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Abstract

Predictions of the expected number of failures of water distribution net-
work pipes are important to develop an optimal management strategy. A
number of probabilistic pipe failure models have been proposed in the lit-
erature for this purpose. They have to be calibrated on failure records.
However, common data management practices mean that replaced pipes are
often absent from available data sets. This leads to a ’survival selection
bias’, as pipes with frequent failures are more likely to be absent from the
data.

To address this problem, we propose a formal statistical approach to
extend the likelihood function of a pipe failure model by a replacement
model. Frequentist maximum likelihood estimation or Bayesian inference
can then be applied for parameter estimation. This approach is general and
is not limited to a particular failure or replacement model.

We implemented this approach with a Weibull-exponential failure model
and a simple constant probability replacement model. Based on this distri-
bution assumptions, we illustrated our concept with two examples. First,
we used simulated data to show how replacement causes a ’survival selection
bias’ and how to successfully correct for it. A second example with real data
illustrates how a model can be extended to consider covariables.
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1. Introduction

The optimal management strategy for water distribution networks bal-
ances issues of water safety, reliability, quality, and quantity, while exploiting
the full extent of the useful life of the pipes to achieve economic efficiency
(Kleiner and Rajani, 2001). Pipe failure models are one of the key tools to
support this management process.

We distinguish between two major applications of pipe failure models:
(i) The failure probabilities of the individual pipes are needed for the mid-
term maintenance and replacement strategies of the pipe network (ii) For
long-term planning, the expected number of failures in the entire system is
of interest, but not the specific cause of the failures. It is therefore sufficient
to model all deterioration processes lumped together as a function of age, so
that less detailed data are required. Applications (i) and (ii) do not require
fundamentally different model structures, because models for (ii) can typi-
cally be extended to fulfill the needs of (i) by incorporating pipe properties
such as material, diameter, etc. to improve pipe-specific predictions.

The model should be calibrated on the basis of failure records of the local
system because of differences in the influence factors that are not modeled
(e.g. soil properties). Correct calibration can become challenging because
the available data typically show some or all of the following properties (see
also Figure 1):

• Right censored observations (Figure 1-i): For every pipe in service a
right censored observation is available: the time since the last failure
or construction until the time of observation. This provides impor-
tant information, and pipes without recorded failures until the end
of the observation period must not be excluded from the calibration
process. This issue is considered in the calibration procedures of many
time-based failures models (Carrión et al., 2010; Eisenbeis et al., 1999;
Gustafson and Clancy, 1999; Mailhot et al., 2000). For models formu-
lated as a counting process (e.g. Economou et al., 2008; Kleiner et al.,
2010; Watson et al., 2004), right censoring is not relevant, because the
probability of a certain number of failures within a time interval is
modeled instead of the time between the failures.

• Left truncation (Figure 1-ii): Left truncation occurs if a pipe was
installed before failures were systematically recorded by the utility.
As a consequence, it is not known how many failures occurred before
the recording period. Only few models (Carrión et al., 2010; Le Gat,
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2009; Mailhot et al., 2000) explicitly consider left truncation.

• Absence of replaced pipe data (Figure 1-iii): Frequently, replaced pipes
are deleted from the database together with the corresponding pipe
failure data because the database was established with the objective
of reflecting the current state. This leads to a “selective survival bias”
(Renaud et al., 2011), due to the fact that pipes with poor failure
histories will be underrepresented in the data set. Hence, ignoring this
in the parameter estimation causes systematic errors in the predictions
which cannot be reduced merely by increasing the amount of data
(Scheidegger et al., 2011).

The intuitive idea to consider the survival selection bias is to assess how
likely it is that a pipe similar to the observed has been replaced in the past
and correct the likelihood function accordingly. This requires the integration
of a replacement model that characterizes the probability that a pipe was
not replaced, i.e. the chance that a pipe is still in service. Generally, this can
be a function of the condition, age and number of failures a pipe has already
experienced. The parameters of the replacement model are then estimated
jointly with those of the failure model.

To the best of our knowledge only the LEYP model (linear extension of
the Yule process) developed in the dissertation of Le Gat (2009) attempts to
tackle the selective survival bias. Le Gat (2009) specified the probability of
a pipe is not being replaced if a failure occurs as a function of pipe age. The
chosen double exponential form allows an analytical evaluation of the likeli-
hood of the LEYP model. In the form presented, however, this approach is
difficult to generalize and to transfer to other failure and replacement mod-
els. For example, a replacement decision might not depend on age but on
the number of previous failures.

