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Materials and Methods 

Calibration dataset. 

Arsenic data from 49,362 tested wells in 2,668 villages in the provinces of Inner 
Mongolia (n=683), Gansu (n=594), Shanxi (n=505), Ningxia (n=268), Henan (n=299) 
and Heilongjiang (n=319), obtained from the “Chinese National Survey Program”, were 
used to calibrate the model (Fig. S1). The database provides information on the number 
of wells tested, the percentage of wells with arsenic concentrations above and below 
arsenic thresholds of 10, 50, 100 and 200 μg L-1 and the maximum and minimum values 
of arsenic concentrations found at each location. Additional geochemical information is 
not available. The arsenic measurements in this dataset have been aggregated to the 
spatial resolution of the auxiliary raster maps (1 km2). We used the maximum arsenic 
concentration found at each 1 km2 pixel for the statistical analyses. The aggregated point-
data were binary-coded using the World Health Organization guideline value for As in 
drinking water (10 μg L-1) as a threshold and used as a binary response variable in the 
logistic regression models. We could not calibrate the model to the Chinese standard 
threshold of 50 μg L-1 since arsenic concentrations above this threshold were only found 
in 7% of the samples. 

 

Auxiliary rasters. 

i) Topographic parameters. A Digital Elevation Model (DEM) at 500 meter resolution 
was retrieved from the Consortium for Spatial Information (http://www.cgiar-csi.org/) 
and aggregated to 1 km2 resolution. The DEM was projected to a Lambert Conformal 
Conic coordinate system to calculate the raster maps for slope (radians) and 
Topographic Wetness Index (TWI, Fig. S2). The rasters were then back transformed to 
Latitude-Longitude (EPSG 4326). Topographic Wetness Index expresses the potential 
wetness in soils due to topography. It is calculated as a function of the upstream 
contributing area (Ac) and the slope (β) of the landscape. 
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TWI has already been identified as a good predictor for high soil-moisture zones due 
to topography (31). Onishi et al. (32) found a high correlation between dissolved iron 
in surface waters and TWI, and used TWI as a macroscopic index to assess the 
production of dissolved iron in water. Löhr et al. (33) linked TWI to the presence of 
seasonal redox processes in the soils and sediments of a forested coastal catchment. 
Andersson and Nyberg (34) found a strong correlation between TWI and DOC 
concentrations in boreal catchments. Pei et al. (35) also found TWI to be the most 
significant terrain parameter correlated with the organic matter content of soils; thus, 
TWI may also account for the influence of organic carbon in triggering the release of 
As in reducing environments (36-38). 

ii) Remote sensing information. We used a temporal series of eight images of the mean 
monthly “Enhanced Vegetation Index” (EVI) recorded with the TERRA “Moderate 
Resolution Imaging Spectroradiometer” (MODIS-TERRA). Each image is formed by 
a mosaic of 34 tiles covering the whole of Asia with a spatial resolution of 1 km2 and a 
temporal resolution of three months over two consecutive years. These images were 
transformed by Principal Component Analysis to avoid redundancy in the information, 
and we tested their ability to explain the distribution of high As concentrations. The 
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First Component (EVI-PCA1), condensing 80% of the variability, was interpreted as 
an indicator of water availability, based on the response of vegetation, and was used as 
a proxy to differentiate climatic regions. The environmental interpretation for the 
remaining 7 components is unclear. None of these auxiliary variables was significant 
at the 95% level in the univariate logistic regression tests and they were not used in the 
model calculations. 

iii) Hydrologic parameters. We used the river network of Asia provided by the “Digital 
Chart of the World” (http://www.fas.harvard.edu/~chgis/data/dcw/). This river 
network was used to derive raster maps of “Density or rivers” and “Distance to rivers” 
(Fig. S2). 

iv) Earth’s Gravitational Force. We used the data (μGal) at 1' resolution, resampled to 30 
arc-second resolution, provided at the Technical University of Denmark (39). This 
data (Fig. S2) was used as a proxy to identify sedimentary areas due to their lower 
mass in relation to solid (rock) substrates (40-42). 

