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ABSTRACT 

The ability to predict the runoff response of an urban catchment to rainfall is crucial for 

managing drainage systems effectively and controlling discharges from urban areas. In this 

paper we assess the potential of commercial microwave links (MWL) to capture the spatio-

temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we 

perform numerical experiments with virtual rainfall fields and compare the results of MWL 

rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able 

to show that MWL networks in urban areas are sufficiently dense to provide good information 

on spatio-temporal rainfall variability and can thus considerably improve pipe flow 

prediction, even in small subcatchments. In addition, the better spatial coverage also improves 

the control of discharges from urban areas. This is especially beneficial for heavy rainfall, 

which usually has a high spatial variability that cannot be accurately captured by RG point 

measurements. 

KEYWORDS 

urban drainage modeling; telecommunication microwave links; rainfall estimation; space-time 

structure; input uncertainty 

INTRODUCTION 

The ability to predict the hydrologic response of an urban catchment to rainfall, and thus to 

control discharges from urban areas, requires high-quality rainfall data. For urban rainfall 

data, a high spatial as well as a high temporal resolution are mandatory because urban 

subcatchments are relatively small and runoff is generated extremely fast on impervious 

surfaces. 
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Conventional rain gauges (RG) can provide the necessary temporal resolution.  However, as a 

point measurement they cannot capture the rainfall spatial variability adequately (Berne et al. 

2004). The maintenance of a dense RG network is very costly and local weather radars 

(LAWR) are not often available. In addition, LAWR estimations are affected by many 

uncertainties (Thorndahl and Rasmussen 2012). C-band country-wide weather radars are 

usually available, but their resolution (rarely finer than 1 x 1 km2 and 5 min) and data quality 

is often not sufficient for many urban drainage tasks. 

 

Commercial microwave links (MWL) are a novel source of rainfall information which could 

bridge this gap. They operate at frequencies where raindrops are the dominant source of 

microwave attenuation. This attenuation can be calculated from the difference between 

received signal levels with and without rainfall and can be transformed to the path-averaged 

rain rate (Messer et al. 2006, Leijnse et al. 2007). Using MWL in urban drainage modelling is 

conceptually interesting because MWL networks i) are already built and could provide 

rainfall information at virtually no additional cost, ii) observe near-surface precipitation a few 

tens of meters above ground, and iii) have a high density in urban areas (Rieckermann et al. 

2009). In addition, MWL provide path-averaged rain rates over distances ranging from a few 

hundred meters to a few kilometers. Thus, the spatial resolution of MWL observations very 

well matches the scale of urban subcatchments. Although the theory behind the MWL rainfall 

estimation is quite well understood, there are few hydrological applications (Overeem et al. 

2011, Fenicia et al. 2012). Studies which use MWL for rainfall-runoff modelling in an urban 

setting are currently lacking. 

 

In this manuscript, we therefore investigate how data from commercial telecommunication 

networks can improve urban drainage modelling. Specifically, we analyze the extent to which   

better information about spatio-temporal rainfall variability improves pipe flow predictions. 

To this aim, we perform computational experiments that allow us to compare MWL to RG 

measurements for several realizations of exactly known reference rainfall, which is not 

possible with incomplete real-world observations. To avoid overconfidence in the results, we 

explicitly consider the uncertainties associated with the different sensor types. Our analysis 

for a suburb of Prague, Czech Republic, suggests that MWL networks in urban areas are 

sufficiently dense to provide good information on spatio-temporal rainfall variability.  

In the future, when the infrastructure to acquire MWL data from telecommunication operators 

is fully implemented, we will validate our results with real-world data. 

 

METHODS AND MATERIAL 

 

To assess the potential of using MWL in urban drainage modelling, we compare runoff 

predictions from MWL to those using RG observations using the rainfall-runoff model of a 

case study area located in Letňany, a suburb of Prague, Czech Republic. The analysis is based 

on virtual drop size distribution (DSD) fields, which not only enable us to estimate rain rates 

at any location, but also to calculate the expected rain-induced attenuation for a particular 

MWL (Schleiss et. al 2012). Thus we can reliably simulate the reference rain rates fallen over 

the catchment and extract point rain rates as seen by RG as well as path-averaged rain rates as 

seen by MWL. To avoid overconfidence, we perturb the virtual data with realistic observation 

errors for both RG and MWL measurements. These are then propagated through a 

hydrodynamic rainfall-runoff model of a case study catchment with Monte Carlo simulations 

for all rainfall datasets. 