In this paper we propose a general framework to derive the likelihood
function of a pipe failure model combined with any kind of replacement
model to enable unbiased parameter estimation from data sets without his-
torical records. The likelihood function derived in Section 2 has a frequentist
interpretation so that the parameters can either be estimated according to
the maximum likelihood principle or by Bayesian inference. The latter is
favorable in two common cases: (i) Small utilities often have very limited
data, either because they have been recording failures only for a short time
or simply because they have small networks. However, they typically have
dedicated experts with sound practical experience beyond the information in
archives. In this situation, carefully elicited expert knowledge can improve
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the model performance (Scholten et al., 2013). (ii) The parameters of the
replacement model can correlate strongly with those of the failure model
and may therefore lead to identifiability problems in a frequentist setting.
In a Bayesian framework, this can be circumvented by an informative prior
distribution.

The remainder of this paper is structured as follows. In Section 2 we
first introduce a universal notation for pipe failure models and then derive
the likelihood function for completely and partially observed pipes. On this
basis, we illustrate how a failure model can be extended with a replacement
model in general. Furthermore, the predictive distributions for the number
of failures for pipes with and without failure record are presented. As an ex-
ample, the equations are derived explicitly for a Weibull-exponential model
in Section 3. In the following section, this model is used for two application
examples: the first is based on artificial data to highlight the importance of
the replacement model. The second illustrates (with real data) how individ-
ual pipe properties can be considered. Finally, we discuss the strengths and
weaknesses of our approach and point out directions for further research.r further research.r further research.

Figure 1: Three scenarios with different data availabilities. The available information is
shown in black, the unavailable information in gray. a marks the beginning and b the end
of the recording period, × a failure, ♦ the replacement, t0 is the time of construction, ti
the time of the ith failure, and t∗i the time of the ith recorded failure. i) All failures of the
pipes are recorded and data of replaced pipes remain in the data set; ii) Failures before
a are not recorded, the number of failures per pipe is unknown; iii) The total number of
failures per pipe is unknown and data of replaced pipes is unavailable.
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2. Methods

2.1. Pipe failure model

As long as a pipe is in operation there is a chance of a failure event. We
define a failure as an observable event that requires immediate measures (e.g.
a break). Other definitions are possible, depending on the available records.
It is assumed that failures are repaired immediately without replacing the
pipe.

For a single pipe, the point in time of the ith failure is denoted by ti
while t0 stands for the time of construction. The time when the ith failure
occurs is random and therefore described by a probability density function
pi(t|t0, . . . , ti−1,θ) or a survival probability Prob(ti > t|t0, . . . , ti−1,θ) =
Si(t|t0, . . . , ti−1,θ). Obviously, the ti, i ≥ 0 are not independent as the ith
failure cannot occur before the (i−1)th failure. The vector θ represents the
parameters of all distributions.

This formulation enables us to express different standard models with
the same notation. Models based on a counting process can be written
equivalently as time-based models. For example for a homogeneous Poisson
process, we would define pi(t|t0, . . . , ti−1,θ) = p(t − ti−1|θ) = λe−λ(t−ti−1)

for i > 0, i.e. the time differences between two failures are all exponentially
distributed with the same rate λ.

To statistically estimate the parameters θ and for failure predictions,
a likelihood function is required. The likelihood is the joint probability
(density) of the observed nk failures at times Tk = {tk,i : i = 0, . . . , nk} for
all pipes k = 1, . . . ,K given the model and the parameters.

We define a as the time at the beginning of the recording period and b
as the end of the recording period. All failures are recorded within this pe-
riod. The likelihood function for a pipe failure model for two data collection
schemes is derived below (compare Figure 1): i) the complete life of the pipe
lies within the recording period, and ii) the pipe was built before recording
started.

All the following equations apply to a single pipe unless otherwise stated.
For the sake of simpler notation, the pipe index k is omitted in equations
that refer to a single pipe.

2.1.1. Likelihood for completely observed pipes

If a ≤ to, the recording period covers the complete life of the pipe. For
this situation the likelihood of n failures at times T = {ti : i = 0, . . . , n} for
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one pipe is formulated as

p(T , n|b,θ) =

[
n∏
i=1

pi(ti|t0, . . . , ti−1,θ)

]
Sn+1(b|t0, . . . , tn,θ) (1)

where θ represents the parameters of the distributions. The factor Sn+1(b|t0, . . . , tn,θ)
accounts for the fact that there is always a right censored observation avail-
able: the time from the last failure (or from construction) until the end of
the observation period or the replacement of the pipe.

2.1.2. Likelihood for partly observed pipes

If a pipe was built before the observation period began (t0 < a) it is not
known how many (if any) failures have occurred before a.

The likelihood proposed by Mailhot et al. (2000) accounts for this. In the
following a distinction must be made between t∗i , the point in time of the ith
recorded failure and ti, the time of the ith failure which is not necessarily
equal to t∗i . The n recorded failures are summarized as T ∗ = {t∗i : i =
0, . . . , n}. Additionally the time of construction t0 is assumed to be known.
For convenient notation we define t∗0 := t0. Note that pi(t|θi) still stands for
the density of the time of the ith (observed or unobserved) failure.