v) Soil parameters. Information about subsoil texture and soil salinity has been obtained 
from the “Harmonized World Soil Database” (HWSD) 
(http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/). It 
includes soil information at 1:1M scale for China as a 30 arc-second raster. These 
properties have been reclassified to binary maps (Fig. S2) as follows: 

a) Subsoil texture: We used a binary classification of soil textures, in which all 
medium-textured soils (classes Clay Loam + Sandy Clay + Loam) were grouped 
together =1 and other textures = 0;  

b) Salinity: Solonchaks, Solonetzs and soils with a salic phase = 1, other soils = 0.   

vi) Geology. We used the digital geological map of China at 1:5M scale 
(http://pubs.usgs.gov/of/2001/of01-318/) to create a map of Holocene sediments (Fig. 
S2). In this map, desert gravels and aeolian sand deposits are also classified as 
Holocene sediments. However the risk of arsenic contamination in these areas is low 
due to the lack of water sources and to the stable population. We identified those 
features using both land use (http://ies.jrc.ec.europa.eu/global-land-cover-2000) and 
soil information (HWSD) and excluded them from the category of Holocene 
sediments. 

vii) Population density. The dataset “Gridded Population of the World, Version 3” 
(GPWv3), created by the Center for International Earth Science Information Network 
(43), provided estimates of human population for 2000 in the form of raster data at 2.5 
arc-minute resolution. A proportional allocation gridding algorithm, utilizing more 
than 300,000 national and sub-national administrative units, is used to assign 
population values to cells in the raster. The population density grid (persons km-2) is 
derived by dividing the population count grid by the land area. 

 

Modelling procedures 

Univariate logistic regression tests were conducted separately on each predictor to assess 
their ability to explain the arsenic binary-coded data in the calibration dataset. Those 
variables significant at the 95% confidence level in the tests were considered for 
inclusion in the subsequent multivariate logistic regression analyses. Holocene sediments, 
soil salinity, topographic wetness index, slope, distance to rivers, density of rivers and 
earth’s gravity (Table S1) were significant in the univariate logistic regression tests and 
were thus included in the multivariate logistic regression analyses. Subsoil texture was 
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also included in the analyses because previously reported data indicate that fine and 
medium soil textures clearly affect the presence of high As concentrations due to 
limitations for drainage and water flux (44). 

The above eight retained proxies have environmental meaning to explain the natural As 
enrichment in groundwater:  Quaternary (Holocene) sediments, together with Earth’s 
Gravity, indicate the presence of large volumes of young floodplain and delta sediments, 
where most of the As affected areas in South-East Asia occur. Slope, Topographic 
Wetness Index (TWI) and Subsoil Texture allocate areas with reducing aquifer conditions 
due to topographic flatness, low hydraulic gradients (deltas, closed/semi-closed basins) 
and limitations for drainage and water flux. Saline soils identify environments with high 
pH and alkalinity where high As concentrations in arid/semiarid conditions have been 
reported (11-15), while Distance to Rivers and Density of Rivers served as additional 
proxies indicating reducing aquifer conditions. 

i) Classification algorithm. Single algorithm predictive models have been successfully 
used to estimate the spatial extent of arsenic contamination in Southeast Asia (23–26). 
However, such models are generally sensitive to the number and location of the 
samples used for calibration. Ensemble models, combining several base models 
(ensemble members) into a single aggregated model (ensemble), have been proposed 
as an alternate modelling approach because they perform significantly better than 
single constituents (45). We created an ensemble model by using multivariate stepwise 
logistic regression as the base classifier method to predict the spatial distribution of 
high arsenic occurrence rates (As >10 μg L-1) in groundwaters. Logistic regression 
determines the existing relationship between a binary response Y (in this case as an As 
threshold) and a number of independent auxiliary variables {X1,....,Xp}, using a logit 
link function of the form: 

  ze+=zf 1/1  

where:   

