
biological activity is some fairly constant multiple,
which is typically about two or three, of the basal
metabolic rate (Brown et al. 2004). We therefore
introduce the universal factor f.., and the taxa-specific
factors fpasal tax tO €stimate respiration rates:

Tresp tax :fresp beasal tax X T'basal metab- (8)

Analogously, we formulate the mortality rate also as
proportional to the basal metabolic rate:

Fmort tax :fmort beasal tax X T'basal metab - (9)

The growth of primary producers is formulated depen-
dent on the availability of light, I, concentration of
dissolved, inorganic phosphorus, Cp, concentration of
dissolved inorganic nitrogen, Cy, and a self-inhibition
term accounting for self-shading and diffusion limitation
when algal mats become thicker

1
P = f X X X X —
gro f gro f gro tax f basal tax basal metab KI i Vi
Kdens
Kdens +D

. ( Cp Cn )
X min , X
Kp+Cp Kn+Cn

X (1 *fshade)

where the light intensity at the river bed is given by /=1,
X exp(—Mh), A is the light extinction coefficient, & water
depth, fihaqe the shaded fraction of the river surface, K,
Kp and Ky the half-saturation constants regarding light,
dissolved inorganic phosphorus, and nitrogen, and Kge,s
the half-inhibition constant regarding self-shading or
diffusion limitation, fyr, tax is @ taxon-specific modifica-
tion factor of the growth rate.

The growth of consumers is assumed to depend on the
availability of food and on the habitat capacity. The fact

(10)
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that many taxa can feed on different food sources is
accounted for by the introduction of one growth process
per food source j, a food-limitation term for the sum of
available food sources fi, rooq and a preference term

Jprer ; that accounts for the availability of the different

food sources and on food preferences of the taxa and
describes adaptive foraging. Here, p; is the preference
coefficient for food source j. By setting all p; to unity (or
all p; to the same value), opportunistic foraging can be
simulated that depends only on the availability of food
sources:

.cons

’gro on j :fgro ngro tax ><flim food Xfprefj stelf inh

Xf basal tax X Tbasal metab (1 1)
Dli
Jiim food = —g— 24— (12)
e Kgood + D?ood
Dip; ( 1 3)

f pref j — N~ - *
> Dy
f

Here, Dsoq is the sum of the surface densities of all food
sources (g DM/m?), if food is SusPOM, we multiply the
concentration in g DM/m?> by the typical height of the
water column the organisms are able to filter (/5,) and
Kiooq 1s the half-saturation constant for food (g DM/
m?), ¢ is a parameter to switch between different
functional forms of food limitation (¢ = 1 leads to a
Monod or Holling Type II functional response, ¢ = 2
leads to a Holling Type III), fgro ax 1S @ taxon-specific
modification factor of the growth rate. The different
feeding types of different invertebrate taxa were derived
from the trait databases freshwaterecology.info (avail-
able online)> and CASIMiR (Kopecki and Schneider
2010; Institut fur Wasserbau, Universitdt Stuttgart,
unpublished database).

To consider the limitation in habitat capacity leading
to intraspecific competition, a self-inhibition term is
introduced which decreases the growth rate with increas-
ing biomass density of the taxon. Ky, iS a parameter to
characterize the density where the growth rate is reduced
to 50%. We implemented two versions, the Monod (Eq.
14) and the Blackman formulation (Eq. 15):

Kdens
fbelf inh Monod Kdens +D ( )
D
1- for D < 2K gens
fself inh Blackman = 2K gens (15)
0 for D > 2K gens-

From the stoichiometric coefficients (Table 1) and the
dynamic rates, differential equations can be constructed
according to Eq. 2. An example is given for a consumer i

2 www.freshwaterecology.info
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TaBLE 2. Model input: environmental conditions for each site.
Site
MA167,
Gossauerbach
Symbol Description Unit up WWTP
T mean temperature °C 10.3
Telass temperature class moderate
length of the river reach m 100
w mean width of the river reach m 2
Iy light intensity at the river bed without shading W/m? 125
fehade fraction of water surface shaded by trees 0.15
Csuspom T typical concentration of SusPOM ¢ DM/m’? 0.9
Lty mean input of leaf litter ¢ DMm 2yr! 170
CUrgjass current regime high
Substrass substrate/microhabitat classes, cf. Table A4 psa, aka, mil, mal,
hpe, alg, pom
OrgCont pollution with organic contaminants yes/no yes/no
Sapro saprobic zone oligo
Cp phosphate concentration mg P/L 0.01
Cn typical N concentration mg N/L 33