Mailhot et al. (2000) first derived the joint distribution of the number of
non-recorded failures m and the n recorded failures at T ∗. Adapted to our
notation and slightly generalized, this is written as

p
(
T ∗,m, n|a, b,θ

)
=

∫ a

t0

∫ a

t1

. . .

∫ a

t(m−1)

p1(t1|t0)p2(t2|t0, t1) . . . pm(tm|t0, . . . , tm−1)

· pm+1(t
∗
1|t0, . . . , tm)pm+2(t

∗
2|t0, . . . , tm, t∗1) . . . pm+n(t∗n|t0, . . . , tm, t∗1, . . . , t∗n−1)

· Sm+n+1(b|t0, . . . , tm, t∗1, . . . , t∗n) dtm . . . dt2 dt1
(2)

for m > 0. For no non-recorded failures, m = 0, the density p
(
T ∗,m =

0, n|a, b,θ
)

takes the form of (1).

The likelihood for a single pipe is then obtained by summing (2) over m:

p
(
T ∗, n|a, b,θ

)
=

∞∑
m=0

p
(
T ∗,m, n|a, b,θ

)
(3)
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2.2. Replacement model

The replacement model has to express the probability of the event ’pipe
has not been replaced up to time b’ (abrv. ’not rep.’) given its failure history,
Prob(’not rep.’|T ∗, n, a, b,θ).

It is usually more convenient to formulate the replacement model first
conditioned on the number of non-recorded failures, i.e. Prob(’not rep.’ |
T ∗, n,m, a, b,θ). The unconditional replacement model is then derived as

Prob(’not rep.’|T ∗, n, a, b,θ) =
∞∑
m=0

Prob(’not rep.’|T ∗, n,m, a, b,θ)Prob(m|a,θ)

where the probability of m failures before a is given by

Prob(m|a,θ) =

∫ a

t0

∫ a

t1

. . .

∫ a

t(m−1)

[
m∏
i=1

pi(ti|t0, . . . , ti−1,θ)

]
Sm+1(a|t0, . . . , tn,θ) dtm . . . dt2 dt1

Only those replacements that are related to the failure history, i.e. T ∗
and n, may be represented by the replacement model. Probabilities for
independent replacement cancel out in the fraction of (4).

2.3. Joint likelihood

If only data of active pipes are available, the likelihood of the pipe failure
model and the replacement model must be combined to infer the parameters
of the pipe failure model correctly.

The likelihood of the pipe failure model must be conditioned on the event
’pipe has not been replaced up to time b’. So the likelihood for an observed
pipe with n recorded failures at times T ∗ becomes p

(
T ∗, n|a, b, ’not rep.’,θ

)
.

Expressed according to the Bayes’ theorem, this is

p
(
T ∗, n|’not rep.’, a, b,θ

)
=
p(T ∗, n|a, b,θ)Prob(’not rep.’|T ∗, n, a, b,θ)

Prob(’not rep.’|a, b,θ)
(4)

The numerator is the product of the likelihood of the pipe failure model and
the replacement model. The denominator of (4) is the probability that a
pipe of age b has not been replaced, which is obtained by marginalization

Prob(’not rep.’|a, b,θ) =

∞∑
n=0

∫ b

a

∫ b

t∗1

. . .

∫ b

t∗
(n−1)

p(T ∗, n|a, b,θ)

Prob(’not rep.’|T ∗, n, a, b,θ) dt∗n . . . dt
∗
2 dt
∗
1
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To obtain the joint likelihood, the likelihoods of the single pipes are
multiplied if they are independent.

p
(
T ∗1 , . . . , T ∗K , n1, . . . , nk|’not rep.’, a, b,θ

)
=

K∏
k=1

p
(
T ∗k , nk|’not rep.’, a, b,θ

)
(5)

Independence is a reasonable assumption if the pipes are aggregated to a
sufficient length (see e.g. Gangl, 2008).

2.4. Consideration of covariables

Up to this point, pipes were not distinguished by their properties such
as their diameter or material. The same parameter vector θ was used for all
pipes. Consideration of pipe properties can help to improve the predictions
for a specific pipe or pipe group and enables the identification of impor-
tant deterioration processes. Covariables are incorporated by calculating
“individual” parameters θk for each pipe k as a function of their properties
xk:

θk = f(xk,θ,γ) (6)

where γ are additional parameters of f(·) that must be estimated together
with θ. To include qualitative pipe properties (e.g. material) indicator vari-
ables are used.

2.5. Parameter inference

Two widely applied approaches to estimate the parameters are frequen-
tist maximum likelihood estimation (MLE) and Bayesian inference. MLE
(e.g. Kleiner et al., 2010; Le Gat, 2009) and Bayesian inference (Dridi et al.,
2009; Economou et al., 2008; Watson et al., 2004) have frequently been ap-
plied for pipe failure models.

