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[1] A proper uncertainty assessment of rainfall-runoff predictions has always been an
important objective for modelers. Several sources of uncertainty have been identified, but
their representation was limited to complicated mechanistic error propagation frameworks
only. The typical statistical error models used in the modeling practice still build on
outdated and invalidated assumptions like the independence and homoscedasticity of model
residuals and thus result in wrong uncertainty estimates. The primary reason for the
popularity of the traditional faulty methods is the enormous computational requirement of
full Bayesian error propagation frameworks. We introduce a statistical error model that can
account for the effect of various uncertainty sources present in conceptual rainfall-runoff
modeling studies and at the same time has limited computational demand. We split the
model residuals into three different components: a random noise term and two bias
processes with different response characteristics. The effects of the input uncertainty are
simulated with a stochastic linearized rainfall-runoff model. While the description of model
bias with Bayesian statistics cannot directly help to improve on the model’s deficiencies, it
is still beneficial to get realistic estimates on the overall predictive uncertainty and to rank
the importance of different uncertainty sources. This feature is particularly important if the
error sources cannot be addressed individually, but it is also relevant for the description of
remaining bias when input and structural errors are considered explicitly.
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1. Introduction

[2] Like other mathematical models, conceptual rainfall-
runoff models (CRRMs) are simplified representations of
heterogeneous and complex systems. Since simplification
and aggregation (be it spatial and/or temporal) form the
backbone of the modeling process, our predictions can pro-
duce reasonable results at best but will not be very accu-
rate. This limitation enhances the need to estimate the
confidence we can attribute to model-based predictions.
One has to quantify the expected divergence between the
model predictions and reality.

[3] Uncertainty can arise at any stage of the modeling
process. When describing observed output, one can distin-
guish between the uncertainty of input, of model structure
and parameters, and of the observations. The classical
approach considers parameter and observation uncertainty
only and describes the deviations between the deterministic
model output and observations by a random noise term cor-
responding to an assumed measurement error. This corre-

sponds to a calibration procedure of minimizing the sum of
the squared deviations between the deterministic model
results and the measurements to determine parameter esti-
mates. However, uncertainty affects CRRMs and other
hydrological models in much more profound ways. Gener-
ally, there is substantial input uncertainty in the atmos-
pheric drivers (i.e., precipitation and evapotranspiration) to
the hydrological response of a catchment. Due to the scar-
city of gauging stations compared to the spatial variability
of precipitation, a perfect model would even fail to repro-
duce the real discharge due to the observation error. Addi-
tional uncertainty arises from necessary simplification and
(spatial) aggregation. Such structural model errors affect
the model predictions in a different way than purely ran-
dom measurement errors. Similarly to input uncertainty,
structural uncertainty produces model residuals that are
auto-correlated in time, which leads to ‘‘wrong’’ represen-
tations of the internal state of the catchment (e.g., soil
moisture status and groundwater levels). Because the
hydrological response is generally state dependent, such
errors also affect subsequent time steps of the CRRM pre-
dictions. A further general issue in hydrological modeling
is the identifiability problem of model parameters. This
problem stems from the fact that a CRRM calibration data
set consisting of time series of atmospheric input and
observed discharge (at a single or a few monitoring stations
in most cases) is typically insufficient to identify all param-
eters. As a consequence, numerous parameter sets may
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yield simulations having similarly good agreement with the
observed data. All these factors will typically lead to model
residuals that have more complex statistical properties (i.e.,
autocorrelation, heteroscedasticity, heavy tails, and skew-
ness) than the classical white noise error.

[4] Since discrepancies between the statistical assump-
tions and the true properties of model residuals result in bi-
ased parameters and unreliable prediction uncertainty
intervals, several approaches have been developed to build
more realistic statistical error models for rainfall-runoff
simulations. The normality of residuals can be improved by
the standard statistical procedure of transformation: power
transforming both the model output and the measurements
simultaneously reduces heteroscedasticity, skewness, and
heavy tails [Abdulla et al., 1999; Bates and Campbell,
2001; Demaria et al., 2007; Duan et al., 2007; Yang et al.,
2007; Frey et al., 2011]. High autocorrelation can be
treated with an autoregressive error model [Sorooshian and
Dracup, 1980; Bates and Campbell, 2001; Yang et al.,
2007; Frey et al., 2011]. Schoups and Vrugt [2010] com-
bined a deterministic bias correction with a heteroscedastic
autoregressive process and a versatile Skew Exponential
Power (SEP) distribution to build a universal, yet entirely
statistical, error model.

[5] While these techniques allow us to make less restric-
tive and thus more realistic statistical assumptions on total
model error, they yield practically no insight into the origin
and propagation of uncertainty. This is especially true for
input uncertainty, which has the most complex propagation
mechanism. Therefore, Bayesian uncertainty assessment
frameworks have been developed that are able to propagate
errors through the nonlinear deterministic model [Kuczera
et al., 2006; Ajami et al., 2007]. The Bayesian foundation
enables the analyst to treat model parameters as stochastic
variables and incorporate existing knowledge about them
via prior distributions. The Bayesian Total Error Analysis
(BATEA) [Kavetski et al., 2006] and Integrated Bayesian
Uncertainty Estimator (IBUNE) [Ajami et al., 2007] uncer-
tainty assessment concepts and the study by Vrugt et al.
[2008] using the Differential Evolution Adaptive Metropo-
lis (DREAM) sampler (we refer to that whole study herein-
after as DREAM) all provide methods to treat uncertainty
in rainfall measurements. Considering input uncertainty
adds complexity to these calibration methods. The BATEA
and DREAM studies introduce storm-specific rainfall mul-
tipliers and infer them together with the model parameters.
The technical difficulty lies in the fact that the number of
estimated parameters becomes much larger due to the
storm-specific parameters that make the sampling of the
posterior more demanding. IBUNE applies a set of rainfall
multipliers a priori drawn from a normal distribution,
which are later shifted and scaled according to two addi-
tional input error parameters (the unknown mean and var-
iance) for the estimation of the likelihood. Besides the
estimation of parameter uncertainty, error propagation can
support the detection of structural deficiencies of models
by using time-variable parameters [Reichert and Mieleit-
ner, 2009] or can quantify other sources of uncertainty to
derive a more precise prediction of uncertainty intervals
[Renard et al., 2010]. These frameworks offer flexibility as
one can account for almost any desired uncertainty compo-

nent, but this comes at the price of a high-computational
burden and mathematical complexity.

[6] In such studies, there is still a ‘‘remnant error’’ that
contains all uncertainty that has not been accounted for
elsewhere in the error model. While the remnant error rep-
resents only a part of the total uncertainty, it can still show
some statistical complexity, which obviously depends on
the ability of the rest of the error model to describe all sour-
ces of uncertainty. In the worst case (a totally inappropriate
error model), the remnant error can be identical to the
model residuals. Despite this and likely due to the limited
theoretical relevance of the remnant error, some error-
propagation studies still assume that it is independent and
normally distributed [Kuczera et al., 2006; Renard et al.,
2010].

[7] The complexity of Bayesian uncertainty assessment
frameworks prevents their widespread usage in cases when
the exact description of error propagation is not absolutely
required. Götzinger and B�ardossy [2008] have already
attempted to provide a simple standalone error model that
separates the effects of various sources of uncertainty.
Nevertheless, they still assumed that the errors were inde-
pendent and that the structural uncertainty was bound to
the process sensitivities through a linear combination. This
neglects that sensitivities derived from a potentially incor-
rect model structure are not guaranteed to reflect the true
importance of the main hydrological processes.

[8] Therefore, the goal of this study is to develop a for-
mal statistical error model that is able to account for the
effects of all sources of uncertainty by emulating the key
properties of error propagation through the CRRM. Such a
method could bridge the gap between the fast yet typically
unsatisfactory traditional statistical error models and the
accurate yet computationally demanding mechanistic error
propagating methods. In addition, the method could be also
used alongside mechanistic error propagation to describe
remnant errors. We inspect whether the new method can
fulfill the requirements of reasonable speed and of statisti-
cal assumptions by comparing it to three existing Gaussian
error models: (i) the traditional model of independent, nor-
mally distributed (measurement) errors (error model E), (ii)
the first-order autoregressive models (error model B), and
(iii) a recently introduced error model (BþE), which
describes the residual series as the composite of systematic
and independent error processes.

