








exception of those at initial cell densities of 103 and 104 cells ml� 1

and initial substrate concentrations below 1 mg liter� 1and 0.1 mg
liter� 1, respectively, where we observed nearly no substrate utili-
zation.

Incubation experiments for kinetic parameter estimation.
Estimating parameters to describe Monod growth and substrate
utilization kinetics from experimental data is problematic due to
the potential colinearity of� max andKs (41). Other investigators
have demonstrated that optimal experimental conditions can be
established to limit the colinearity of� maxandKs, thus rendering
those parameters identi“able (42, 43). Optimal conditions are
based on ratios betweenthe initial cell and substrate concentra-
tions and the magnitude of� max and Ks. Because we had noa
priori knowledge of the magnitude of� maxandKs, we designed a
series of independent incubation experiments to obtain an opti-
mal data set for estimation of kinetic parameters. These experi-
ments were conducted at an initial cell density of 105 cells ml� 1

and at initial substrate concentrations between 1 and 50 mg liter� 1

to obtain substrate utilization and microbial growth data encom-
passing a wide range of ratios between initial cell densities and
substrate concentrations. We then selected the experimental con-
ditions that produced the lowest colinearity between� maxandKs

and highest identi“ability of all parameters based on an analysis of
Markov chain traces and pairs plots. The optimal data set for ki-
netic parameter estimation was identi“ed at an initial cell density
of 105 cells ml� 1 and initial substrate concentrations of 1 mg li-
ter� 1 and 10 mg liter� 1 in experiments with strains SRS16 and
KN65.2, respectively (see supplemental material for details). The
model “ts to the experimental data for the optimal data sets are
provided inFig. 3. The estimated parameter values and standard
deviations ofthe marginaldistributions are provided inTable 2.

Noteworthy are the magnitude of the estimates for� maxandKs

for each strain. The� max estimate for strain SRS16 (1.3 day� 1) is
six times lower than the estimate for strain KN65.2 (7.8 day� 1).
However, theKsestimate for strain SRS16 (0.0029 mM C or 0.06
mg liter� 1) is 2 orders of magnitude lower than the estimate for
strain KN65.2 (0.54 mM C or 10 mg liter� 1). Taken together, these
parameters suggest that while strain KN65.2 should utilize carbo-
furan more rapidly than strain SRS16 utilizes linuron at high con-
centrations, strain SRS16 should utilize linuron more rapidly than
strain KN65.2 utilizes carbofuran at low concentrations. These
insights are derived from the kinetic parameters estimated from a
single set of high-concentration experiments.

Simulations of substrate utilization at low concentrations.
We hypothesized that previously reported multiphasic kinetics
can be the result of a shift from single-substrate utilization to

FIG 2 The fraction of initial substrate concentration remaining after incubation periods of 3 and 28 days forVariovoraxsp. SRS16 with linuron (a and b) and
Novosphingobiumsp. KN65.2 with carbofuran (c and d).

FIG 3 Comparison of simulated data (solid black lines) with 90% con“dence
intervals (dotted gray lines) to measured substrate utilization (squares) and
microbial growth (triangles) forVariovoraxsp. SRS16 with linuron (a) and
Novosphingobiumsp. KN65.2 with carbofuran (b). Measured data are from
optimal data sets utilized for estimation of kinetic parameters used in all sim-
ulations.
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mixed-substrate utilization. Therefore, we expected that restrict-
ing AOC in our experimental system would eliminate observed
shifts in kinetics and enable extrapolation of kinetic parameters
from high-concentration to low-concentration conditions. To
test this hypothesis, we used the kinetic parameters reported in
Table 2 to simulate substrate utilization under the matrix of initial
conditions investigated in the low-concentration incubation ex-
periments. We then compared the measured and simulated data
for each set of initial conditions; fits of the raw data are presented
in Fig. S4 and S5 of the supplemental material. A plot of the sum of
the squared error (SSE) of the residuals measured between mea-
sured and simulated data are provided in Fig. 4 as a measure of
the goodness of fit. All data are presented in Fig. S4 and S5 as the
fraction of substrate remaining as a function of time so that the
magnitude of the SSE can be compared across all experiments,
regardless of initial substrate concentration.