Notes: Included with site IDs is the name of the stream and whether it is upstream (up) or downstream (dn) of a wastewater
treatment plant (WWTP). Abbreviations are: psa, psammal; aka, akal; mil, micro-/mesolithal; mal, macro-/megalithal; hpe,
hygropetric habitats; alg, algae; pom, particulate organic matter; oligo, water quality corresponding to oligo-saprobic conditions;
B-meso, water quality corresponding to B-meso-saprobic conditions.

+ Input with a relative standard deviation of 0.25.
feeding on only one food source j and having only one
predator k:

dB cons i
dt

= ((fgro xf;gro tax i ><ﬁim food i Xfi)ref ij stelf inh i
_ﬁ'esp _fmorl) beasal tax i X Fbasal metab i

1
- [Y_ ngro ngro tax k ><ﬁim food k Xfpref ki
£gro

X feelt inh k X foasal tax & X T'basal metab k:| )W~
(16)

Note that we assume the factors furo, fresp» and fmore as
well as the parameters iy, b, and E to be universal for all
invertebrate taxa (these parameters are different for
periphyton and invertebrates, however) and rpasal metab i
to depend via the individual body mass on the taxa. For
invertebrates, we used prior parameter estimates of iy, b,
and E from Ehnes et al. (2011) as they are based on the
largest collection of invertebrate data and because they
fitted all three parameters jointly. For periphyton, we
defined prior parameter distributions according to Tang
and Peters (1995) and Tang (1995).

Step 3: Modify rates based on trait information and
environmental conditions—Different invertebrate taxa
are adapted to different environmental conditions.
Therefore, environmental factors like temperature,
current, and water quality have different effects on
invertebrate taxa. Suboptimal or even intolerable
conditions can influence growth and death rates or
induce drift.

We model the effect of habitat conditions regarding
current, temperature regime, and substrate/microhabitat
conditions on the community composition using infor-
mation from the trait database freshwaterecology.info
(see footnote 2) on the tolerance of different taxa:

Kdens = hdens Xfcurrenl Xf!emp Xf%ubslrale (17)

with feurrent the factor regarding current tolerance, fiemp
the factor regarding temperature tolerance, and fyupsirate
the factor regarding substrate/microhabitat tolerance.
These factors can take values between 0 and 1 depending
on environmental conditions. The parameterizations of
these factors are given in Appendix: Tables A2-A4.
Currently, information on temperature and substrate
tolerances is available only for Ephemeroptera, Plecop-
tera, Trichoptera, and partly for Chironomidae. For taxa
where this information is missing, the factors are set
to 1.

To account for toxic effects of organic contaminants
(e.g., pesticides, insecticides) on invertebrate taxa, we
implemented an increase of the mortality rate for
sensitive taxa at contaminated sites. As an estimation
of the sensitivity of taxa we used the SPEAR database
(Liess et al. 2008) that divides taxa into species at risk
and species not at risk according to four different traits
(database available online).® The death rate (Eq. 9) is
extended by the factor fore contam (Eq. 18), which is
chosen dependent on the classification as species at risk
or species not at risk and the contamination of the site

Tmort = Jmort Xforg contam ><]‘.‘Saproby X foasal tax X T'basal metab-

(18)

3 http://www.systemecology.eu/SPEAR
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TaBLE 2. Extended.
Site
MA168, MA437, MA438,
Gossauerbach Lieburgerbach Lieburgerbach
dn WWTP up WWTP dn WWTP
12.4 9.6 114
warm moderate warm
100 100 100
2 5 4.5
125 125 125
0.26 0.90 0.95
0.9 0.9 0.9
260 500 420
high high moderate
psa, aka, mil, mal, psa, aka, mil, psa, aka, mil,
hpe, alg, pom mal, alg, pom mal, alg, pom
yes no yes
B-meso oligo B-meso
0.03 0.05 0.04
8.0 2.1 7.6

As the simplest implementation, we set the factor
Jorg contam fOr “insensitive” taxa to I, for “sensitive”
taxa to 1 at uncontaminated sites and to the value
Corg contam crit 4t contaminated sites. This describes the
simplistic assumption that the death rate of sensitive
taxa is increased by a factor of corg contam crit at sites with
organic contaminants in the water. Tolerance to water
quality aspects described by the saprobic system is
implemented analogously using the information from
the Austrian saprobic system (cf Appendix: Table A5).