2. Methods

[9] Statistical error models are formulated by making
statistical assumptions about the contributions of the differ-
ent sources of uncertainty and their interaction with the
model residual series. Based on these assumptions, the like-
lihood calculation algorithm infers the parameters of the
different components from the composite residual series.
This is a statistically demanding task. Kennedy and
O’Hagan [2001] described how to distinguish between the
effects of two error processes on model output given some
prior knowledge about their statistical properties. This
method was subsequently applied by Bayarri et al. [2007]
for general purpose statistical modeling, but it has been
overlooked by the environmental and hydrological model-
ing communities until the work of Reichert and Schuwirth
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[2012], who used it for multicriteria calibration. We intro-
duce some modifications to this method to construct a like-
lihood function that can simultaneously consider structural,
input, and output uncertainty for CRRMs.

[10] We start with a generic setup following the example
in Reichert and Schuwirth [2012]. They described the re-
sidual process with the sum of a Gaussian bias process B
representing the effects of structural and input uncertainty
on model results and an independent noise E (Figure 1).
The E-term is often equated with observation uncertainty,
which is not completely appropriate. The uncertainty of
discharge measurements stems also from systematic devia-
tions (e.g., due to errors in rating curves) that show up in
the B-term with only random fluctuations being represented
by E. Neglecting this difference due to the lack of informa-
tion on the systematic errors in discharge, the observed,
real, and modeled discharges (QO, Q, and QM, respectively)
relate to each other according to

QO ¼ Qþ E ¼ QM þ B½ � þ E: ð1Þ

[11] The CRRM transforms an input error into a dis-
charge error through the model’s structure, state, and
parameterization. Since our objective is to avoid mechanis-
tic error propagation, our statistical error model should be
able to emulate the a priori unknown model response. For
this purpose, we introduce two separate precipitation-
dependent structural error processes. The first can account
for errors coming from the fast responding model mecha-
nisms (like runoff formation), and the second for errors
from the slower ones (like base flow). We assume that the

errors of the fast-responding mechanisms (Bf (P)) are mem-
oryless and only active when it is raining, while errors of
the slowly responding mechanisms (Bs (P)) have significant
self-dependence. Then equation (1) changes to

QO ¼ Qþ E ¼ QM þ Bf Pð Þ þ Bs Pð Þ
� �

þ E: ð2Þ

[12] With the error model structure specified, the next
task is to formulate Bf (P), Bs (P), and E. Since our objec-
tive is to describe the effects of input uncertainty without
propagating the input errors through the nonlinear CRRM,
we have to emulate the deterministic model’s response to
the stochastic rainfall uncertainty.

2.1. The Memoryless Error Term E

[13] We assume that the random measurement errors are
independent and follow a normal distribution with the
standard deviation of �E. Thus, the parameter set of E is
W ¼ �E½ �.

2.2. The Fast Bias Component Bf (P)

[14] The precipitation-discharge response of a CRRM
can be locally linearized by assuming that a minor change
in the precipitation will alter runoff formation proportion-
ally. This is simply the century-old rational method (for a
recent summary see Butler and Davies [2000]) for the cal-
culation of discharge errors caused by input uncertainty.
The local slope of the response function is the runoff coeffi-
cient that depends on the internal state of the model and the
precipitation intensity. The linearization ensures that if the
uncertainty of precipitation input is normally distributed
then runoff will be too, with

�r ¼ �pmPcr P;Xð Þ; ð3Þ

where cr () is a function specifying the local runoff coeffi-
cient depending on precipitation (P) and the internal model
state (X), �r, and �pm are the standard deviations of the
resulting runoff and of the precipitation multipliers, respec-
tively. If we neglect the variation in cr caused by the differ-
ent internal model states, equation (3) becomes simply

�r ¼ �f P: ð4Þ

[15] Since Bf (P) stands for the error in runoff formation and
we assume that runoff appears in stream discharge instantly,
the variance of Bf (P) is 0 when there is no precipitation and �2

r
when it rains. Using the simple formulation in equation (4), we
get the following covariance matrix for Bf (P):

RBf i; jð Þ ¼
�f P tið Þ
� �2

if i ¼ j

0 if i 6¼ j
;

(
ð5Þ

where P(ti) is the precipitation intensity at ti. Thus, the
parameter set of Bf (P) will be Nf ¼ �f

� �
.

2.3. The Slow Bias Component Bs (P)

[16] As a basis for our Bs (P) process, we use the
Ornstein-Uhlenbeck (OU) process, which is the continuous
equivalent of the first-order autoregressive (AR(1)) model.
The OU process is a stationary Gauss-Markov process: its

Figure 1. A schema for uncertainty description in con-
ceptual rainfall-runoff modeling. P : precipitation, Q :
discharge.
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distribution is Gaussian at any time with a constant variance
of �2

B and its future values depend only on the present state.
This process has been used to describe model bias in hydrol-
ogy in its original stationary form [Yang et al., 2007].

[17] Here, we assume that Bs (P) is a stationary OU pro-
cess, but our variant suffers from additional stochastic dis-
turbances correlated to an external input. In this way, the
stochastic process can follow the basic dynamics of the
CRRM while being mathematically independent from it.
Details about the statistical properties of the standard and
disturbed OU processes are described in Appendix A; here,
we summarize the most relevant information.

[18] When started from a Gaussian initial distribution,
the asymptotic (conditional) variance &2

B of the stationary
OU process follows simple kinetics:

d&2
B

dt
¼ 2� �2

B &2
B

� �
: ð6Þ

where t is time and � is the inverse correlation length.
[19] The stochastic disturbance is formulated in a similar

form to the fast bias component Bf (P) in equation (4). The
stationary variance increases linearly with the precipitation
with Ks being the ‘‘runoff coefficient’’ (Figure 2). Then, the
asymptotic variance kinetics becomes:

d&2
B

dt
¼ 2� �2

B þ KsPð Þ2
h i

&2
B

� �
: ð7Þ

[20] For equidistant Dt time steps and uniform precipita-
tion distribution between adjacent time steps, we get

&2
Bi
¼ �2

B þ &2
Bi 1

�2
B

� �
exp 2�Dtf g þ �sPð Þ2 ð8Þ

with �s ¼ Ks 1� exp �2�Dtf g
p

. For changing time steps
�s will depend on the length of the time step [Dt], neverthe-

less the same formula applies. The exponential covariance
structure of the OU process is preserved despite the addi-
tional disturbance with the covariance matrix of Bs (P)
given by

RBs i; jð Þ ¼

&2
B tið Þ if i ¼ j

&2
B tið Þexp �jtj tij

� �
if i < j

&2
B tj

� �
exp �jti tjj

� �
if i > j

:

8>><
>>: ð9Þ

[21] Since the disturbed process is still Gaussian, the
conditional probability of Bs (P) given its value in the pre-
ceding step follows a normal distribution:

f Bs Pi; tið Þ ¼ bijBs Pi�1; ti�1ð Þ ¼ bi�1ð Þ ¼ N ðbi�1exp �Dtð Þ;
�2

Bð1 exp ð 2�DtÞ þ ð�sPi�1Þ2ÞÞ
ð10Þ

[22] The parameter set of Bs (P) consists of three ele-
ments Ns ¼ �B; �; �s½ �.

2.4. Transformation of Discharge Time Series

[23] We power transformed the measured and modeled
discharge series according to Box and Cox [1964] before
the application of the error models. The reasons were the
following:

[24] 1. The compared additive statistical error models all
have an unconstrained normal error distribution and so they
are likely to give a significant probability to negative dis-
charge values when the uncertainty is higher than actual
discharge. This can be avoided with the application of a
log-transform or a Box-Cox transform with �¼ 0, which
would turn the additive error model into a multiplicative
one. Unfortunately, a strong transformation usually reduces
the quality of fit for high discharge events to an unaccept-
able level. Less-skewed transformations (1>�> 0) cannot
guarantee strictly positive discharges, but can reduce their
occurrence and still maintain a healthier balance between
the importance of high and low Q events.