The ML estimator is the parameter vector θ̂ that maximizes the likeli-
hood function.

θ̂ = arg max
θ

p
(
T ∗1 , . . . , T ∗K , n1, . . . , nk|’not rep.’, a, b,θ

)
Large sample properties allow an approximation of the parameter uncer-
tainty (Harrell, 2001).

With Bayesian inference, the distribution of the parameters is calculated
given the data and the prior distribution of the parameters p(θ). The prior
distribution reflects knowledge about the parameters before the calibration.
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The proportional relationship (Bernardo and Smith, 2000) is sufficient for
numerical calculations:

p
(
θ|T ∗1 , . . . , T ∗K , n1, . . . , nk, ’not rep.’, a, b

)
∝

p
(
T ∗1 , . . . , T ∗K , n1, . . . , nk|’not rep.’, a, b,θ

)
p
(
θ
)

(7)

2.6. Predictions

In the following the predictive distribution of the number of failures is
derived for new pipes and for pipes with a known failure record. Future
replacement is purposely not considered in the predictions, to enable the
comparison of replacement strategies. The ’pure’ predicted failures can then
be used directly as input for different replacement strategies.

For the sake of more compact notation, the following predictive distribu-
tions are conditioned on the parameters θ. Typically, they will be multiplied
by the posterior parameter distribution (7) and then marginalized over θ.

2.6.1. Unconditional predictions

The predictive distribution for a pipe without a failure record is given
by the likelihood (1). Typically, interest is limited to the distribution of
the number of failures until age c which is obtained by marginalization of
likelihood (1).

Prob(n|c,θ) =

∫ c

t0

∫ c

t1

. . .

∫ c

t(n−1)

p(T , n|c,θ) dtn dtn−1 . . . dt1 (8)

2.6.2. Conditional predictions

To predict the future failures of an existing pipe the failures during the
observation period must be considered. Therefore we distinguish between
the n(1) observed failures at T ∗(1) and the n(2) future failures at T ∗(2). The
predictive distribution of T ∗(2) and n(2) can be expressed by the likelihood
for partially observed failures (2)

p(T ∗(2), n(2)|T ∗(1), n(1), a, b, c,θ) =
p(T ∗(1) ∪ T ∗(2), n(1) + n(2)|a, b = c,θ)

p(T ∗(1), n(1)|a, b,θ)
(9)
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The condition ’not rep.’ is not required as it cancels out algebraically. Fi-
nally, the distribution of the number of future failures is given by

Prob(n(2)|T ∗(1), n(1), a, b, c,θ) =∫ c

b

∫ c

t
(2)
1

. . .

∫ c

t
(2)
(n−1)

p(T ∗(2), n(2)|T ∗(1), n(1), a, b, c,θ) dt
(2)

n(2) dt
(2)

(n(2)−1) . . . dt
(2)
1

(10)

3. Example: Weibull-exponential model

While the general description above provides the ’recipe’ for the likeli-
hood for a particular model, there is no assurance that the resulting likeli-
hood can be handled algebraically and numerically. In this section, we show
how the likelihood for a rather simple pipe failure model that was applied
by Mailhot et al. (2000) can be combined with an elementary replacement
model.

For the pipe failure model, we assume that the time from construction
until the first failure is Weibull distributed, and the time between all follow-
ing failures exponential with the same rate parameter.

This failure model requires three parameters: the shape parameter θ1
and the scale θ2 of the Weibull distribution

p1(t|t0,θ) =
θ1
θ2

(
t− t0
θ2

)θ1−1
e−[(t−t0)/θ2]

θ1

S1(t|t0,θ) = e−[(t−t0)/θ2]
θ1

(11)

and the scale θ3 of the exponential distribution

pi(t|t0, . . . , ti−1,θ) = pi(t|ti−1,θ) =
1

θ3
e−(t−ti−1)/θ3

Si(t|t0, . . . , ti−1,θ) = Si(t|ti−1,θ) = e−(t−ti−1)/θ3

(12)

for all i > 1.

3.1. Likelihood for completely observed pipes

The distributions defined in (11) and (12) are directly plugged into the
general likelihood for completely observed pipes (1). After some algebraic
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rearrangements, we obtain

p(T , n|b,θ) =

e
−[(b−t0)/θ2]θ1 , n = 0

θ1
θ2

(
t1−t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1
(

1
θ3

)n−1
e−(b−t1)/θ3 , n > 0

(13)
Note that due to the algebraic form of the exponential distribution and
the assumption that the rate parameter remains the same for all i > 1 the
likelihood only depends on the time of the first failure and on the number
of failures n.