 



 
Figure 1 Left: Study catchment and MWL network: the links displayed by the solid line were 

used for the rainfall spatial reconstruction. Right: Disposition of trunk sewers of the 

catchment: flow conditions were evaluated at the outlet from the catchment depicted by black 

point. 

 

The case study catchment has an area of 2.33 km2, with an impervious area of about 64 %, 

which is drained by a separate sewer system (Figure 1). The Prague urban area is covered by a 

dense network of many hundred MWL. For the rainfall spatial reconstruction we selected 

14 MWL (MINI-LINK, Ericsson, owned by T-Mobile) which are located in the direct vicinity 

of the catchment and operate at frequencies of around 38 GHz, which have an almost linear 

response to rainfall and are therefore most convenient for rainfall estimation. Regarding the 

RG measurement, we copied the experimental set-up with a single RG that was deployed by 

the sewer operator in their monitoring study to validate the rainfall-runoff model (Figure 1). 

 

Reference rainfall fields 

 

The reference areal rain rates are simulated using a virtual drop size distribution (DSD) 

generator (Schleiss et al., 2012), which is based on geostatistics and can generate intermittent 

DSD fields in space and time with realistic structures. The DSD N(D) provides information 

about the average number of drops with equivolume spherical drop diameter D [mm] per unit 

volume of atmosphere. It is a combination of a concentration parameter Nt [m
-3] and 

probability density function (PDF) f(D): 

 

)()( DfN=DN t  (1) 

 

In the simulation, f(D) represents the density of a Gamma distribution with two parameters: 

µ [-] and Λ [mm-1]. The generator estimates the medium and large scale rainfall variability 

(1 - 50 km) together with advection direction and velocity using radar data. The small scale 

variability (0.1-1 km) of the DSD is parameterized based on disdrometer data collected in 

Lausanne, Switzerland. The DSD fields are sampled every 1 minute and have a spatial 

resolution of 0.1 x 0.1 km2. The original size of a DSD field is 20 x 20 km2. 

 

The DSD information can be transformed to the rain rate R [mm/h] at any location of a DSD 

field: 
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where N(D) is calculated according to (1) and v(D) [m/s] represents the terminal velocity of a 

rain drop with diameter D (Beard 1977, Berne and Uijlenhoet 2007). 

 

As the response of the catchment fundamentally depends on the rainfall characteristics, we 

generated three rain events: The first is a heavy convective rainfall event with low 

intermittency and a duration of 30 min. The second has moderate convective rainfall of high 

intermittency and lasts 60 min. The last event has strong stratiform rainfall of low 

intermittency lasting 120 min. 

 

To eliminate the influence of positioning the DSD field over the study area, the relative 

position of the catchment to the DSD fields was repeatedly changed to cover 25 different 

locations uniformly distributed over the field. This finally resulted in a comprehensive set of 

75 reference areal rainfalls of size 7 x 7 km2 with maximal point rain rates up to 50 mm/h and 

total heights up to 12 mm. From these, we extracted virtual RG data and computed MWL 

reconstructions. 

 

RG and MWL observations 

 

Virtual RG measurements are extracted from each of the 75 reference rainfalls at one 

particular cell of a rainfall field at each time step using (2).  Because of the high spatial 

resolution of the reference rainfall (100 x 100 m2), the representativeness error between the 

rain rate at the point scale and the simulated areal rain rate is assumed to be negligible. 