[25] 2. Transformation is the only way to introduce some
heteroscedasticity into the E, B, and EþB error models.
They are known to fail without a transformation due to the
strongly changing variance of discharge errors. To compare
the B(P)þE error model to the simpler error models, we
have to ensure that the latter also perform acceptably.
Moreover, we can check whether the heteroscedasticity of
B(P)þE is just equivalent to using a simpler error model
with a power transformation or if there are additional bene-
fits coupled to the more complicated structure.

[26] 3. The assumption on the linearity between precipi-
tation and discharge errors with a uniform coefficient is a
strong restriction in the B(P)þE error model. Some de-
pendence on Q and thus the internal state of the system can
be introduced by the application of transformation. How-
ever, this also affects the theoretically independent mea-
surement noise besides the bias, so a strong transformation
should be avoided.

[27] Based on the above points, we tested three different
transformation parameter settings: �¼ 1, 0.5, and 0.3. The
�¼ 1 case corresponds to no transformation, while the

Figure 2. Time dynamics of the unconditional
�2

B þ �Pð Þ2
� �

and asymptotic &2
B

� �
variance of a

precipitation-dependent bias process under uniform and
‘‘natural’’ precipitation intensity (P). The total rainfall
depth was the same (10 mm in 2 h) for both events.
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latter values are typical for transforming discharge series
[Summer et al., 1997; Thyer et al., 2002; Willems, 2009].

2.5. The Posterior Distribution

[28] As the transformation parameter is not calibrated,
the entire parameter space consists of the parameters of the
deterministic CRRM ðHÞ, the parameters of Bs (P) Nsð Þ, of
Bf (P) Nf

� �
, and those of E(P) (W).

[29] The posterior probability of a specific parameter set
[�, �f, �s,  ] given the actual transformed measurements
Qtr

O

� �
can be calculated with a multivariate normal distribu-

tion that builds on the transformed simulations of the deter-

ministic CRRM Qtr
M

� �
and the prior distributions of the

parameters [Reichert and Schuwirth, 2012]:

f �;  ; �f ; �s

� 		Qtr
OÞ /

f �; �f ; �s;  
� �

det RE þ RBf þ RBs

� �q

�exp
1

2
Qtr

O Qtr
M

� �T
RE þ RBf þ RBs

� ��1
Qtr

O Qtr
M

� �
 �
ð11Þ

[30] The posterior distribution is taken in its original form
from Reichert and Schuwirth [2012], because this general solu-
tion applies to all cases when B¼BfþBs and E are Gaussian.

2.6. Case Study

2.6.1. Study Site
[31] We tested the newly developed error model with

the hydrological response of the small catchment of the
Mönchaltorfer Aa, located on the Swiss Plateau (Figure
3). We used the daily Q data from the gauge at Mönchal-
torf [Amt f€ur Abfall, Wasser, Energie und Luft der Baudir-
ektion des Kanton Z€urich (AWEL), 2010]. The upstream
catchment area is 46 km2 with intensive agriculture (57%)
and settlements (20%) being the dominant land use cate-
gories [SWISSTOPO, 2008]. The hydrology of the catch-
ment is characterized by a relatively low base flow index
(0.42–0.48, Siber et al. [2009]). Annual average precipita-
tion was 1220 mm in the study period with a mean dis-
charge of 0.98 m3 s 1 (672 mm yr 1) at the monitoring
station. The dominant soil types are cambisols on hillsides
and gleysols on flat areas (see the soil map in Wittmer et
al. [2010]).

[32] The observed flow values were aggregated from 10
min observations to daily values, which practically eliminated
all random scattering in the data. Consequently, we expected
the random observation error (E) to be negligible after calibra-
tion. The study period lasted from 1 July 2000 to 31
December 2009 when there was continuous local precipitation
data available from the WWTP of Mönchaltorf [AWEL,
2010]. The Q-P data set was divided into a calibration period
covering 75% of the data set (from 2000 to December 2007)
and verification periods corresponding to 25% of the data.

Table 1. Process Matrix of the CRRMa

Process Symbol Rate

Affected Storage

hsnow hs hgw hq

Snowfall Psnow P if T < Tcrit

0 otherwise

( )
þ

Snowmelt Pmelt kmelt T Tmeltð Þ if T > Tmelt

0 otherwise

( )
þ

Rainfall Prain P if T � Tcrit

0 otherwise

( )
þ

Evapotranspiration E Epot fet

Saturation excess runoff Qrunoff fsat (PrainþPmelt) þ
Groundwater recharge Qrge krge fsat qmax

seep þ
Subsurface flow Qssf 1 krge

� �
fsat qmax

seep
þ

Baseflow Qbf kbf hgw þ
Stream discharge Qq kq hq

aAll storages are in (mm) while processes are in (mm d 1). fsat and fet are defined in equations (12) and (13), respectively.

Figure 3. (a) Location of the study site within Switzer-
land and (b) the topographic map of the Mönchaltorfer Aa
catchment with the gauge site (triangle).
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2.6.2. Rainfall-Runoff Model

[33] The CRRM is a modified version of the simple
logistic saturated path model logSPM of Kavetski et al.
[2006]. The model was extended with a snow module to
have all together four storages. The process formulae and
parameters are specified in Tables 1 and 2, respectively.

[34] Precipitation (P) was filtered by a snow module con-
structed following Martinec and Rango [1981]. Precipita-
tion that falls below a critical temperature (Tcrit) was
defined as snow and it accumulates in the snow storage
hsnow. If air temperature exceeds a melt threshold (Tmelt),
snow starts to melt with the common degree-day method
[Martinec and Rango, 1981]. Precipitation falling at an air
temperature exceeding Tcrit directly reaches the underlying
soil storage.

[35] The rest of the model routes flow between the soil
moisture (hs), groundwater (hgw), and stream (hq) sto-
rages. Soil moisture is modeled according to the original
logSPM model, but some reformulation was applied (see
below) to improve the identifiability of parameters. The
logSPM model [Kuczera et al., 2006] belongs to the satu-
rated path family of semidistributed hydrological models,
which implements the variable contributing area concept
by an event-invariant saturation function that maps
between average soil moisture and the runoff generating
area [Kavetski et al., 2003; Lazzarotto et al., 2006]. The
soil moisture profile is simplified to a homogeneous depth
distribution. The core of the model is the sigmoid satura-
tion function fsat :

fsat hsð Þ ¼
1

1þ exp 4 hFSþhFC�2hs

hFS�hFC

� � 1

1þ exp 4 hFSþhFC

hFS�hFC

� � ; ð12Þ

where hFS and hFC are the catchment-scale storage level
equivalents of full saturation and field capacity, respectively.
The parameterization of fsat differs from that of Kuczera et al.
[2006]. This ensures that the prior knowledge on the charac-
teristic moisture content could be directly introduced, but the
function is mathematically equivalent to the original. Runoff
is formed on the saturated proportion of the catchment for
any rain event [Reichert and Mieleitner, 2009]. Underground
flow components are active only in the saturated area:
groundwater recharge and fast groundwater flow are gener-
ated proportionally to fsat. Evapotranspiration from the soil
moisture storage is controlled in a similar manner to fsat:

fet hsð Þ ¼
1

1þ exp 4 hs�hWP

hFC�hWP

� � 1

1þ exp 4 hWP

hFC�hWP

� � ; ð13Þ

where hWP is the catchment-scale moisture level equivalent
of the wilting point.

[36] The groundwater and stream storages are simple lin-
ear reservoirs without size constraints.