Step 4. Get site-specific information—As a first test,
the model was applied to four sites in the catchment of
the Monchaltorfer Aa river near Zurich on the Swiss
Plateau. The two pairs of sites from two streams are
each upstream and 300-400 m downstream of a
wastewater treatment plant (WWTP) with a fraction
of treated wastewater of about 40% (MA168) and 20%
(MAA438), respectively. For these sites, invertebrate data
collected between 1982 and 2005 were provided by the
Office for Waste, Water, Energy, and Air of the Canton
of Zurich (AWEL Zurich). The estimated environmental
conditions used as model input are given in Table 2. A
description of how we estimated the conditions from
available cantonal monitoring data is given in Appen-
dix: Table A6.

As a first step, the source pool of taxa occurring in the
whole catchment were determined. This was done by
analyzing available monitoring data. Simulations were
run for a list of 28 macroinvertebrate taxa. Taxa
occurring in fewer than five of the 87 available samples
from the catchment were excluded. Further dispersal
filters were not applied since at the size of this catchment
(about 50 km?) we assume that dispersal limitation is not
a factor that influences long-term average community
composition. We performed the simulations at the genus
level since a higher taxonomic resolution was available
only for part of the observational data. For the source
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pool taxa, the mean individual biomass was estimated
from length-mass relationships (Appendix: Table Al).

Step 5: Perform simulations.—The model calculates
the (bio)mass development of the state variables over
time under the forcing of external influence factors. For
the model test, we worked with constant external forcing
(Table 2) and assess local occurrence of taxa from the
long-term equilibrium. The term “occurrence” is used
here in the sense of an equilibrium biomass above an
abundance threshold of 0.5 individuals/m?> where
observation in the field would be likely. This threshold
depends on the sampling strategy and was estimated for
the cantonal monitoring data we use for inference in step
6. We chose the same initial biomass density of 1 g DM/
m? for all invertebrate taxa of the source pool. However,
tests showed that model results are not sensitive to this
choice, since stable equilibria are reached irrespective of
the initial conditions.

To estimate uncertainty of model results due to
parameter uncertainty, we define marginal (prior)
probability distributions for the parameters given in
the Appendix: Table Al and assume independence to
construct their joint distribution. We propagate this
distribution to the model results numerically by ran-
domly drawing from this distribution and calculating
corresponding model results.

The model was implemented with the statistics and
graphics software R (R Development Core Team 2011).
The code is given in the Supplement. The differential
equations were solved with the R package deSolve
(Soetaert et al. 2010).

Step 6: Bayesian inference—For all sites, we deter-
mined those taxa that occurred in all samples and those
taxa that never occurred in any sample at that site. We
used only the observational data from 1995 to 2005. Data
from the 1980s were not included because the taxonomic
resolution of these samples was lower and environmental
influence factors changed by that time. We conditioned
the prior parameter distribution by the observed occur-
rence pattern of taxa rather than by quantitative density
estimates. Observed densities depend very much on short
term dynamics in the system. Since we estimated
occurrence of taxa by using constant environmental
influence factors, the short-term dynamics in biomass
development are not represented by the model and
quantitative density estimates are not expected to match
observed ones. The pattern-oriented conditioning is
numerically implemented by selecting those parameter
samples that correspond to simulations that fulfill the
following two criteria: (1) all taxa that occurred in all
observations at a specific site are predicted to occur by the
model run and (2) all taxa that never occur in the
observations at a specific site are predicted to not occur
by the model run. Note that this acceptance-rejection
technique is a simple form of a “likelihood-free” (without
evaluation of the likelihood function) implementation of
Bayesian inference as used in approximate Bayesian
computation (e.g., Marjoram et al. 2003). Due to the use
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Benthic macroinvertebrates from a site close to the catchment of the Monchaltorfer Aa, Switzerland. From left to

right (and from top to bottom): caddisfly (Trichoptera), amphipod (Amphipoda, Gammaridae), leech (Hirudinea), mayfl
g p y p phip phip yily