 

The attenuation of the MWL signal caused by raindrops can be calculated using the T-Matrix 

method (Mishchenko and Travis 1998). Knowing the DSD along each particular link (by 

extracting it from the simulated DSD field), we can calculate the path-averaged specific 

attenuation k [dB/km] at any time step: 
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The extinction cross-section σ(D, λ) [cm2] describes how a raindrop of diameter D attenuates 

a signal of wavelength λ and N̅(D) represents the average N(D) (1) of the cells of the 

simulated DSD field intersected by the link. The product of these magnitudes is integrated 

over the whole range of raindrop diameters and transformed by the logarithmic constant to 

decibels. A simple power law relation (4) is then used to transform the path-averaged specific 

attenuation k [dB/km] into the path-averaged rain rate R [mm/h] (Messer et al. 2006): 

 
 k=R   (4) 

 

Empirical parameters α and β are estimated for each link separately by fitting the power law 

estimated rain rate of all events to the path-averaged one retrieved directly from the DSD 

fields (2). 

 

Measurement uncertainty 

 



RG measurement uncertainties are modelled according to Stransky et al. (2007), who 

investigated the uncertainty of tipping bucket RG. Our RG is considered to be statically and 

dynamically calibrated. The uncertainties due to losses caused by wind, wetting and 

evaporation as well as owing to standard calibration procedures are sampled from PDFs with 

respect to the nature of the processes: 

 

Wind losses are calculated according to Sevruk (1996) as a function of wind velocities 

considering velocities as log-normally distributed (mean = 2.078, sd = 0.639), which 

corresponds to typical Czech wind characteristics. Then, the wind losses are perturbed by a 

realistic measurement error sampled from a uniform PDF (± 1 % of unbiased rain rate). The 

error due to wetting is sampled for the first intervals of a rain event from a triangular PDF 

(mode = 2 - 10 % (sampled form uniform PDF), range: mode value ± 2 %). The evaporation 

losses are sampled from a triangular PDF (mode = 2 %, range: 0 % to 4 %). And finally the 

error due to calibration is sampled from a normal PDF (mean = 0, sd = 0.07 * unbiased rain 

rate (Rrg)). 

 

MWL rainfall estimates are affected by different sources of uncertainties. Most of the errors 

account for improper baseline determination, quantization noise, the power law 

approximation (4) and additional attenuation caused by antenna wetting (in the following 

referred to as “wet antenna effect”) (Leijnse et al. 2008). 

 

The uncertainty caused by quantization noise and baseline determination is regarded as 

normally distributed. It has been parameterized on a comprehensive dataset from a real-world 

case study in the greater Zurich area (Rieckermann et al. 2009; Fencl 2011). The uncertainty 

due to quantization noise and baseline separation is sampled for each MWL independently 

from a normal PDF (mean = 0, sd = 1/6 dB). As received signal levels of operational MWL 

typically have a quantization of 1 dB, we round the final attenuation to integer values. This 

also partly compensates for the fact that in this study we do not reproduce the wet antenna 

effect, which is subject to ongoing research (Kharadly and Ross 2001, Leijnse et al. 2008, 

Schleiss et al. 2013). 

 

Rainfall reconstruction using MWL data 

 

As a typical network contains MWLs of different lengths and orientations, the two-

dimensional rainfall spatial variability can be reconstructed to some extent from the joint 

analysis of nearby MWL. For simplicity, we used the algorithm by Goldshtein et al. (2009). 

The algorithm first divides each MWL into equal subsections approximately 0.5 km long and 

iteratively estimates the rainfall distribution along each MWL, using rainfall information from 

neighboring MWL (Figure. 2). Second, it extrapolates the estimated rainfall intensities to a 

regular two-dimensional grid. We use 20 iterations as suggested by Goldshtein et al. (2009) 

and project rain rates onto the rectangular grid with resolution 0.25 x 0.25 km2. 

 

Rainfall-runoff simulations 

 

To predict a realistic runoff response from the catchment to the different types of rainfall 

observations, we use a calibrated hydrodynamic model. The model of a Letňany suburb has 

been constructed for the urban drainage masterplan of Prague and has been implemented in 

the commercial solver MIKE URBAN with the MOUSE computational engine. The case 

study catchment is represented by 188 subcatchments defined according to the topology of the 

case study area. The surface runoff module uses the simple time-area method. 