2.7. Numerical Implementation

2.7.1. Solving the CRRM Equations
[37] The snow module in the CRRM exhibits a strong

threshold behavior (Table 1), which causes problems for
the solver and optimization routines [Kavetski and Kuc-
zera, 2007]. To prevent this, the threshold function is com-
puted with a numerically well-behaved reformulation of
the soft maximum function (J. D. Cook, 2010, How to com-
pute the soft maximum, http://www.johndcook.com/blog/
2010/01/20/how-to-compute-the-soft-maximum):

softmax x; yð Þ ¼ ln 1þ exp k �min x; yð Þ k �max x; yð Þð Þð Þ
k

þmax x; yð Þ
ð14Þ

where k is an arbitrary factor specifying the scale of
smoothness around the threshold. The soft maximum func-
tion converges to the original maximum function as k
approaches infinity.

[38] The differential equations of the CRRM are solved
with the LSODA (a variant of LSODE - Livermore Solver
for Ordinary Differential Equations) solver [Hindmarsh,
1983; Petzold, 1983], which automatically switches
between stiff and nonstiff solution methods according to the
behavior of the system to be solved. Together with the
smoothing technique described above, this ensures that the
objective function is free from roughness and virtual optima
generated by numerical artifacts [Clark and Kavetski, 2009].
2.7.2. Likelihood Calculation

[39] The direct evaluation of the likelihood function
equation (11) on long input series can pose serious numeri-
cal problems when RE, RBf , and RBs are full covariance
matrices [Reichert and Schuwirth, 2012]. Since hydrologic
observation series often span decades, these matrices can
grow to enormous sizes. The storage requirements can be
solved if we store them as sparse matrices, but the matrix

Table 2. Parameters of the CRRM

Symbol Description Unit Priora

Tcrit Critical temperature for snowfall �C N(1, 0.5)
Tmelt Threshold temperature for snowmelt �C N(0, 1)
kmelt Temperature-specific snowmelt rate constant mm �C 1 d 1 LN(3, 1.2)
hFS Soil moisture when almost all the catchment is saturated mm LN(350, 20)
hFC Soil moisture when almost no area is saturated mm LN(225, 15)
hWP Soil moisture when evapotranspiration almost ceases mm LN(100, 15)
krge Proportion of groundwater recharge from seepage B(14, 6)
qmax

seep Maximal seepage rate mm d 1 LN(100, 50)
kbf Baseflow constant yr 1 LN(0.2, 0.2)
kq Stream constantb d 1

aNotation for prior distributions: N(�, �): normal, LN(�, �): lognormal, and B(	, �) : beta.
bThis parameter was set to a fixed value of 48 in all simulations.
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operations are still prone to numerical problems (over or
underflow) and require a long-computational time.

[40] However, using a descendant of the OU process for
Bs (P) simplifies the solution due to the Markov property:

[41] 1. Rybicki and Press [1995] showed that the inverse
covariance matrix R 1

Bs
of a Gauss-Markov process is tri-

diagonal and symmetric and they also provided a construc-
tion algorithm for the inverse matrix. Since R 1

E and R 1
Bf

are diagonal, the sum RE þ RBf

� � 1 þ R 1
Bs

is then tridiago-
nal. Symmetric tridiagonal matrices can be inverted
directly with the algorithm of Usmani [1994]. The inverse
of the covariance matrix of the likelihood function can be

expressed as R 1
EþB ¼ RE þ RBf þ RBs

� � 1 ¼ RE þ RBf

� � 1

� RE þ RBf

� � 1
RE þ RBf

� � 1 þ R 1
Bs

� � 1
RE þ RBf

� � 1
, so

there is no need to invert any generic full matrix to com-
pute equation (11) (note: RBs is special, it is a full, but Mar-
kovian covariance matrix).

[42] 2. The realization of Bs (P) in the prediction phase
depends only on the last observation step. Thus, prediction
samples of B(P) can be simply generated by subsequent
draws from the conditional distribution equation (10) start-
ing from the last value in the observation period.

[43] Due to the limited memory of the Bs (P) process, we
can apply a simple and robust numerical solution technique.
Although R 1

EþB ¼ RE þ RBf þ RBs

� � 1
is a full matrix due

to E Pð Þ þ Bf Pð Þ þ Bs Pð Þ it does not retain the handy Mar-
kov property of Bs (P) anymore. Nevertheless, its elements
quickly decay as we get farther from the diagonal. This means
that after a certain lag time the likelihoods of specific sections
in the residual series r ¼ Qtr

O � Qtr
M

� �
are quasi independent.

[44] Taking a sufficient memory length m (we applied 10
daily steps), we can estimate the likelihood of the residual
series in smaller parts. The algorithm requires two instan-
ces of the inverted covariance matrix R 1

EþB, one with the
size of m and the other with mþ 1 (called here the inner
and outer covariance kernels, respectively). First, the likeli-
hood of the first m residual elements is calculated with the
inner kernel according to equation (11). Then, for each fol-
lowing element from the index of i¼mþ 1, we estimate
the conditional likelihood based on the previous m values:

f rið jri�1; � � � ; ri�mÞ ¼
f ri; ri�1; � � � ; ri�mð Þ

f ri�1; � � � ; ri�mð Þ : ð15Þ

[45] The approximate likelihood of the entire residual se-
ries is the product of the likelihood of the first part and the
estimated conditional likelihoods of the subsequent
residuals:

f rn; � � � ; r1ð Þ � f rm; � � � ; r1ð Þ
Yn

i mþ1

f rijri; � � � ; ri�mð Þ: ð16Þ

[46] Since the two covariance kernels have different
sizes, it is necessary to include the 1= 2


p k
term of the nor-

mal density function (f) in equations (15) and (16) with
k¼m and mþ 1 according to the kernel in question.
2.7.3. Markov Chain Monte Carlo Sampling

[47] Posterior parameter distributions are sampled with
the traditional Metropolis algorithm [Gamerman, 1997]. The
width of the jump distribution is tuned during the burn-in pe-
riod so that the average acception rate is between 15 and
40% afterwards [Gelman et al., 1996]. Realizations of the

bias and error processes are generated according to the
method of Reichert and Schuwirth [2012] for the observation
period and with their respective conditional distributions
(see equation (10) for the bias) for the prediction phase.

2.8. Comparison of Error Models

[48] To evaluate the performance of the newly developed
error model, we tested three other Gaussian error models
with the same data and CRRM. Due to its high degree of
freedom, the newly developed error model was considered
as a generalization of several existing models. To simplify
the calculations, the competitors were selected so that they
could be simulated by disabling selected parts in the new
error model.

[49] The simplest competitor was the traditional normal
noise model (E), which—despite its inadequacy—is still
used for the description of remnant errors. This was imi-
tated with the new model by switching off all error pa-
rameters except �2

E (�¼1, everything else¼ 0). Another
traditional selection was the first-order autoregressive bias
model (B), which we adapted by setting all parameters
except �2

E and � to 0. The most complex alternative was
the bias-noise composite (BþE) from Reichert and Schu-
wirth [2012]. The difference in E¼QO�Q was assumed
to be white noise, while B¼Q�QM was an autoregres-
sive bias process. This was achieved by setting �s and �f

to 0.
[50] Since the selection of an inappropriate error model

would introduce a bias in the parameters and result in unre-
liable uncertainty intervals, it is an important objective dur-
ing any uncertainty analysis to assess the suitability of the
applied error model a posteriori [Thyer et al., 2009]. For
entirely frequentist error models (in this case: E), this is
indeed feasible in the form of, e.g., a statistical test that
checks the probability that the model residuals were real-
izations of the hypothesized error distributions. However,
formal Bayesian error models (in this case: B from BþE
and B(P) from B(P)þE) usually combined elements of
epistemic uncertainty (due to lack of knowledge) with alea-
tory uncertainty (due to random behavior of the system
described by the model). The epistemic part of uncertainty
can only be assessed by its conceptual foundation and the
elicitation from knowledgeable experts, and thus it is the
purely aleatory part that can be explicitly examined with
frequentist tests. Along these lines, we examined the inde-
pendence and normality of E in the E, BþE, and B(P)þE
error models.