(Ephemeroptera, Baetidae). Photo credits: Raoul Schaffner.

of discrete output pattern, it is not approximate in the
same sense in our context. Comparing the resulting
posterior parameter sample with the prior, we can
analyze for which parameters we can learn from the
data. If specific taxa are systematically over- or underes-
timated by the model for most of the prior parameter
samples, it can happen that the criteria are never fulfilled
and a posterior parameter sample cannot be derived.
Such cases are of special interest, since those systematic
differences can provide hints for model improvement or
indicate the need for the revision of model input
estimation. In such cases we excluded these taxa from
the criteria to derive a posterior parameter sample and
analyzed if we can learn something about the parameters
from the other taxa.

REsuULTS

Even without fitting parameter values, the model is able
to predict key patterns of observed occurrence of taxa
quite well, as shown by food webs resulting from the
deterministic model with parameters fixed at the mean of
their marginal prior distributions (Fig. 1). Note, that it
was not known beforehand if site MA167 is polluted with
organic contaminants or not. We therefore ran the model
under both assumptions. Model results clearly show that a
compliance of model results with observations is achieved
only by assuming organic pollution at that site (Fig. 1,

Table 3). Model results were not sensitive to choosing a
value of ¢ of 1 or 2 in Eq. 12 for food-limitation and to
choosing Egs. 14 or 15 for self-inhibition, indicating high
structural stability of the model. Therefore, we show here
only the results for ¢ =1 and using Eq. 14.

To account for parameter uncertainty, we calculate
the probability to exceed the abundance threshold of 0.5
individuals/m? for all taxa from Monte Carlo simula-
tions. Results are given in Table 3 for each site, grouped
according to the occurrence in observations. For most
taxa that occurred in all samples of a site, the model
predicts a high probability to occur, and for most taxa
never occurring in the samples of a site, the model
predicts a low probability to occur. However, there are
exceptions where the model is not in compliance with
observations. This is the case, e.g., for the leech
Glossiphonia, with a probability to occur between 0.4
and 0.54 at three sites where it was never observed (see
Discussion) and for Radix at site MA437. Taxa with a
low predicted probability to occur that occurred in all
samples are, e.g., Habroleptoides at site MA437 or
Ecdyonurus and Rhyacophila at site MA438.

The marginals of the prior and the posterior
parameter distribution resulting from conditioning with
the data of all four sites are shown in Fig. 2. We depicted
those parameters with pronounced differences between
prior and posterior marginals. As the model is relatively
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Fic. 1. Food webs at four different sites (MA167, MA168, MA437, and MA438). Lines represent feeding links, dots represent
different invertebrate taxa, except four dots along the base represent periphyton, fine particulate organic matter (FPOM), leaf litter,
and suspended particulate organic matter (SusPOM) from left to right. The same invertebrate taxa appear in the same position on
each panel. Diagrams on the left-hand side show food webs constructed from observational data with taxa present in all samples
(blue), taxa absent in all samples (orange), and taxa occurring in part of the samples (green with grey lines for feeding links).
Diagrams on the right-hand side show food webs constructed from model results of deterministic simulations with parameters fixed
at the mean of the marginal prior distributions (Appendix: Table Al), with taxa with an equilibrium abundance of at least 0.5
individuals/m? (blue), and other taxa (orange). Modeled data are shown for site MA167 assuming pollution with organic
contaminants (large diagram) and no pollution with organic contaminants (small diagram).
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TaBLE 3. Predicted probability (Prob.) of exceeding an abundance of >0.5 individuals/m?> for taxa that occurred in all samples
(always observed), in none of the samples (never observed), and in some of the samples (sometimes observed) at the respective
sites.

MA167 MA168 MAA437 MA438
Prob., Prob.,
Taxa pest  no pest Taxa Prob. Taxa Prob. Taxa Prob.