 

 
Figure 2 Illustration of rainfall reconstruction from the observations of three neighboring 

MWL. Left: Initial uniform distribution of rainfall among MWL subsections for a given 

MWL topology. Middle: Distribution estimated for a link ① in the first iteration (z). Right: 

The reconstructed rainfall distribution along the links after the last iteration (z). 

 

Placing the reference and MWL reconstructed areal rainfalls over the catchment area, 

individual rainfall time series can be assigned to each subcatchment from cells of respective 

rainfall fields overlapping the particular subcatchment. When more cells belong to one 

subcatchment, the final rain rates are calculated as averages weighted by the area of cells 

overlapping the subcatchment. RG measurements, as they provide only point rainfall 

information, are regarded as one identical rainfall time series for all subcatchments. 

 

Each of the 75 rain events results in one reference rainfall (with full rain rate spatial 

information) and 25 realizations of MWL reconstructed rainfall and 25 realizations of RG 

rainfall, where scatter of these multiple realizations arises from limited accuracy of MWL and 

RG respectively. Thus for the reference rainfall, which is known exactly, one runoff 

simulation per rain event is performed. For MWL and RG rainfall, the corresponding 

measurement errors are propagated by Monte Carlo simulations with n = 25 repetitions for 

each data set. 

 

Performance assessment 

 

To compare the MWL rainfall observations to RG data, we first compute relevant 

performance statistics for rainfall as well as pipe flow at the outfall from the catchment 

(Figure 1). We then compare them with those of the reference rainfall. For each rain event and 

realization (i.e., input data set for a rainfall-runoff simulation), we compute a) the peak areal 

rain rate (Rmax), and b) the rainfall volume (RV), considering only those rainfall cells which 

are within the catchment area. From the corresponding runoff hydrograph we compute c) the 

peak flow (Qmax) and d) the outflow volume (QV) at the catchment outlet. For performance 

assessment, we use the relative error with regard to the reference rainfall and runoff values 

Rmax_ref, RVref and Qmax_ref, QVref , respectively. Its mean represents the bias and its standard 

deviation the uncertainty due to both the limited spatial information and the limited precision 

of each measuring technique. 

 

In addition, we also evaluate how closely the predicted runoff from each monitoring 

technique matches the runoff dynamics of the reference rainfall for each event and realization. 

Performance measures to reproduce the reference hydrograph are the mean absolute error 

(MAE) and root mean square error (RMSE), between reference and estimated values, the 



latter being more sensitive to outliers. To ensure a fair comparison, we normalize both MAE 

and RMSE by a) the peak runoff rates from the reference rainfall (NMAE, resp. NRMSE): 
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and b) the mean flow rates (CV(MAE), resp. CV(RMSE)): 
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and express them in percent.  

 

The ability to reproduce trends in the flow rates is evaluated by Pearson’s correlation 

coefficient r.  

 

To reveal the effect of a systematic temporal shift of runoff hydrographs, the performance 

statistics ((5-8) and r) are computed for the predicted flow shifted forward and backward in 

time against the reference runoff by one and two time steps. 

 

To guarantee a realistic evaluation, only the events in the whole performance assessment that 

are relevant from an engineering viewpoint (Qmax,ref > 10 l/s) and those that produce 

considerable peak runoff (Qmax,est > 5 l/s) were considered. This was necessary because the 

runoff is very sensitive to small changes in model parameters (e.g., pipe roughness 

coefficients) and discharge predictions at such low flows are not robust. 

 

RESULTS AND DISCUSSION 

 

In general, we found that the ability to predict runoff dynamics of a storm event at spatial 

scales of a few square kilometers, as in our catchment, essentially depends on the correct 

estimation of areal rain rate and its temporal dynamics. In contrast, our results suggest that the 

correct spatial distribution of rainfall is less important. 