3. Results

3.1. Transformation Parameter

[51] The effect of the transformation parameter on the
normality of E is illustrated in Figure 4. As � decreases, the
normality of the maximum likelihood realization of E
improves for the E and BþE error models, but at the same
time the lag 1 autocorrelation increases causing a conflict
in the assumptions. The B(P)þE error model did not seem
to be influenced significantly as it can simulate heterosce-
dasticity on its own. Based on this outcome, we fixed � to
0.5 as a reasonable compromise for the remaining part of
the analysis.
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3.2. Predictive Uncertainty With Different Error
Models

[52] Thanks to the local input data, the simple modified
logSPM CRRM achieved good performance. In a test cali-
bration with the Nash-Sutcliffe efficiency as the objective
function, the highest scores reached NS¼ 0.85. With the
involvement of the Box-Cox transformation (�¼ 0.5), the
highest NS scores reached 0.94 for the transformed dis-
charge series, but this meant a decrease to 0.81 considering
Q without transformation. Interestingly, neither the maxi-
mum likelihood solutions nor their NS scores differed sig-
nificantly for the different error models (Figure 5). The
deterministic CRRM overestimated the amount of base
flow in all cases (Figure 6), but this was compensated by
the error models to a varying degree.

[53] However, the uncertainty intervals differed between
the error models. The difference mostly came from the
varying rigour of the applied error models (Figure 7). Gen-
erally speaking, the independent identically distributed nor-
mal error model (E) showed the least tolerance against
deviations. According to the independence hypothesis
behind it, any exceptionally large deviation between the

model results and the measurements would be exclusively
attributed to measurement errors and can be expected to di-
minish in a single time step. Since this typically does not
happen due to the memory of the CRRM, the E error model
tended to underestimate the likelihood of parameter sets
causing temporary but systematic deviations. The conse-
quences were twofold. First, uncertainty caused by parame-
ter variability was supposed to be very small, which—
according to the hypotheses—means that the overall uncer-
tainty of Q and QM (considered to be identical) was
severely underestimated (Figure 7). The incorrect assump-
tions on the model residuals were indicated by the statisti-
cal properties of the residuals in the calibration period. The
distribution of residuals had too heavy tails (Figure 4).
There was significant autocorrelation (�1¼ 0.54) in the re-
sidual series, and the estimated measurement errors were
orders of magnitude higher (sometimes reaching 650% of
the average discharge depending on the transformation)
than the usual noise in automatic discharge measurements
(Figure 8). The latter was obvious when one compared pre-
dictions of QO to observations: the magnitude of independ-
ent random fluctuations was too high compared to the

Figure 4. Quantile-quantile plots for the posterior maximum likelihood realizations of E in the calibra-
tion (black) and validation (gray) periods. Open white marks indicate the calibration deciles with the
small bars showing their 95% confidence interval. �1 is the 1 day lag autocorrelation coefficient.
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discharge itself, which ruined the slowly changing parts of
the hydrograph (Figure 9).

[54] The B error model eliminated some of the problems
of the E model. Although it was similarly homoscedastic
(Figure 8), the strong autocorrelation of residuals could be
properly accounted for. This practically means that it was
the innovations of the error process that need to be random,
which then resulted in much smaller likelihood penalties
for systematic deviations. Contrary to the E error model,
the B error model considered the structural problems of the
CRRM as the main cause for the deviations between QM

and QO, which resulted in QM¼Q. However, the uncer-
tainty ranges seemed to be too optimistic for high dis-
charges and additionally too pessimistic for low flows
based on the validation measurement points (Figure 7).

[55] While the E and B error models possessed a single
deviation term specifying QO�QM, the composite structure
of the BþE error model, potentially coupled with prior in-

formation on the statistical properties of B and E enabled us
to distinguish the systematic errors caused by structural or
parameter uncertainty from output errors. The bounds of the
predictive uncertainty intervals for the BþE error model
closely resembled those of the B model (Figure 7), which
was a surprise considering the additional complexity of this
error model compared to B. However, there was an impor-
tant difference. The uncertainty bounds showed only the
unconditional variance of the error process, but not how
individual predictions evolved in time. The maximum likeli-
hood estimation for �1 of the bias process was 0.61 and 0.88
with the B and the BþE model, respectively. This meant
that in a short-term operational prediction the two error mod-
els would deliver significantly different results despite their
similar unconditional variance (Figure 9). The fulfillment of
statistical assumptions was almost satisfactory for the BþE
model. The observation error E was approximately normally
distributed (Figure 4), but there were issues with its inde-
pendence in the calibration period: it showed signs of a
long, but not too vivid, memory (�1¼ 0.37). In addition, the
amplitude of E (SD � 20% of Q) still exceeded the (negligi-
ble) scattering of our discharge data set (Figure 8), which
then introduced a noticeable zig-zag on the predicted trajec-
tories of QO (Figure 9).

[56] The newly developed B(P)þE error model finally
produced different uncertainty bounds compared to B and
BþE (Figure 8). Due to the input-dependent components,
the highest uncertainty was concentrated in the vicinity of
intense precipitation events (August 2007 in Figure 10). This
potential heteroscedasticity allowed the error model to
decrease the error variance in low-flow periods (August
2003 and April 2007 in Figure 10), which indicated that the
uncertainty for low flow could have been overestimated by
the other error models. The good performance in the verifi-
cation period showed that the algorithm could reasonably
estimate the statistical properties of the actual residual pro-
cess. This resulted in significantly less outlying observation
points during flood events (Figure 7). The fulfillment of sta-
tistical assumptions had further improved: the standard devi-
ation of the observation error was ultimately calibrated to a
reasonably low level (Figure 8 and Table 3) and the values
of E followed the prescribed normal distribution (Figure 4)
with better independence (�1¼ 0.20). These improvements
were reflected in the proper smooth shape of predicted reces-
sion paths of QO (Figure 9). If we had used the original dis-
charge measurements with 10 min resolution, E could have
been calibrated to have higher standard deviation as the
averaging from 10 min to daily steps would have reduced
the variance of any white noise process 144-fold.

[57] Contrary to the high predictive uncertainty of indi-
vidual events, the predictive uncertainty for an aggregated
hydrological indicator like the flow duration curve was
much lower for all error models with values below 20%
with 95% confidence (Figure 6). The distribution of flow
duration curves was generated in predictive mode for the
entire period covered by data. The individual flow duration
curves belonging to different parameter sets in the MCMC
sample were used to estimate the distribution of Q belong-
ing to a specific exceedance probability. Similarly to the
individual events, the estimated width of predictive uncer-
tainty was the smallest for the simplest E error model.
However, the widest interval was now produced by the

Figure 5. Maximum likelihood solutions Qml
M

� �
with dif-

ferent error models in (top) normal and (bottom) trans-
formed space in a 400 day period between 2007 and 2008.
Crosses show QM, the dashed line separates the calibration
and prediction periods. The results from the four different
error models cannot be distinguished.
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BþE error model and not by the most complex B(P)þE.
Although the maximum likelihood solution for QM was
quite inaccurate for low flow in all cases, the bias process
in the B(P)þE error model could almost perfectly com-
pensate for this and produced the closest agreement with
the observations.

3.3. Posterior CRRM Parameters

[58] The choice of an error model and the corresponding
likelihood function influences the posterior parameter dis-
tribution in Bayesian model calibration, because the error
models in rainfall-runoff modeling are all statistically
imperfect to some degree. The error models taking part in
our comparative study feature a wide range of complexity
(E has 1 parameter, B(P)þE has 5). The posterior marginal
distributions for different CRRM parameters are similarly
diverse (Figure 11).

[59] The B and BþE error models produced the most
similar posterior marginals thanks to their common sta-
tionary AR(1) process kernel. This indicated that the dis-
tinct measurement error (the difference between B and
BþE) could not fundamentally change the posteriors in

case of our CRRM and data. The E and B(P)þE error
models differed frequently from the previous two models.
The memoryless E error model was exceptionally selec-
tive for sensitive parameters. This was why the magnitude
of parameter uncertainty became so low for this error
model.