pp10 Xβ++Xβ+β =z ....1
 

We used the 2,668 georeferenced As measurements in the calibration dataset, together 
with the eight previously reported relevant proxies, to calculate 100 equally-likely 
logistic regression models (the ensemble members) using, at each run, random subsets 
of the calibration dataset by sampling with replacement (46). The auxiliary variables 
retained in each logistic regression ensemble member were automatically obtained 
through stepwise selection (both directions), using the Akaike Information Criterion 
(AIC). In addition, for each ensemble member, we calculated the overall internal 
accuracy of the model by cross-validation (the data samples used to build the member 
were randomly assigned to 20 different groups; each group was removed in turn, while 
the remaining data was used to re-fit the regression model and predict the deleted 
observations). We used the Hosmer & Lemeshow goodness-of-fit test (47) to verify all 
ensemble members. High p-values on this test (p>0.05) indicate that the model fits the 
data. The 48 ensemble members that passed this test (Fig. S3) were withheld to build 
the final ensemble model, which is the weighted average of the predictions from the 
48 ensemble members according to their performance (the overall internal accuracy of 
each ensemble member was used as the weighting factor, so that members with higher 
prediction power have a greater influence on the final prediction).  

 

Mpw=p k

M

=k
kEM /

1
  
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where pEM is the final ensemble model probability and wk and pk are the single-model 
weights (internal cross-validation accuracy) and predicted probabilities, respectively.  

All the statistical analyses were conducted on the normalized values of the auxiliary 
rasters. 

ii) Variable importance. The importance of the independent variables in calculating high 
As probabilities was estimated by the values of the odds ratio exp(β) from the 
univariate logistic regression models (Table S1, column 4). It expresses the changes in 
the response variable associated with 1 unit change in the predictor variable (the larger 
the value, the more influential the variable). Since the predictors were previously 
normalized, the values of exp(β) are comparable. We also calculated the number of 
multivariate logistic regression members, after the stepwise method, in which each 
auxiliary variable was retained as significant (Frequency). It reflects the relative 
contribution of each variable to the ensemble model output (Table S1, column 5). 

iii) Model validation. We validated the model with an external dataset consisting of 625 
independent geo-referenced observations from a compilation of arsenic measurements 
in wells that included aggregated data from the “Chinese National Survey Program” in 
the Autonomous Province of Xinjiang (4,458 tested wells in 184 villages), 261 records 
from published data (16, 18, 2-22, 48, 49) and 180 wells from our own field surveys. 
The arsenic concentrations in this dataset were converted to binary data by considering 
the WHO guideline of 10 μg L-1 as the threshold, and they were then compared with 
the corresponding binary classes of high/low arsenic model probabilities considering 
an optimal cut-off value of 0.46. This cut-off threshold was calculated using the 
Receiver Operating Characteristic curve (ROC) (Fig. S4). At each location, the 
prediction is considered ≤10 μg L-1 if the predicted probability is <0.46. The model 
accuracy was estimated from the overall correct classification rate, model sensitivity 
(ability to correctly classify samples with As >10 μg L-1) and model specificity (ability 
to correctly classify samples with As ≤10 μg L-1) (Tables S3-S7). 

Prediction errors are mainly related to errors in As measurements, the spatial 
uncertainty of the auxiliary variables (which do not fully represent the spatial 
heterogeneity at field scale), to the high spatial variability of As concentrations over 
short distances and to the exclusive use of surface parameters as predictors. 
Groundwater depth and water management practices are important parameters that are 
often overlooked when assessing groundwater As risk. The development of 3D 
geological models that include in-depth groundwater information is promising and 
may, in some cases, be more appropriate for evaluating the risk of arsenic 
contamination on local scales. 

iv) Model uncertainty. We used the standard deviation of the mean (sm) to estimate the 
uncertainty of the weighted average ensemble model estimates. It was calculated as 
follows: 

M

M)x(x

=s

M

=i
i

m

/2

1


 

where xi is each ith ensemble member and x is the weighted average ensemble model. 
In this case, M is represented by the 48 ensemble members with p-values >0.05 for the 
Hosmer & Lemeshow goodness-of-fit test. The uncertainty map (Fig. S5) is illustrated 
in normalized sm values to highlight the differences between areas. 