 

Rainfall estimates 

 

Regarding the spatio-temporal characteristics of the rainfall fields, we found that the MWL 

reconstructions from the path-averaged observations in general smooth out the local maxima 

and minima. Interestingly, although they are locally systematically biased, they capture the 

rain rates averaged over the whole area of the catchment very well (Table 1). In addition, they 

correctly identify the location of the peak rainfall rates. As we only consider uncertainties due 

to quantization noise, baseline separation and the power law relationship (4), the uncertainties 



of MWL rainfall estimates are almost independent of rainfall rates because the parameter β of 

a power law (4) almost equals 1 at 38 GHz frequencies (Berne and Uijlenhoet 2007). 

 

In contrast to MWL, RG can capture rain rate maxima and minima in its direct vicinity; 

however, the areal rain rate estimates are less reliable (Table 1). This applies especially to 

high rain rates because the spatial rainfall variability is in general higher during periods of 

heavy rainfall and RG, as a point measurement, cannot reflect the spatial distribution of 

rainfall. In addition, the precision of tipping bucket RG decreases with growing rain rate. 

Therefore, the areal rates of heavy rainfall are better reproduced by the MWL network, 

whereas with light rainfall the performance of both methods is comparable. Given the 1 dB 

quantization, this is a very promising result. 

 

Table 1 Performance statistic of rainfall reconstruction (rainfall volumes and peak areal 

rainfalls) in comparison to the reference rainfall. The standard deviation is given in brackets. 
 RV – mean rel. error Rmax – mean rel. error 

RG 4 %  (14 %) 34 %  (27 %) 

MWL -3 %  (10 %) 0 %  (10 %) 

 

Flow estimates 

 

Regarding the performance to predict sewer discharges, the threshold for evaluating the 

rainfall induced flows (Qmax ref> 10 l/s and Qmax est> 5 l/s) was exceeded by 40 of the 75 rain 

events. 

 

Runoff peaks and volumes: Although MWL-based predictions of runoff peaks and volumes 

have a larger bias than RG, this occurs mostly during periods of low or moderate flows, when 

large relative deviations are not critical in absolute values. In contrast to the bias, the standard 

deviation of the MWL results is considerably lower than that from RG (Table 2, Figure 3). 

 

Table 2 Performance statistics of estimated peak flows and flow volumes to the reference 

values. The standard deviation is given in brackets. 

 QV – mean rel. error Qmax – mean rel. error 

RG 6 %  (26 %) 6 %  (26 %) 

MWL -12 %  (11 %) -9 %  (11 %) 

 

Runoff dynamics: The comparison of hydrographs revealed that MWL-based predictions 

capture the pipe flow temporal dynamics better than RG estimates (Table 3, Figure 5, 6). 

Similar to outflow volume and peak flow predictions, the MWL perform better than RG 

during periods of high flows, i.e. during heavy rainfall (Figure 4, 5, 6). This is because for 

heavy rainfall the lack of spatial information by RG accounts for a higher rate of uncertainty 

than the limited precision of particular rain rate estimates from particular MWL. In contrast, 

during light rainfall the limited precision of MWL causes relatively high scatter in flow 

estimates in comparison to those from RG (Figure 4). However, since the MWL estimates are 

less biased on average than RG estimates, the accuracy of both methods is comparable for 

light rainfall. (Figure 5, 6) 

 

 



 
Figure 3 Relative error for different peak flows (left) and outflow volumes (right) expressed 

in percent. 

 

 

 
Figure 4 Outflow dynamics for periods of heavy (left) and light rainfall (right). The limited 

precision of MWL causes high relative deviations in MWL estimates, especially during light 

rainfall. However, in contrast to RG, MWL reflect the rainfall spatial variability and thus 

capture better the outflow dynamics. 

 

Interestingly, the MWL perform better (considering NRMSE (6), CV(RMSE) (8) and 

correlation) when MWL hydrographs are shifted one minute backwards. On the other hand, 

the RG performs better when the RG series are not shifted or (considering CV(RMSE) (8)) 

when shifted one minute forward. This is probably caused by rainfalls coming from the east, 

where the density of the MWL is lower and rainfall reaches the RG first. In addition, the 

eastern part of the catchment has a high percentage of impervious areas, and since it is 

relatively close to the outfall of the catchment this influences the outflow dynamics 

considerably. However, a comparison of MWL and RG observations clearly shows that the 

MWL generally perform better than RG, despite temporal shifting. 