[60] There was a basic difference between the new
B(P)þE error model and its counterparts. The new model
was the only one that changed its unconditional variance
even in transformed space depending on the rainfall situa-
tion and history. This was not a completely new property as
Yang et al. [2007] had already introduced different parame-
ter sets for their B error model in the wet and dry seasons,
but it was unique in this selection of error models. While
the spectrum from the E through the B to the BþE error
models could be regarded as a gradual relaxation of the
unrealistic 0 autocorrelation constraint for an otherwise sta-
tionary process, the introduction of heteroscedasticity
meant a more fundamental change. The B(P)þE error
model frequently produced totally different posteriors than
the others from the same prior knowledge and measure-
ment data (Figure 11). This demonstrated the conditionality

Figure 6. Flow duration curves of the prediction period with different error models. The dashed line
stands for Qml

M , the maximal likelihood solution of the deterministic CRRM, open circles for the quantiles
of QO (observations), Qml (solid line), and Q (shaded area) are the maximum likelihood solution and the
95% uncertainty interval for the modeled ‘‘real’’ discharge Q ¼ QM þ Bf Pð Þ þ Bs Pð Þ

� �
, respectively.
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of the posterior parameter distribution on the assumptions
of the error model.

[61] The similar maximum likelihood solutions for Q
could occur besides different parameter posteriors because
the internal storages of the CRRM also differed by the error
model (Figure 12). While there was an almost perfect con-
sensus on the size of the snow storage (hsnow) for all error
models, the mean value of the soil moisture storage (hs)
scattered between 200 and 250 mm. The difference was
most expressed for the groundwater storage (hgw) where the
E, B, and BþE error models all settled below 5 m,
while the B(P)þE model resulted in a stunning storage
size of 15 m.

3.4. Posterior Error Parameters

[62] We considered noninformative prior distributions
for Nf , Ns, and W. Similarly to the CRRM parameters, the
maximum likelihood values and the posterior distributions
varied by the specific error model (Table 3). The decrease
of �E and �B from BþE to B(P)þE showed that the
introduction of precipitation-dependence created a valua-
ble opportunity for the B(P)þE model to decrease the sta-
tionary uncertainty when the water fluxes between the
CRRM compartments were less intense. The stationary

variance of B(P)þE in dry periods approximately halved
in comparison to the other error models. The practical
extinction of �E was especially a big improvement, since
it was finally in accordance with the truly negligible sta-
tionary scattering of our Q measurements. This resulted in
realistically predicted hydrographs for QO in each single
realization (Figure 9).

[63] The values of �s and �f represented input uncer-
tainty and the structural uncertainty in runoff formation.
Their values suggested that these uncertainties affected
both the fast and slow reacting components of the CRRM
in a roughly equal way. This hypothesis was consistent
with the posterior marginal of the krge parameter, which
assigned similar amounts to interflow and recharge. The
magnitudes of �s and �f indicated that a precipitation event
of a mere 2 mm could practically double the stationary
uncertainty on the very day of the event and keep it 35%
higher for the next day.

[64] A rough and na€ıve comparison of �s and �f with the
actual storm-specific runoff coefficients demonstrated the
amount of input-related uncertainty in this error model.
The total input-related uncertainty came from the interplay
between true input uncertainty and uncertainty of runoff
formation (see equation (3)), so we had to estimate the

Figure 7. Differences in calibration and predictive uncertainty of the modeled (QM) and the real (Q)
discharge with different error models in a 160 day interval around the end of the calibration period. QO :
observations, P : precipitation.
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runoff coefficient in order to get the input uncertainty.
According to the maximum-likelihood parameter values of
�f and �s, the total input-related uncertainty of Q (mm d 1)
reached 13% of the actual daily precipitation (mm d 1) on
average. The observed runoff yield was 0.53 for the biggest
flood event in August 2007. This meant that the standard
deviation of the rainfall multiplier �rm should have been
around 22% in this case. This figure seemed to be in the re-
alistic range for input uncertainty, but rather it was a mini-
mal limit of input uncertainty as most smaller flood events
possessed a much lower runoff yield.

4. Discussion

4.1. Linearization of CRRM Response to Input
Uncertainty

[65] Our assumptions about the linear propagation of
input errors through the CRRM corresponded to the struc-
ture of the ‘‘abc’’ rainfall-runoff model [Fiering, 1967].
This extremely simple linear CRRM was primarily impor-
tant for education, but its simplicity allows the direct
inspection of some otherwise complicated details. This as-
pect made it popular for system diagnostic purposes [Kuc-

zera, 1982; Vogel and Sankarasubramanian, 2003; Huard
and Mailhot, 2006]. The whole catchment was simulated
by a single storage S. The rainfall P was routed according
to fixed proportions. The parameter a determined how
much of P can enter the storage, while b described the pro-
portion of P immediately lost to evapotranspiration. The
remaining c specified the rate of base flow from S. Thus,

dS

dt
¼ a � P c � S and Q ¼ 1 a bð Þ � Pþ c � S: ð17Þ

[66] This was similar to our assumption that a difference
in P caused an immediate and a lasting effect in Q. Consid-
ering a precipitation multiplier P/PM with a mean of 1 and
variance of �pm, we could analytically express the true val-
ues for �s and �f for the B(P)þE error model based on
equation (4):

�f ¼ �pm � 1 a bð Þ and�s ¼ �pm � a � c and� ¼ log 1 cð Þ:
ð18Þ

[67] In this sense, the B(P)þE error model emulated the
input error propagation through the nonlinear CRRM using

Figure 8. Sample realizations of error components (20 realizations in transformed space) during cali-
bration and prediction with different error models. The figure covers a 80 day interval around the end of
the calibration period.
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the blueprint of the ‘‘abc’’ hydrological model. This
implied that the error would be overestimated during low
flows and underestimated during high flows. The linear
error propagation resulted in heteroscedastic predictive
uncertainty bands, where the unconditional variance was
mainly controlled by the rainfall series. While it was a sim-
plification compared to uncertainty assessment methods
relying on true error propagation, it was a step forward
from purely statistical approaches. This feature was similar
to the results by Götzinger and B�ardossy [2008], although
our study differed in some details. The trajectories of dis-
charge predictions in our study were smooth in the reces-
sion phases thanks to the autoregressive bias process
(B(P)þE in Figure 9), while their error varied independ-
ently around the deterministic model predictions with the
given variance (similarly to E in Figure 9).

4.2. Quantification of Input Uncertainty

[68] Several studies attempted to examine different sources
of uncertainty by accounting for them in the Bayesian infer-
ence procedure. From the posterior parameter distributions of
the error model or the manifestation of stochastic time-

variable parameters, conclusions could be drawn about the rel-
ative importance of different sources of uncertainty [see, e.g.,
Kuczera et al., 2006; Vrugt et al., 2008; Reichert and Mieleit-
ner, 2009]. A common finding in these studies was that pre-
cipitation had the strongest impact on the model output and
consequently input uncertainty was declared to dominate.

[69] Mantovan and Todini [2006] warned that in Bayes-
ian calibration theory the posterior parameter distribution is
conditional on the deterministic model structure and the
error model. Thus, in an unconditional sense, parameters
are simple mathematical utilities to adjust the output of the
imperfect deterministic model, regardless of their physical
or other meaning in the model. Consequently, Bayesian
calibration does not guarantee that we get generally valid
parameter distributions by inferring the parameters from an
observation series. The exclusive objective of the inference
procedure is to find a posterior distribution for the parame-
ter set so that the conditional dependence of the predictions
on the parameters can be marginalized out. Doherty and
Christensen [2011] demonstrated that the inevitable differ-
ence between the model structure and reality introduces a
certain bias to the parameter estimates. Strictly speaking,

Figure 9. Comparison of observed flow during a single recession period with selected realizations of
predicted QO for different error models.
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the only unconditional products of the inference procedure
are the distributions of model predictions.