3.1.1. Likelihood for partly observed pipes

Similarly, the likelihood for partly observed pipes must be distinguished
for n = 0 and n > 0. If no failures are observed (n = 0), it is

p(T ∗, n = 0|a, b,θ) = e−[(b−t0)/θ2]
θ1

+ e−(b−a)/θ3
[
1− e−[(a−t0)/θ2]θ1

]
(14)

and for n > 0

p(T ∗, n|a, b,θ) =

(
1

θ3

)n−1
e−(b−t

∗
1)/θ3

{
θ1
θ2

(
t∗1 − t0
θ2

)θ1−1
e−[(t

∗
1−t0)/θ2]θ1

+
1

θ3
e(a−t0)/θ3

[
1− e−[(a−t0)/θ2]θ1

]}
(15)

See Mailhot et al. (2000) or Pelletier (2000) for a derivation of these equa-
tions.

3.2. Consideration of replacement

The replacement model is first defined conditioned on m. The simplest
model with a single parameter assumes a constant probability π that a pipe
is not replaced if a failure occurs: Prob(’not rep.’|T ∗, n,m, a, b,θ) = πm+n.
In the following we assume that π is contained in the parameter vector θ.
The resulting unconditional replacement model is then

Prob(’not rep.’|T ∗, n, a, b,θ) =

∞∑
m=0

πm+nProb(m|a,θ) (16)
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where the probability of m unobserved failures before a is

Prob(m|a,θ) =


e−[(a−t0)/θ2]

θ1 , m = 0∫ a
t0

∫ a
t1
. . .
∫ a
t(m−1)

θ1
θ2

(
t1−t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1(
1
θ3

)m−1
e−(a−t1)/θ3 dtm . . . dt2 dt1, m > 0

=

e
−[(a−t0)/θ2]θ1 , m = 0

θ1
θ2

∫ a
t0

(
t1−t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1
(

1
θ3

)m−1
e−(a−t1)/θ3 (a−t1)m−1

(m−1)! dt1, m > 0

The integrand depends only on t1 so the remaining integrals reduce to∫ a
t1
. . .
∫ a
t(m−1)

1 dtm . . . dt2 = (a−t1)m−1

(m−1)! .

Combined with the conditional replacement model, the sum and the
factorials can be simplified by recognizing that

∑∞
k=0 x

k/k! = ex (see also
Pelletier et al. (2003), page 83):

Prob(’not rep.’|T ∗, n, a, b,θ) =e−[(a−t0)/θ2]
θ1

+ πn+1 θ1
θ2

∫ a

t0

(
t1 − t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1
e−(b−t1)/θ3

∞∑
m=1

(
1

θ3

)m−1
πm−1

(a− t1)m−1

(m− 1)!
dt1

=e−[(a−t0)/θ2]
θ1

+ πn+1 θ1
θ2

∫ a

t0

(
t1 − t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1
e−(b−t1)/θ3

eπ(a−t1)/θ3 dt1
(17)

The replacement model (17), and the likelihood of the pipe failure model
for partly observed pipes without (14) or with failures (15) are combined
in (4) to obtain the conditional likelihood. Although the integrals of the
denominator cannot be solved analytically, it can be simplified sufficiently
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(details not shown) to allow numerical integration without problems:

Prob(’not rep.’|a, b,θ) = e−[(b−t0)/θ2]
θ1

+
θ1
θ2

∫ a

t0

(
t1 − t0
θ2

)θ1−1
e−[(t1−t0)/θ2]

θ1
e−(b−t1)/θ3 πeπ(a−t1)/θ3dt1

+
θ1
θ2

∫ b

a

(
t∗1 − t0
θ2

)θ1−1
e−[(t

∗
1−t0)/θ2]θ1e−(b−t

∗
1)/θ3πeπ(b−t

∗
1)/θ3 dt∗1

+
θ1
θ2

π2

θ3

∫ a

t0

∫ b

a
e−(b−t

∗
1)/θ3 eπ(b−t

∗
1)/θ3

(
t1 − t0
θ2

)θ1−1
e−[(t1−t0]/θ2]

θ1
e−(t

∗
1−t1)/θ3 eπ(a−t1)/θ3 dt∗1 dt1 (18)

3.3. Predictions

3.3.1. Unconditional predictions

Monte Carlo samples can be conveniently generated from the likelihood
for completely observed pipes (13). From there, it is straightforward to
obtain the distribution of the number of failures by sequentially sampling
from the Weibull (11) and exponential distributions (12).

3.3.2. Conditional predictions

It is not trivial, however, to sample from the likelihood for partly ob-
served pipes (9). Instead, an expression proportional to Prob(n(2)|T ∗(1), n(1), a, b, c,θ)
can be derived, on whose basis a sample can be obtained with importance
or Metropolis sampling. The formulations must be distinguished depending
on the number of observed n(1) and predicted n(2) failures.