Always observed Always observed Always observed Always observed
Gammarus 0.92 0.89 Baetis 0.61 Habroleptoides 0.01 Rhyacophila 0.01

Never observed Erpobdella 0.62 Atherix 0.18 Ecdyonurus 0.04
Habrophlebia 0 0.01 Gammarus 0.88 Ecdyonurus 0.42 Baetis 0.42
Stylodrilus 0.01 0.01 Radix 0.89 Baetis 0.49 Hydropsyche 0.47
Ephemera 0.01 0.02  Never observed Eiseniella 0.58 Eiseniella 0.48
Habroleptoides 0.02 0.01 Habrophlebia 0.00 Rhyacophila 0.89 Elmis 0.52
Dugesia 0.02 0.01 Ephemera 0.00 Gammarus 0.90 Erpobdella 0.57
Calopteryx 0.04 0.40 Stylodrilus 0.01  Never observed Gammarus 0.90
Rhithrogena 0.04 0.13 Habroleptoides 0.01 Habrophlebia 0.01 Never observed
Ecdyonurus 0.08 0.46 Rhithrogena 0.07 Dugesia 0.01 Habrophlebia 0.00
Dicranota 0.08 0.06 Dicranota 0.08 Rhithrogena 0.01 Rhithrogena 0.00
Paraleptophlebia 0.08 0.51 Ecdyonurus 0.09 Dicranota 0.04 Dugesia 0.01
Erpobdella 0.1 0.12 Paraleptophlebia 0.10 Erpobdella 0.13 Dicranota 0.02
Nemoura 0.23 0.83 Protonemura 0.18 Paraleptophlebia 0.48 Calopteryx 0.02
Protonemura 0.24 0.81 Nemoura 0.19 Glossiphonia 0.54 Gyraulus 0.02
Leuctra 0.26 0.87 Leuctra 0.22 Radix 0.94 Paraleptophlebia 0.04
Odontocerum 0.34 0.94 Odontocerum 0.32  Sometimes observed Protonemura 0.16
Glossiphonia 0.4 0.55 Glossiphonia 0.41 Simulium 0.01 Nemoura 0.20

Sometimes observed Sometimes observed Stylodrilus 0.01 Leuctra 0.19
Simulium 0.01 0.00 Simulium 0.00 Ephemera 0.02 Odontocerum 0.33
Atherix 0.02 0.20 Atherix 0.01 Gyraulus 0.04 Sometimes observed
Gyraulus 0.04 0.04 Calopteryx 0.02 Asellus 0.28 Simulium 0.00
Rhyacophila 0.28 0.87 Gyraulus 0.02 Calopteryx 0.38 Atherix 0.01
Asellus 0.29 0.27 Dugesia 0.03 Riolus 0.52 Ephemera 0.04
Baetis 0.57 0.53 Rhyacophila 0.07 Hydropsyche 0.55 Glossiphonia 0.33
Riolus 0.58 0.56 Hydropsyche 0.63 Elmis 0.56 Habroleptoides 0.36
Hydropsyche 0.59 0.57 Eiseniella 0.63 Protonemura 0.83 Stylodrilus 0.48
Eiseniella 0.6 0.61 Riolus 0.67 Nemoura 0.85 Riolus 0.48
Elmis 0.62 0.60 Elmis 0.71 Leuctra 0.88 Asellus 0.90
Radix 0.94 0.93 Asellus 0.88 Odontocerum 0.94 Radix 0.91

Note: For site MA167, model runs were performed assuming pollution by organic contaminants (pest) and no pollution by

organic contaminants (no pest).

complex and the data are scarce, these differences are
still quite small. Results indicate that the model fits
better to observed data when, e.g., the growth rates of
invertebrates f,., are shifted to lower values and the
respiration rates of invertebrates f.sp, the normalization
constant iy, and the parameter that increases death rates
of sensitive taxa at sites polluted with organic contam-
inants, Corg contam crit> are shifted to higher values. This
illustrates how we can update our knowledge about
parameters from comparison with observations. Note,
that for site MA437 the taxa Radix, Glossiphonia,
Habroleptoides, Atherix, Ecdyonurus, and Baetis and
for site MA438 the taxa Ecdyonurus, Rhyacophila,
Baetis, Hydropsyche, and Eiseniella had to be excluded
from the inference criteria to get an acceptable posterior
sample size. Thereby we lose information for inference
from data. However, by analyzing underlying reasons
for systematic deviations in prediction of these taxa that
cannot be explained by parameter uncertainty, indica-
tions for model improvement can be gained.