[70] In line with the observation of Beven [1989] about
the information content of discharge series, Kirchner
[2009] showed that quite simple models can be fed with a
synthetic rainfall series so that they produce a close match
to the observed discharge. The radically simple storage-
discharge function applied in the backward inference of
precipitation did not even attempt to describe the common
hydrological processes featured in most CRRMs [Kirchner,
2009] and thus it could be declared to be a warehouse of
structural errors. However, at the same time most of the
uncertainty could be assigned to the input in a hypothetical
experiment as the adjustment of rainfall would have been
able to create a perfect match between the model output
and the observations. It seems that the importance of pre-
cipitation is so huge for CRRMs that it might compensate
for other sources of uncertainty.

[71] It was difficult to figure out the importance of input
uncertainty on the present results due to several reasons.
Even if we limited ourselves to statements conditional on
the applied CRRM and error model and neglect the power
transformation of Q, the inherent interaction between input
and model response happening inside equation (4) would
still have created an identification problem. Simply looking
at the units, �P could have given the standard deviation of
precipitation specific runoff error (mm mm 1), but actually
it was the product of the input uncertainty and the sensitiv-
ity of the discharge response to it equation (3). Conse-
quently, we did not meaningfully compare �s and �f to
traditional rainfall multipliers, which could have been
directly interpreted as relative measurement inaccuracy.

4.3. Absolute Levels of Uncertainty

[72] The discovery that traditional error models seriously
underestimated the predictive uncertainty in real-world
applications was a main motivation for the development of
more sophisticated uncertainty assessment techniques [Ken-
nedy and O’Hagan, 2001]. This phenomenon was typical

in environmental modeling, but it was especially expressed
in hydrology due to usual rainfall-runoff model residuals
exhibiting a complex statistical behavior. With the develop-
ment of a more realistic error model, one could have
expected to get a more accurate view on the actual level of
predictive uncertainty, but it was a surprising recognition
what levels this uncertainty could have actually reached.

[73] The test case utilized a locally recorded input data
set coupled with a simple yet efficient CRRM. The maxi-
mal likelihood model results for discharge were very close
to the measurements, but even in this relatively simple and
well-monitored catchment the 95% relative predictive
uncertainty interval could reach 650 to 150% for low flows
with any error model. For flood peaks, the picture was
more diverse. The E, B, and BþE error models predicted
smaller relative uncertainty, which logically came from
their assumptions on stationary errors.

[74] These surprising levels of uncertainty for individual
events seemed very high compared to the fact that the
model achieved a very good fit in the calibration period.
The general cause was that the occasional low likelihood
events trained the error model to believe that the CRRM
could regularly miss the target discharge with over 100%
error. This widened the bounds of unconditional uncer-
tainty. The specific cause could have been the fact that the
statistically more realistic error models relied on less strict
yet invalid assumptions (e.g., that relative errors are the
same for floods and base flow), so they were more tolerant
to heavy-tailed error distributions [Vrugt et al., 2008].

Figure 10. Modeled and observed discharge in 2003 and 2007 (exceptionally dry and wet years,
respectively) with the B(P)þE error model. The uncertainty intervals were generated in prediction
mode.

Table 3. Maximum Likelihood Values for Error Parameters

Error Model

Error Parameter

�E �B � �f �s

E 0.368
B 0.385 0.491
BþE 0.211 0.337 0.127
B(P)þE 0.004 0.140 0.167 0.038 0.030
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[75] The predictive uncertainty for flow duration curves
was typically around 610%. This suggested that the
CRRM was indeed a good representation of catchment
behavior in the case study. The prevalence of input uncer-
tainty prevented the CRRM from making precise predic-
tions on individual hydrological events like a flood peak or
a low-flow period, but the more robust performance indica-
tor proved its predictive capability.

4.4. Comparison to a Non-Gaussian Model of Total
Error

[76] To assess the performance of B(P)þE in describing
total predictive uncertainty, we did not only compare it to
its subsets but also to an independent statistical model of
total error. The frequentist generalized likelihood function
(GL) model of Schoups and Vrugt [2010] was developed to

Figure 11. Prior and posterior marginals for some selected CRRM parameters with different error
models. For a description of parameters, please refer to Table 2.

Figure 12. Storage size densities with different error models. hs is the soil moisture storage, hsnow is
the snow height in water equivalent, and hgw is the groundwater storage.
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handle all kinds of statistical problems that usually result in
conflicts between the modeler’s typical assumptions and
the true properties of the residuals (autoregression, hetero-
scedasticity, heavy tails).

[77] The GL error model is essentially an autoregressive
error process with non-Gaussian innovations (innovations
have a skew exponential power (SEP) distribution). It has
five parameters plus a bias correction factor.

[78] Despite its apparent conceptual versatility the suc-
cessful application of the GL error model appears to
depend on the suitability of the CRRM to the specific
catchment. Schoups and Vrugt [2010] reported test applica-
tions for a wet and an arid catchment with mixed results.
The wet catchment was well described by their CRRM and
the error parameters were inferred without difficulty. How-
ever, the CRRM did not perform so well for the arid catch-
ment and this implied several problems in calibrating the
parameters of the GL error model. It was found that the
maximum likelihood solution for Y was significantly bi-

ased and predictive uncertainty was extremely and unrea-
sonably wide. To overcome these problems the ultimate
remedy was to fix the lag 1 autocorrelation coefficient of
the error process arbitrarily to a moderate value (’1¼ 0.4).

[79] Interestingly, we got similar experiences for our test
catchment. The application of the GL error model without
constraints on its parameters resulted in extremely wide
predictive uncertainty intervals (Figure 13a) and biased Y
values. Just like in the arid case study of Schoups and Vrugt
[2010], the reason was the very high value of ’1 (maximum
likelihood value: 0.93). The unrealistic amount of uncer-
tainty could only be reduced by fixing ’1 arbitrarily to 0.7
based on the autocorrelation range specified by the other
error models. This helped to narrow down the uncertainty
intervals to approximately the level of the B(P)þE error
model (Figure 13b) and eliminated the bias of Y.

[80] While the GL error model seems to be advantageous
compared to the B(P)þE model because it is based on
more general statistical assumptions, this versatility comes

Figure 13. Calibration and predictive uncertainty with two versions of the generalized likelihood func-
tion (GL) of Schoups and Vrugt [2010]. (a) Calibrating all error parameters ; (b) fixing �1 at 0.7, dashed
lines indicate the uncertainty interval of B(P)þE. (bottom) Posterior maximum likelihood realizations
of error innovations for the version shown in Figure 13b. (c) Q-Q plot and (d) empirical probability den-
sity functions.
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at a price. The wide range of possible shapes of the SEP
distribution appears to be the reason why the inference pro-
cedure may results in maximum likelihood for biased
results and extremely wide predictive uncertainty. This
behavior would require more in-depth analysis that is
beyond the scope of this paper.

4.5. Perspectives in Statistical Error Modeling

[81] The purely statistical modeling of model errors pro-
vided a relatively simple way of uncertainty assessment.
However, this also meant taking some compromises.
Although the information needed to make a statistical error
model can be sometimes much less compared to mechanistic
error propagation frameworks such as BATEA [Kavetski et
al., 2006], DREAM [Vrugt et al., 2008], or IBUNE [Ajami
et al., 2007], this also meant that the statistical error descrip-
tion might miss some crucial features of the error process.

[82] It is a common critique against formal error models
that the traditional (‘‘dumb’’) statistical error models (E
and B) eventually produced discharge uncertainty bands
that do not make any physical sense by dipping below 0 or
that the actual discharge may follow a path that actually
cannot be described by the deterministic hydrological
model [Beven et al., 2008].

[83] While this is indeed a drawback, it is not a proper
justification for abandoning the sound theoretical founda-
tions of inference. Traditional methods often build on inde-
fensible assumptions (like the E error model) or neglect
axioms of inference (like GLUE). As a result, they may
hide the majority of existing uncertainty from the analyst.
We think that statistical error models are still worth further
research to overcome most of their existing limitations to a
point where they can provide simpler alternatives to the
Bayesian mechanistic error propagation frameworks.