If n(1) > 0:

Prob(n(2)|T ∗(1), n(1), a, b, c,θ) ∝ p(T ∗(1), n|a, b,θ)|n=n(1)+n(2),b=c ·
(c− b)n(2)

n(2)!

and if no failures were observed, i.e. n(1) = 0:

Prob(n(2)|T ∗(1), n(1), a, b, c,θ)

∝

p(T
∗, n = 0|a, b,θ)|b=c n(2) = 0∫ c

b p(T
∗, n|a, b,θ)|n=n(2),b=c ·

(c−t∗1)n
(2)−1

(n(2)−1)! dt∗1 n(2) > 0

For p(T ∗, n|a, b,θ) and p(T ∗, n = 0|a, b,θ) see (14) and (15) for partly ob-
served pipes, respectively.
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3.4. Implementation

Procedures for inference and prediction were implemented in R (R De-
velopment Core Team, 2012) that evokes a Fortran 95 implementation of
the likelihood function. Samples of the posterior were obtained with the
adaptive Metropolis sampler proposed by Vihola (2011) and implemented
in the R-package adaptMCMC (Scheidegger, 2012).

4. Application examples

4.1. Simulated data

Two data sets are simulated to show that replacement causes biased
parameter estimations if not considered appropriately.

The data sets have different sample sizes: they consist of the failure
records of 100 and 1 000 pipes respectively. The failures were generated
on the basis of the distribution assumptions made for the failure model
in Section 3 (time to first break is Weibull distributed, time between the
following breaks exponential). Replacement was simulated according to the
replacement model of Section 3.2. The data sets were then compiled from
failures within the observation period of the unreplaced pipes only. Data
sets for a 60 years old system were simulated (for parameter values, see
Table 1). The recording period was assumed to cover the last 10 years; 39
failures occurred in this period for the small data set and 403 for the large
one.

The parameters are inferred with two models: a) the failure model of
Section 3 while ignoring replacement, and b) the same failure model com-
bined with the replacement model of Section 3.2. The prior distribution and
the summarized posterior based on seven Monte Carlo Markov chains with
100 000 samples each are shown in Table 1 for both models.

The expected number of failures, calculated with equation (8) for uncon-
ditional predictions, as a function of the pipe age for newly built pipes, is
shown in Figure 2. On Figure 2a) it is clearly seen that the failure frequency
is underestimated if the replacement is not considered for the parameter es-
timation. With increasing sample size only the uncertainty becomes smaller,
while the bias remains constant. Figure 2b) shows the result for parame-
ters estimated with the replacement model. Although the uncertainties are
greater than in Figure 2a), no systematic deviation is present.

Figure 3 shows all one- and two-dimensional marginals of the posterior
parameter distribution. The one-dimensional marginals reveal the shape
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of the posterior for each parameter. Dependencies are visible in the two-
dimensional marginals. So is a clear correlation apparent between the re-
placement probability and the two scale parameters. This is important for
real applications as it implies that an informative prior for the replacement
probability would reduce the uncertainty of the scale parameters consider-
ably.

Table 1: Parameters used for data simulation and estimated values. The posterior is based
on seven independent MCMC chains with 100 000 samples each. The marginal posterior
distributions are summarized with three numbers: first the mean followed by the 10% and
90% quantiles.

Data Prior Posterior Posterior
generation U(l, u) without replacement with replacement

100 pipes

θ1 2 (0.5, 4) 3.03 (2.11, 3.82) 3.05 (2.16, 3.82)
θ2 30 (1, 250) 36.75 (29.97, 44.90) 31.99 (24.79, 39.60)
θ3 15 (1, 250) 20.81 (15.43, 26.90) 15.20 (8.36, 22.18)
π 0.75 (0, 1) – 0.73 (0.44, 0.96)

1 000 pipes

θ1 2 (0.5, 4) 2.28(2.03, 2.54) 2.23 (1.97, 2.49)
θ2 30 (1, 250) 33.58(31.14, 36.13) 30.26 (25.76, 34.14)
θ3 15 (1, 250) 19.72(18.14, 21.37) 15.84 (11.29, 19.52)
π 0.75 (0, 1) – 0.81 (0.59, 0.97)

4.2. Real data

The second example illustrates one way of modifying the model to incor-
porate covariables. Covariables can represent quantitative (diameter, . . . )
or qualitative (material, construction period, . . . ) properties of an individ-
ual pipe. In this example, the influence of the construction period of ductile
cast iron pipes is investigated.