Examination of Fig. S4 and S5 in the supplemental material
and of Fig. 4 reveals that the substrate utilization kinetics mea-
sured at high concentrations predict substrate utilization at lower
initial conditions well. In experiments with strain SRS16, rapid
linuron utilization resulted in a limited number of nonzero data
points to compare with the simulated data (see Fig. S5). Neverthe-
less, nearly all of the measured data (92%) fall within the 90%

confidence interval of the simulation, resulting in very low SSE
values for the full matrix of initial conditions (Fig. 4a). In experi-
ments with strain KN65.2, the bipartite behavior of observed sub-
strate utilization shown in Fig. 2d was likewise predicted from the
estimated substrate utilization kinetics; very slow utilization of
carbofuran is predicted at cell inoculum concentrations of 103 and
104 cells ml�1 and initial substrate concentrations below 1 mg
liter�1 and 0.1 mg liter�1, respectively. This confirms that the
bipartite behavior is solely a consequence of substrate utilization
kinetics and can be predicted with parameters estimated from
high-concentration experiments. In a few cases, measured carbo-
furan utilization was more rapid than predicted, resulting in
rather high SSE values and indicating a relatively poor perfor-
mance of the model under these few sets of initial conditions. In
these cases, the poor performance of the model was at the bound-
ary of the observed bipartite behavior (Fig. 4b). Because the model
accurately predicts the observed bipartite behavior of substrate
utilization, we attribute these errors at the boundary to uncer-
tainty in the estimated parameters, the magnitude of which deter-
mines the predicted boundary of the bipartite behavior. Overall,
77% of the measured data falls within the 90% confidence interval
of the simulation for strain KN65.2 utilizing carbofuran.

Our results demonstrate that parameters of substrate utiliza-
tion kinetics estimated at high concentrations can accurately pre-
dict substrate utilization at lower concentrations under AOC-re-
stricted conditions. Multiphasic kinetics were not observed. While
our data cannot disprove the existence of multiple, concentration-
dependent uptake and transformation systems in bacteria that
lead to observed shifts in substrate kinetics at low concentrations,
our data are consistent with our hypothesis that observed shifts in
kinetics could be the result of shifts from single-substrate utiliza-
tion to mixed-substrate utilization. Published data suggest that
shifts to mixed-substrate utilization can likewise result in shifts in
kinetics (18–20, 44).

Estimation of theoretical and experimental molar yield. We
also expected that restricting AOC in our experiments will enable
accurate and direct measurement of yield at environmentally rel-
evant concentrations for the first time. We estimated numeric
yields from the high- and low-concentration incubation experi-
ments (when final cell densities were significantly greater than initial
cell densities) according to equation 4. Restricting the AOC in our
experimental system enabled yield estimates for strains SRS16 and
KN65.2 at initial substrate concentrations as low as 0.1 and 0.03 mg

TABLE 2 Estimated and measured parameters for each strain

Parameter namea

Value for the strain (substrate)

SRS16
(linuron)

KN65.2
(carbofuran)

Estimated kinetic parameters
�max (day�1) 1.3 � 0.1 7.8 � 1.4
Ks (mM C) 0.0029 � 0.001 0.54 � 0.2
YC/C (mol of Ccells mol Csubstrate

�1) 0.08 � 0.01 0.39 � 0.01

XDW by substrate concentration
S0 � 50 mg liter�1 (10�13 g cell�1) 1.4 2.2
S0 � 10 mg liter�1 (10�13 g cell�1) 1.0 1.6
S0 � 1 mg liter�1 (10�13 g cell�1) 0.6 1.3

YC/C (mol of Ccells mol Csubstrate
�1)

Theoretical 0.39 0.41
Measured 0.06 � 0.01 0.42 � 0.07

a �max, the maximum specific growth rate; Ks, the half-saturation constant; YC/C, yield;
XDW, dry weight of cells.