5. Conclusions

[84] In this study, we developed a formal statistical error
model that can represent the effects of all important uncertainty
sources (including input uncertainty) on model output that occur
in conceptual rainfall-runoff modeling. The two main objectives
were (i) to narrow the gap between the fast yet unsatisfactory
traditional Gaussian error models and the accurate yet computa-
tionally demanding mechanistic error propagating methods and
(ii) to account for the remaining bias of these methods. The
composite biasþ noise statistical error model from Kennedy
and O’Hagan [2001], Bayarri et al. [2007], and Reichert and
Schuwirth [2012] was extended with the linearized propagation
of input uncertainty equivalent to the ‘‘abc’’ rainfall-runoff
model. The development introduced intrinsic heteroscedasticity
into the error model dependent on the amplitude of the most
important driver: precipitation. The new error model was tested
on data from the Mönchaltorfer Aa catchment (Switzerland)
and compared with altogether four other statistical error models.
Based on the results we concluded that:

[85] 1. The involvement of input uncertainty signifi-
cantly improved the agreement between the statistical prop-
erties of posterior residuals and the assumptions of the
error model. The maximum likelihood predictions of dis-
charge were similar for all error models, but the underlying
deterministic model parameters and the predictive uncer-
tainty intervals were rather different.

[86] 2. Besides the statistical improvements, the newly
developed error model showed additional refinements: it
properly assigned a lower importance to the observation
noise, which allowed for smooth recession patterns in pre-
dicted discharge observations. Furthermore, it delivered what
appeared to be a realistic estimate of predictive uncertainty
with different bandwidths for flood and recession periods.

[87] 3. Despite the good performance of the deterministic
CRRM on the test data set, the predictive uncertainty of indi-
vidual flood events in the validation period was very high
reaching 100% relative error. The input and runoff uncer-
tainty seemed to be a major cause for this low confidence,
but its quantified contribution is certainly conditional on the
assumptions about the structure and propagation of errors.

[88] 4. In contrast to the single events, the overall flow
regime was simulated with high confidence (about 10% rel-
ative error in the flow duration curve), which indicated that
the CRRM managed to capture the most important aspects
of the local hydrology.

[89] 5. While complex statistical error models could not
provide insight into the reasons of errors or possible struc-
tural improvements to reduce the model bias, they still
remained to be computationally cheap alternatives to full
Bayesian error propagation frameworks in the theoretically
sound assessment of total predictive uncertainty. Addition-
ally, they could be used in full error propagation frameworks
to provide a statistical description of the remaining bias.

Appendix A: Statistical Properties of the Dis-
turbed Ornstein-Uhlenbeck Process

A1. A Standard Ornstein-Uhlenbeck Process With
Zero Mean

[90] The Ornstein-Uhlenbeck (OU) or Gauss-Markov
process is a mean-reverting Gaussian process. For 0
expected value, the process B is defined with its uncondi-
tional variance �2

B and the inverse correlation length � :

dB tð Þ ¼ �B tð Þ þ 2��2
BdW tð Þ; ðA1Þ

where W(t) is the Wiener process at time t.
[91] This equation has an analytical solution for the con-

ditional distribution of B. The conditional mean is

E B tið ÞjB ti�1ð Þ ¼ b½ � ¼ b exp �jti ti�1jf g: ðA2Þ

[92] According to the definition of the process in equa-
tion (A1), the random component is independent of the pro-
cess itself. This means that the variance can be described
separately from the actual process value:

Var B tið ÞjB ti�1ð Þ ¼ b½ � ¼ �2
B 1 exp 2�jti ti�1jf gð Þ: ðA3Þ

[93] Similarly, the covariance between earlier and later
values of the process depends only on the time difference
(if the variance in ti 1 is �2

B) :

Cov B tið Þ;B ti�1ð Þ½ � ¼ �2
Bexp �jti ti�1jf g ðA4Þ

and in this case the covariance matrix for discrete observa-
tions becomes
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RB i; jð Þ ¼ �2
Bexp �jti tjj

� 
: ðA5Þ

A2. Asymptotic Variance Kinetics of the Standard
Ornstein-Uhlenbeck Process

[94] The stationary variance of the process is the uncon-
ditional variance �2

B. The process variance will converge to
the stationary variance regardless of the initial state.

[95] If the distribution in ti 1 is Gaussian with &2
B ti 1ð Þ

then in ti its variance will be

&2
B tið Þ ¼ �2

B þ &2
B ti�1ð Þ �2

B

� �
exp 2� ti ti�1ð Þf g: ðA6Þ

[96] To get the conditional variance, we can simply sub-
stitute &2

B ti 1ð Þ ¼ 0 to get the solution equivalent to equa-
tion (A3):

&2
B tið Þ ¼ �2

B 1 exp 2�jti ti�1jf gð Þ: ðA7Þ

[97] The kinetics of the asymptotic variance can be
described by taking the derivative of equation (A6):

d&2
B

dt
¼ 2� �2

B &2
B

� �
: ðA8Þ

[98] The solution of this differential equation indeed sat-
isfies the conditional variance equation (A6) if we use &2

B ¼
�2

B if ti � ti 1 ¼ 1 as the boundary condition during
integration.

A3. The Disturbed Ornstein-Uhlenbeck Process

[99] We assume that precipitation increases the uncondi-
tional variance to �2

B þ KPð Þ2
h i

. Since � remains unaf-
fected, the asymptotic variance kinetics from equation (A8)
still applies :

d&2
B

dt
¼ 2� �2

B þ KPð Þ2
h i

&2
B

� �
: ðA9Þ

[100] The conditional distribution of B(ti) given the ini-
tial value B(t0) is then

B tið Þ ¼ B t0ð Þexp �jti t0jð Þ þ
Z ti

s t0

&B sð Þexp �jti sjð ÞdW sð Þ:

ðA10Þ

[101] When the P precipitation rate is uniform within a
time step Dt, then the actual process variance at the end of
the time step becomes

&2
B t þ Dtð Þ ¼ �2

B þ KPð Þ2 þ &2
B tð Þ �2

B KPð Þ2
� �

exp 2�Dtf g:

ðA11Þ

[102] This can be rearranged for the equidistant discrete
case into a form that resembles equation (A6):

&2
Bi
¼ �2

B þ &2
Bi 1

�2
B

� �
exp 2�Dtf g þ �Pð Þ2 ðA12Þ

with

� ¼ K 1 exp 2�Dtf g
p

: ðA13Þ

[103] This way we can separate the effects of precipita-
tion on the actual process variance from the mean-reverting
mechanism that is also present in a standard OU process.

[104] If we consider the asymptotic process variance of a
standard OU process in ti and ti 1, the increase caused by
the introduction of the uniform P precipitation rate between
the observation points can be regarded as if an independent
standard normal random number Z(ti) multiplied with �P
has been added to the standard OU process. Due to its inde-
pendence, Z does not change the covariance between the
two subsequent observation points:

Cov B ti�1ð Þ;B tið Þ þ �PZ tið Þ½ � ¼ Cov B ti�1ð Þ;B tið Þ½ �

þ�PCov B ti�1ð Þ; Z tið Þ½ �

¼ Cov B ti�1ð Þ;B tið Þ½ �:

ðA14Þ

[105] For nonadjacent observation points that encompass
several precipitation events, the overall effect is similar.
The disturbance caused by the past precipitation appears as
an integral of independent normal noise terms with weights
that decay with the time lag (see equation (A10)). Due to
the independence of dW from B, we find that

Cov B tið Þ;B t0ð Þ½ � ¼ Cov B t0ð Þexp �jti t0j;B t0ð Þf g½ �

¼ Var B t0ð Þ½ �exp �jti t0jf g

¼ &2
B t0ð Þexp �jti t0jf g

ðA15Þ

[106] If we generalize this for any discrete observation
points, we get the following covariance matrix:

RB i; jð Þ ¼

&2
B tið Þ if i ¼ j

&2
B tið Þexp �jtj tij

� �
if i < j

&2
B tj
� �

exp �jti tjj
� �

if i > j

:

8>><
>>: ðA16Þ

[107] This highlights that the disturbed OU process is
still a Gauss-Markov process since it has the same decay
pattern in covariance as its standard version.
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