Data on the water supply of Lausanne, Switzerland, is used. Instead of
using the whole network, the focus is on one characteristic material only,
namely, ductile cast iron (DI). It makes up the largest proportion (about
62 %) of the network and can be divided into two generations according to
the manufacturing and laying periods: pipes with rather poor protection
against outer corrosion (DI1), and pipes with improved corrosion protection
(DI2). In Switzerland, DI1 pipes were commonly used until 1980 and were
then succeeded by DI2. The proportion of DI2 pipes with recorded failures
until the present is low (about 2 %), often making parameter inference a
challenge. To reduce the influence of pipe length on the modeling of first
and subsequent failures (Fuchs-Hanusch et al., 2012; Gangl, 2008; Poulton
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Figure 2: Estimated expected number of failures for a pipe as function of age. The
estimations are based on simulated data with 100 and 1 000 pipes respectively. For Figure
a) the parameters were estimated without consideration of a replacement model. Figure
b) shows the estimation with the replacement model. The dashed lines show the mean and
the shaded areas indicate the 80%-credibility interval of the expected number of failures.

et al., 2007), the approach of Gangl (2008) was used. Gangl (2008) suggests
forming 100 to 200 m long pipe units from neighboring pipes with equal
diameters, materials and laying years. This is based on an analysis of the
distances between subsequent failures, which are usually below 100 m and no
longer than 200 m. Thus, short pipe segments were merged to 444 segments
of DI1 pipes and to 2 636 segments of DI2 pipes. As no spatial information
was available, the merging was based on the construction year and diameter
only. The average length of the merged segments is 143.1 m. Pipe failures
were systematically recorded over ten years. Failures within the first year
after installation were removed, because they are attributed to installation
deficiencies and not to structural ageing. The record contains then 116
failures of DI1 pipes and 82 failures of DI2 pipes.

The qualitative information about the construction period is modeled
with the help of indicator variables. For each pipe k, “individual” parame-
ters θk are computed as described in equation (6). In this case we choose
f(·) as

θk = f(xk,θ,γ) = (θ1, γ
xkθ2, γ

xkθ3, θ4)
T

where xk is the indicator variable that equals one if pipe k is a DI2 pipe and
zero otherwise. Accordingly, θ2 and θ3 can be interpreted as scale parameters
for DI1 pipes and γθ2 and γθ3 as scales for DI2 pipes.

The same uniform priors as for the first example (Table 1) were used for
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Figure 3: Marginals of the posterior distribution based on simulated data of 1 000 pipes
and uniform priors. Warm colors denote regions with high probability density.

θ, and a gamma distribution for γ with mode one and a standard deviation
of five.

As in the previous example we inferred the parameters without (Fig-
ure 4a) and with (Figure 4b) consideration of the replacement model. The
resulting expected number of failures as function of pipe age is shown for
both pipe generations in Figure 4a) and 4b). The corresponding posterior
parameter distributions are summarized in Table 2.

As expected, the model predicts a higher failure rate if it corrects for
pipe replacement. However, the predictions have larger uncertainties due
to the additional parameter. The probability π that a pipe is not replaced
after a failure is estimated within a reasonable range (see Table 2). Pipes
of the first generation have a considerably higher risk of failures. This is
in line with observations from practice in Switzerland; the lack of corrosion
protection and the grounding of electrical appliances on the water lines until
the 1990s led to increased corrosion and a large number of failures of DI1
pipes (Kappeler et al., 2010). Differences in the failure behavior of pipes
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of different installation periods were frequently observed (e.g. Kleiner and
Rajani, 1999; Mailhot et al., 2000). Because the data contain fewer DI1
pipes, the estimation is more uncertain than that of DI2.

Table 2: The resulting posterior parameter distributions for data from Lausanne inferred
with and without replacement model. The posteriors are based on seven independent
MCMC chains with 100 000 samples each. The posterior marginal distributions are sum-
marized by three numbers: first the mean followed by the 10% and 90% quantiles.

without repl. model with repl. model

θ1 1.80 (1.52, 2.10) 1.80 (1.53, 2.09)
θ2 73.47 (63.82, 84.56) 65.88 (54.88, 77.35)
θ3 14.55 (11.98, 17.39) 13.05 (10.20, 16.08)
γ 1.80 (1.50, 2.13) 1.84 (1.52, 2.20)
π – 0.89 (0.76, 0.99)
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Figure 4: Expected number of failures for two generations of ductile iron pipes of the Lau-
sanne water supply network. For Figure a) the parameters were estimated without con-
sideration of a replacement model. Figure b) shows the estimation with the replacement
model. The dashed lines show the mean and the shaded areas indicate the 80%-credibility
interval of the expected number of failures.

5. Discussion

We demonstrated in Section 2 how a failure based pipe model can be
extended by a replacement model. It is important to realize, that we did not
propose a new pipe failure model. The intention was to present a procedure
to avoid selective survival biases by adopting existing (or future) models.
Therefore, we first introduced a generic notation, exceeding the “general

18



framework for water main break modeling” of Mailhot et al. (2003). Fur-
thermore, we also derived all the equations for left truncated observations,
including the likelihood function and the predictive distribution.