FIG 4 Sum of the squared error (SSE) for the fits of the kinetics model to the low-concentration incubation experiment data for Variovorax sp. SRS16 with
linuron (a) and Novosphingobium sp. KN65.2 with carbofuran (b).
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liter�1, respectively. Numeric yield over the full range of initial sub-
strate concentrations is provided in Fig. 5. Numeric yield increased by
approximately 1 order of magnitude with decreasing initial substrate
concentrations for both strains. This increase in numeric yield, how-
ever, could be explained by a corresponding decrease in stationary-
phase cell size (XDW) with decreasing initial substrate concentrations;
it has previously been demonstrated that cellular composition and
cell size are directly related to growth rate and initial substrate con-
centration (45). We confirmed the changes in cellular composition
and cell size by measuring the XDW of stationary-phase cells for strains
SRS16 and KN65.2 following growth in 50 mg liter�1, 10 mg liter�1,
and 1 mg liter�1 of their respective pesticide substrates. Measured
values of XDW as a function of initial substrate concentration are re-
ported in Table 2. Using these measured values of XDW, molar yield
was calculated as described in Materials and Methods. Molar yield
over this range of substrate concentrations was found to be relatively
constant and is reported in Table 2 as the average molar yield �
standard deviation.

We also estimated the maximum theoretical molar yield of each
substrate by using the efficiency approach of McCarty (5, 32, 38, 39).
In this approach, it is assumed that yield is primarily dependent on
the degree of reductance of the carbon source substrate, the Gibbs
energy of formation of the carbon source substrate, and the Gibbs free
energy of the electron donor half-reaction. These parameters were
estimated for each substrate and are provided in Table 1 along with
the theoretical molar yield. The theoretical molar yield of growth on
carbofuran matches the measured molar yield for strain KN65.2.
However, the theoretical molar yield of growth on linuron predicts
significantly more growth than was measured for strain SRS16. There
are two likely explanations for this discrepancy. One is the formation
of recalcitrant metabolites that limit the amount of carbon and en-
ergy available for biomass formation though no recalcitrant metabo-
lites were detected in acquired UV and MS chromatograms. The
other is an overestimation of the theoretical molar yield due to incor-
rect assumptions for the magnitude of specific parameters (e.g., the
efficiency constant) in the thermodynamic efficiency approach (31).
More detailed analysis of the metabolite spectrum, biodegradation
pathway, or biomass composition would be required to resolve this
discrepancy. Nevertheless, our data show that strains SRS16 and
KN65.2 degrade their target pesticide substrates by means of growth-

linked processes even at low concentrations. The molar yields are
constant over large ranges of initial substrate concentrations; there
were no observed shifts to a nongrowth degradation regime.

Environmental relevance. It is clearly important to investigate
growth-linked biodegradation of trace pollutants at low, environ-
mentally relevant concentrations. Substrate utilization kinetics
and microbial growth yields are parameters of particular impor-
tance if one wishes to model pollutant removal through natural or
engineered remediation systems. However, previously reported
estimates of these parameters have limited utility because they are
generally estimated in experimental systems that have not consid-
ered the presence of contaminating AOC, which can have pro-
found effects on observed substrate utilization kinetics and
growth yields. The novel methodology presented in this work
makes estimates of these parameters under AOC-restricted con-
ditions for the first time. The parameters estimated herein and
presented in Table 2 can be used to predict substrate utilization
and strain growth under a variety of scenarios.

We acknowledge that working under AOC-restricted condi-
tions is a simplification of reality with respect to environmental
systems. However, this simplification was required to isolate the
specific metabolic processes we aimed to measure and to improve
our fundamental understanding of biodegradation processes at
low concentrations. Further, true models for the prediction of
substrate utilization under environmental conditions (i.e., low
substrate concentrations and in the presence of AOC and compet-
ing microbial flora) should incorporate separate measures of sub-
strate utilization kinetics on the target substrate (as presented
here) and on environmental AOC at environmentally relevant
concentrations. Future work will focus on elucidating these effects
of mixed-substrate availability and competing microbial flora on
target pesticide utilization, strain growth, and cellular yield.
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