Validation 

The following equations were used for validation: 
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The Cohen's Kappa Index of Agreement, KIA (Cohen, 1960), evaluates the strength of 
the model agreements in the binary classification matrix by taking into account the 
proportions of agreement expected due to chance. 

exp

exp

1 P

PP
KIA

obs




  

where obsP and expP  are the observed and expected agreements, as follows: 

;
N

TNTP
Pobs


 ;

))(())((
2exp

N

TNFNTNFPFPTPFNTP
P


  

Perfect and random agreements between model and reality are related to KIA values of 1 
and 0 respectively. Otherwise, the model performance range from from “poor’ (<0.40), 
‘fair’ (0.4–0.75) to ‘excellent’ (>0.75) (50). 

Table S2 shows the confusion matrix template used for the validation with the external 
dataset. Tables S3 shows the results of the whole data set. Tables S4 to S7 show the 
validation details for known reducing and oxidizing environments. 
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Supplementary Tables 

 
Table S1. Explanatory variables retained to build the logistic regression ensemble. 

Regression coefficients in the univariate logistic regression models (β). The 
relative importance of the variables is indicated by exp(β). Frequency 
represents the number of members in which each auxiliary variable has been 
retained after the stepwise method. 

 
 Variable Type a β exp(β) b Frequency 

Geology Holocene sediments cat. 0.91 2.49 48 

Soils Saline soils cat. 1.04 2.83 48 

 Subsoil texture cat. 0.16 1.17 47 

Topography TWI cont. 4.10 60.5 45 

 Slope   cont. -17.21 0.00 4 

Hydrology Density of rivers cont. 1.02 2.79 7 

 Distance to rivers cont. -11.53 0.00 3 

Gravity Gravity   cont. -4.72  0.00 1 

acat.=categorical variable; cont.= continuous variable. 
bchange in the odds-ratio associated with a 1 unit change in the predictor 
variable. 
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Table S2. Confusion matrix template used for the validation with the external 
dataset. 

 

 Predicted

>10 μg L-1 ≤10 μg L-1 

Observed >10 μgL-1 True Positive (TP) False Negative (FN) 

≤10 μgL-1 False Positive (FP) True Negative (TN) 
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Table S3.  Confusion matrix and validation results for the complete validation 
dataset. 

 

Overall agreement = 77.12% 

Sensitivity = 83% 

Specificity = 74.54% 

KIA = 0.513 (Fair agreement). 

SE of KIA = 0.034; C.I. for KIA = 0.446 to 0.580

Observed agreements = 482 

Agreements expected by chance = 331 (53%)

Predicted 

>10 μg L-1 ≤10 μg L-1 

Observed >10 μg L-1 154 (TP) 31 (FN) 

≤10 μg L-1 112 (FP) 328 (TN) 
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Table S4.  Confusion matrix and validation results for Xinjiang province. 

 

Overall agreement = 64%

Sensitivity = 85% 

Specificity = 50%

Predicted

>10 μg L-1 ≤10 μg L-1

Observed >10 μg L-1 59 (TP) 10 (FN)

≤10 μg L-1 57 (FP) 58 (TN)
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Table S5. Confusion matrix and validation results for Hetao Plain and Huhhot 
Basin. 

 

Overall agreement = 76%

Sensitivity = 95% 

Specificity = 15%

Predicted

>10 μg L-1 ≤10 μg L-1

Observed >10 μg L-1 78 (TP) 4 (FN)

≤10 μg L-1 22 (FP) 4 (TN)
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Table S6.  Confusion matrix and validation results for Minqin Basin and 
Chahaertan Oasis. 

 

Overall agreement = 83%

Sensitivity = 0% 

Specificity = 83%

Predicted

>10 μg L-1 ≤10 μg L-1

Observed >10 μg L-1 0 (TP) 0 (FN)

≤10 μg L-1 13 (FP) 62 (TN)
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Table S7. Confusion matrix and validation results for Liao-Ho Basin. 

 

Overall agreement = 98%

Sensitivity = 0% 

Specificity = 98% 

Predicted

>10 μg L-1 ≤10 μg L-1

Observed >10 μg L-1 0 (TP) 0 (FN)

≤10 μg L-1 1 (FP) 41 (TN)
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