Our approach is limited to pipe models that (a) are failure based, (b)
consider—if known—the failure history of a specific pipe for predictions,
and (c) allow probabilistic statements about parameter and prediction un-
certainty, i.e models based on a likelihood function. Condition (a) excludes
life-span models (Herz, 1995; Scholten et al., 2013) as they intentionally
lump failure behavior and the often consequential replacement together.
Regression models (Boxall et al., 2007; Kleiner and Rajani, 1999) and sim-
ple proportional hazard (Cox) models (Carrión et al., 2010; Gangl, 2008)
do not fulfill condition (b) and are therefore of limited use for prediction.
Purely data driven algorithms (Giustolisi et al., 2006; Jafar et al., 2010)
often do not fulfill condition (c) and therefore do not fit into a probabilistic
framework. Models excluded here may nevertheless be influenced by the
survival selection bias.

In Section 3 we exemplified our approach with a Weibull-exponential
model. This model was chosen because it has been successfully applied
(Mailhot et al., 2000) and has manageable complexity. However, as any
parametric distribution the Weibull has some limitations. In particular, the
hazard rate begins at zero (if shape parameter > 1) and therefore installation
failures and the probability of third party damages (typically caused by
construction activities, Thomson and Wang, 2009) of young pipes cannot be
modeled.

We demonstrated in the first example with artificially generated data
that for datasets without historic data (containing information about re-
placed pipes) consideration of a replacement model is crucial for reliable
predictions. In these cases, ignoring the replacement of pipes leads to a bias
that cannot be reduced by increasing the sample size. This is especially
significant in well maintained networks in which substantial replacements
were made in the past. In these cases the failure rates are strongly underes-
timated. Missing data on replaced pipes is very common for many networks
that we encounter here in Switzerland, and we suspect that it is equally
common elsewhere (e.g. Le Gat, 2009).

The second example was based on a data set of ductile iron pipes from
a real water supply network. The results show the expected behavior: (i)
the first generation ductile pipes have a clearly higher failure rate, and (ii)
the dataset with fewer observations shows larger uncertainties. This also
illustrates a possible approach to extending the model by covariables. They

19



give the model more flexibility to fit the data. An alternative is to group
pipes in homogeneous sets and fit a model independently to each of those.
However, incorporating covariables has the advantage that interactions can
be revealed and that, in total, fewer parameters need be inferred.

Inevitably, the likelihood function becomes more complicated if a re-
placement model is included, in particular if the data are left truncated
(common for many European water networks). However, a replacement
model may not be required, if data of replaced pipes are available. For some
models the representation as counting process is more practicable. Instead
of translating such models into the time domain, it might be more feasible
to modify the presented approach accordingly. It is important to realize
that the data availability and ultimately the data collection scheme deter-
mines the correct likelihood function. Therefore, the modeler must have a
clear understanding of how the data have been collected and managed. This
information is usually not directly evident from the data.

Replacement models do not have to represent decisions that are inde-
pendent of the failure record, for example replacement decisions that are
based purely on the age of the pipes. They do not lead to a bias in the
parameter inference as terms representing independent decisions cancel out
algebraically. Considering such replacement strategies in the replacement
model would add unnecessary complexity.

The simplest possible replacement model was chosen for the examples,
and it is certainly not suitable for all data sets. Therefore, the develop-
ment of a more general replacement model could be helpful. For example
replacement decisions may depend on the pipe age when failures occur or
replacement strategies could change over time. Furthermore, in the context
of Bayesian inference, how the prior distribution of the replacement model
parameters is elicited optimally should be investigated. A good elicitation
method to obtain informative priors from other utilities and/or expert elic-
itation would be critical for applications to small utilities with scarce data.

Selecting the most appropriate model remains a challenging task that
cannot be automated. In many utilities, the data handling was guided by
daily operation requirements and not with failure modeling in mind. This
results in data sets that require the application of an adequate model, suited
to the particular data management characteristics. This problem is not
exclusive to drinking water pipes. For example, a similar approach to sewer
deterioration models is developed by (Egger et al., submitted). Adapting
the failure models to specific data sets is the only option, in the absence of
more standardized data management strategies.
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6. Conclusions

• Pipe failure models are important tools for the management of water
distribution networks. The calibration of such models is often compli-
cated by common practices of data handling. A frequent problem is
that many available data sets contain records of pipes in service but
not of replaced pipes. Calibration without explicit accounting for this
practice can lead to considerably biased predictions.

• To correct for such biases, we propose an approach to modify the like-
lihood function of failure models. The key idea is to combine the like-
lihood function of the failure model with a probabilistic replacement
model.

• As past replacement and data management practices are different for
every network, a failure model must be adapted to a specific data set.
The approach presented here is formulated generally and is therefore
applicable to many—existing or future—pipe failure models and dif-
ferent replacement models.

• The concept is illustrated explicitly for a Weibull-exponential model
in combination with a simple replacement model. Furthermore, we
show how models can be extended to consider covariables.

• The code of the model used in the examples is freely available on
request.
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