DiscussioN

Results show that the model is able to reproduce key
patterns of coexistence of different invertebrate taxa.

This is remarkable and an indication that the suggested
model makes a relevant step towards fruitfully combin-
ing knowledge from theoretical ecology and real
invertebrate traits. A similar approach was followed by
Boit et al. (2012) who developed a mechanistic food web
model that describes 24 guilds of the pelagic zone of
Lake Constance based on allometric scaling to repro-
duce observed patterns of seasonal plankton succession.
This indicates that the combination of mechanistic food
web models with allometric scaling might be a promising
way to model other multi-trophic ecosystems as well.
The analysis of remaining discrepancies between our
model results and observations regarding the occurrence
of taxa helps improve the model in the future. Reasons
for such discrepancies can be model structure uncer-
tainty (e.g., missing environmental influence factors,
missing or wrong formulation of processes), parameter
uncertainty, missing or uncertain trait classification of
taxa, input uncertainty regarding environmental influ-
ence factors (e.g., organic pollution at site MA167), or
observation errors (i.e., missing or misclassification of
taxa, inadequate taxonomic resolution). For example, at
sites MA167, MA168, and MA437, the leech Glossipho-
nia was never observed but is predicted by the model to



February 2013

1.5 AN
1.0 4 , '
0.5 - y \

0.0 = T T
0.5

fg ro_Glossiphonia

80000 -
60000 -
40000 A
20000 - \

0 3X10°° 6x107°

Ccurrent_nonﬁt

fg ro

MODEL INVERTEBRATE COMMUNITY COMPOSITION

377
2.0 1
B N
~ 1.0 1 // \\
’ \
-1 4 N
7’ N
00 ’I T |\
0.5 1.0 1.5
fgrofParaIeptophlebia
8.0X107"7 4 7/~
] / \
~ 1 7 R
’ \
1.7 A
0 T T T T T
5.0x10" 2.0x10%
IO?invens (J/yr)
0.15 A1
~ 0.10 -
0.05 A
0.00
25
Corg_contam_crit
1.5 1 -
S~ 1.0 4 ,
0.5 W N\
0.0 T T T
2.0 2.5 3.0
fresp

Fic. 2. Comparison of marginal prior (dashed lines) and posterior (solid lines with gray shading underneath) parameter
distributions. The posterior shown here is resulting from conditioning with the data of all four sites; the x-axis shows parameter

values for the taxon-specific multiplicative factors regarding growth ( foro Baeiiss fero_par

leptophiebias Jero_Glossiphonia), NOrmalization

constant for metabolic rates of invertebrates iy, factor regarding current tolerance at current conditions not fitting to the trait of the
taXon Ceyrrent_nonfits Multiplicative factor of death rate for sensitive taxa at contaminated siteS Corg contam crit and universal
multiplicative factor regarding growth and respiration for invertebrates fgro, fresp (dimensions given in Appendix A: Table Al); the
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occur at these sites with a probability of 0.4—0.54. This
taxon is classified as predator in both trait databases
(CASiMiR and freshwaterecology.info) and there is no
severe food limitation. According to its trait classifica-
tion and the estimation of environmental conditions, the
taxon is not negatively affected by water quality.
However, only one of the four species from the genus
Glossiphonia has only one point assigned to oligotrophic
conditions. Therefore, it is possible that negative effects
of the saprobic conditions at sites MA167 and MA437
are underestimated by the model. A stricter implemen-
tation of the tolerance to environmental conditions and
a higher taxonomic resolution could improve model
accuracy. A classification regarding current, tempera-
ture and microhabitat tolerances is not available for this
taxon. This could be another reason for overestimating
its occurrence. Further investigating the reasons by
literature studies and application of the model to more
sites to test if this is a general deficiency of our model
regarding this taxon or if it is specific to the test sites,

would help improve our understanding and the predic-
tive capabilities of the model. Due to our implementa-
tion, missing trait information may lead to an
overestimation of the affected taxa. To overcome this
problem, phylogenetic information could be used to
estimate missing traits from related taxa, as it was done
by Bruggeman (2011) for phytoplankton.