 

 

 

 

 

 

 

 



Table 3 Performance statistics of estimated flow course to the reference one. The average 

values of particular measures over entire events and realizations are shown. The standard 

deviation is given in brackets. 

Time shift [min]   -2 -1 0 1 2 

NMAE [%] 
RG 7.8 (5.8 ) 7.2 (6.1 ) 6.9 (6.3 ) 7 (6.5 ) 7.4 (6.5 ) 

MWL 5.5 (5.2 ) 4.9 (5.2 ) 4.8 (5.2 ) 5.2 (5 ) 6 (4.8 ) 

NRMSE [%] 
RG 13.9 (8.7 ) 12.8 (9.2 ) 12 (9.6 ) 11.9 (9.7 ) 12.4 (9.7 ) 

MWL 9 (7.9 ) 8.4 (8.1 ) 8.8 (8.2 ) 10.1 (7.8 ) 11.8 (7.5 ) 

CV(MSE) [%] 
RG 29.4 (16.1 ) 26.8 (16.9 ) 25.5 (17.8 ) 25.9 (18.1 ) 27.5 (18 ) 

MWL 20.5 (16.9 ) 18.3 (17.4 ) 17.7 (17.5 ) 19.4 (16.8 ) 22.8 (16 ) 

CV(RMSE) [%] 
RG 54.5 (29.9 ) 49.5 (30.1 ) 46.1 (30.4 ) 45.3 (29.9 ) 47.3 (29 ) 

MWL 34.9 (28.7 ) 32.2 (29.2 ) 33.6 (29.2 ) 39.1 (28.1 ) 46 (27.2 ) 

corr. [-] 
RG 0.931 (0.099) 0.939 (0.106) 0.942 (0.114) 0.94 (0.123) 0.933 (0.132) 

MWL 0.972 (0.064) 0.975 (0.065) 0.971 (0.067) 0.96 (0.069) 0.945 (0.073) 

 

 
 

Figure 5 NMAE (left) and NRMSE (right) for different peak flows expressed in percent. 

 

 

 
Figure 6 CV(MAE) (left) and CV(RMSE) (right) for different mean flows expressed in 

percent. 



 

Although we took great efforts to assess measurement uncertainties, our results do not yet 

include the effect of antenna wetting for the MWL observations because this is still subject to 

ongoing research (Schleiss 2013). Based on our current understanding of the phenomenon we 

can speculate that, on the one hand, antenna wetting might increase both systematic and 

random observation errors, especially during heavy rainfall. On the other hand, MWL 

networks are often extremely dense in urban areas, which should allow us to improve the 

accuracy of MWL observations by considering observations from many links, which should 

contain redundant information. 

 

CONCLUSION 

 

In our study, we found that better information from telecommunication microwave links on 

spatio-temporal rainfall variability has the potential to improve pipe flow predictions 

compared with those from RG observations. Our results show that, first, MWL rainfall 

reconstruction smoothes out the local maxima and minima due to the path-averaged 

observations. Interestingly, although MWL observations have this bias, we found, second, 

that they very well reproduce areal averaged rain rates. Third, they reproduce the runoff 

dynamics better than point RG measurements, which simply lack the spatial rainfall 

information. This is especially important for urban hydrological applications because the 

reliability of point measurements is especially low for heavy convective rainfall with its high 

spatial variability. Fourth, we find that runoff from MWL observations better reproduce the 

rising branch of the runoff hydrograph. This is because they can capture rain rates over the 

whole area of the catchment and thus better observe the onset of precipitation. Regarding 

urban drainage applications, this could greatly improve the real time control of drainage 

systems. In the future, the MWL could nicely complement existing RG point measurements 

with the missing spatial rainfall information. This could constitute an important contribution 

to improve discharge predictions through better input data and also improve the control of the 

discharges from urban areas. 
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