In general, all environmental models are wrong (see
Box and Draper 1987) since they are always a
simplification of much more complex natural systems.
The art of model development is to find an adequate
compromise between complexity and simplicity. How-
ever, increasing the complexity of models is only
possible, if adequate knowledge is available, and it is
only desirable, if universality and/or predictive capabil-
ities of the model increase. Since knowledge about many
processes (e.g., the influence of chemical contaminants
on metabolic rates of macroinvertebrates) is incomplete,
we tried to find simple empirical descriptions that allow
us to reproduce observable patterns and avoid unjusti-
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fiable assumptions. For example, we implemented
ecotoxic effects by a binary classification of taxa into
sensitive and insensitive taxa as well as a binary
classification of sites into polluted and unpolluted sites
using the database underlying the SPEAR concept
(Liess et al. 2008). A more precise description of
ecotoxic effects is desirable but so far impeded by the
limited availability of data regarding effects of a
multitude of contaminants on the variety of taxa,
unknown exposure patterns at the different sites, and
various factors that influence the transferability of
laboratory experiments to field conditions. Mechanisti-
cally more detailed approaches use state variables that
are not directly observable and involve many more
model parameters (e.g., the DEB and DEBtox models
[Kooijman and Bedaux 1996, Billoir et al. 2009, Kooij-
man 2010, Jager and Zimmer 2012]). This makes these
models difficult to apply for modeling benthic commu-
nities consisting of many different taxa with poorly
known properties. As we also have poor knowledge on
uptake and release rates of toxicants, relevant organs or
tissues where they accumulate, and critical concentra-
tions, we are also not considering internal toxicant
concentrations, as suggested by Jager et al. (2011). The
results presented in this paper indicate that our model is
based on an adequate compromise between complexity
and simplicity. However, if more detailed information
for the variety of invertebrate taxa and a better
characterization of field conditions becomes available,
the model could be improved to describe ecotoxic effects
more accurately.

The model Streambugs 1.0 requires mainly input that
can be estimated from data that are statewide available.
This is a huge advantage, since it can be tested at all sites
in an ecoregion where invertebrate monitoring data and
environmental influence factors are available or can be
estimated. Applying the model to a wider range of sites
will contribute to inference on model parameters,
improving process formulations, and potentially reveal
the need to include further processes like emergence of
insects or dispersal. Therefore, we see the current
relevance of this model as a scientific learning tool for
integration of quantitative ecological knowledge and
testing of hypotheses on ecosystem functionality.
Moreover, it has huge potential for practical applica-
tion. Moving on to a spatial explicit model that includes
dispersal and predicts the benthic meta-community in a
river network for given environmental conditions would
link to ecological theory of meta-communities and
contribute significantly to decision support in river
management.

So far, we concentrated on occurrence patterns and
their dependence on external influence factors. As we
calculate these as steady-state (or long-term dynamic)
solutions of a dynamic model, the model could also be
used for simulating the dynamics of benthic communi-
ties at the taxonomic level. This would considerably
extend current approaches at the functional group level

Ecology, Vol. 94, No. 2

(Mclntire and Colby 1978, D’Angelo et al. 1997, Spieles
and Mitsch 2003, Schuwirth et al. 2008, 2011). However,
to assess the model performance regarding temporal
dynamics, data with an appropriate temporal resolution
are required. If such data become available, the model
would be a very useful tool for assessing temporal
aspects of ecosystem functioning and disturbance
ecology. Other processes like emergence, flood-induced
drift, and recolonization could then be included in the
model.
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SUPPLEMENTAL MATERIAL

Appendix

Tables with model parameters, factors for current and temperature tolerance, substrate/microhabitat and water quality classes,
saprobic conditions, and estimation of environmental inputs (Ecological Archives E094-031-Al).

Supplement

Software implementation of Streambugs 1.0 in R (Ecological Archives E094-031-S1).



