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FIG. 3. Microscopic examination of the PS reactors. (A and B) SEM images from the top (depth, 1 m), showing patchy coverage of the seeding
material with amorphous calcite and bacteria (A), and the lower-middle section (4 m), showing a porous calcite-bacterium matrix covering the
entire surface of the seeding material (B). (C) Composite CLSM image (135 images) showing the presence of “lamentous bacteria (green) on the
surface of the calcium carbonate (blue). (D and E) SEM images from the bottom (6 m), showing large, smooth pellets (D), which, upon manual
fracturing, reveal the original sand grain surrounded by the amorphous calcite-bacterium matrix and “nally encrusted with a crystalline calciteykr
(E). (F) SEM image of pellet material originating from a edisturbance layerZ in a PS reactor, showing a calcareous bio“lm characterized by
extremely dense biomass of particularly long and/or “lamentous bacteria.

the software recognized progressively fewer bands (21 and 25, suggested high similarity between the different samples. The
respectively). However, this does not necessarily suggest lower Gini values (33) did not differ considerably between the sam-
diversity or a different community structure; the encapsulation  ples (values between 0.36 and 0.44), showing that the commu-
of bacteria in the calci“ed pellet matrix (Fig. 3D and E) pos- nity was moderately even throughout the reactor. The Rr val-
sibly restricted DNA extraction for molecular analysis. None-  ues ranged from 47 to 161, with the highest values calculated
theless, calculation of the evenness (Gini values) and range- for the upper half (depths of 1 to 4 m) of the reactor.
weighted richness (Rr) from the DGGE data (17) further The similarities of the communities at the different depths of
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FIG. 4. (A) DGGE and cluster analysis of the microbial commu-
nities from different depths in the PS reactor. Asterisks indicate that
the encapsulation of bacteria in the calcified pellet matrix hampered
DNA extraction from the 5-m and 6-m samples. (B) Pearson similar-
ities of the samples from the different depths to the sample from the
1st meter.

the reactor are not entirely surprising; although dynamic
changes occur through the reactor (Fig. 2), the sampling points
do not represent defined layers. Indeed, if the similarities of all
the samples are considered, an overall Pearson similarity of
almost 90% is found, which is very high. In fact, all pellets
progress gradually from the top of the reactor downward, and
bacteria are continuously and irreversibly captured in the cal-
cite matrix (Fig. 3E). This was also observed by determining
the similarities between the 1-m sample and the samples from
the other depths (Fig. 4B). Moreover, the high flow rates and
relatively small pH changes in the high-activity sections of the
reactor (0 to 5 m) mean that almost no specific stratification
can be expected in the PS reactor. Also, due to the high flow
rates, any suspended/detached bacteria from the lower sections
of the reactor are rapidly transported to the top, either alone
or attached to small, loose calcite flocs that could be seen in
the water phase (data not shown), thus initiating the coloniza-
tion of the newly introduced sand particles.

Functional contribution of bacteria in PS reactors. The
presence of a high biomass concentration in the PS reactors
has direct consequences for water quality and for the overall
performance of the treatment system. Previous analysis of
DOC and natural organic matter (NOM) fractions has re-
vealed that only a small amount of organic carbon (about 6%
of influent DOC; 315 pg/liter) is removed in a PS reactor and
that the removed DOC comprises all fractions identified in a
size exclusion chromatogram (1). Chen and coworkers (5) have
suggested that any organic carbon removal in PS reactors could
be attributed to abiotic coprecipitation with calcite, a plausible
event that has been described previously (20, 15) and that
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FIG. 5. Changes in organic carbon and microbial content of the
water due to the PS process. (A) Concentrations of assimilable and
dissolved organic carbon (AOC and DOC, respectively). (B) Intact
cells measured by flow cytometry and conventional heterotrophic plate
counts. Data points are mean values for triplicate samples taken on
three separate days. Error bars indicate standard deviations.

cannot be ruled out in the present study. However, analysis of
AOQOC concentrations before and after pellet softening shows
that a relatively large fraction (about 11%; 35 pg/liter) of the
DOC that was removed was in the form of AOC (Fig. 5A).
Importantly, this constitutes a removal of 60% of the AOC that
is produced during ozonation. Taking this finding together with
the presence of a large quantity of viable bacterial cells in the
reactor, which can persist and multiply only through the con-
tinuous consumption of significant quantities of biologically
available nutrients, one can assume that bacterial growth con-
tributes significantly to carbon removal in the PS reactors.
AOQOC has often been described as one of the essential param-
eters for ensuring the biological stability of drinking water (12,
26), and waterworks in the Netherlands typically aim at AOC
removal to levels below 10 pg/liter (26). In this respect, the
removal of more than 50% of the AOC is definitely comple-
mentary to the treatment process and contributes to the overall
goal of achieving biologically stable drinking water. In an over-
view of operation at a Dutch treatment plant using PS reactors,
Tapia et al. (24) discussed the alternative option of using abi-
otic nanofiltration instead of conventional PS reactors in the
future design of softening reactors. In this respect, it should be
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considered that AOC passes through nanofiltration mem-
branes (7), and even though this process is still followed by
BAC filtration in the treatment system, the BAC filters would
sustain an additional organic carbon burden, which might alter
operation performance and ultimately water quality. Further-
more, high concentrations of AOC may cause strong mem-
brane fouling, requiring more effort for process maintenance.

The majority of the biomass that is present on the pellets is
eventually captured completely in the calcite matrix (Fig. 3E)
and is removed as a reusable product (28). However, a small
fraction of bacteria (average from three samples, 0.6 X 10°
cells/ml) is also continuously detached and released from the
reactor, a process measurable as an increase in the concentra-
tion of intact cells after softening (Fig. 5B). This concentration
is similar to cell concentrations measured in the effluents of
conventional drinking water biofiltration systems (11, 12). Flow
cytometry suggests that the suspended/detached cells are large
cells, corresponding to the filamentous organisms seen on the
pellets (data not shown). The size of the cells may also be
indicative of fast exponential growth occurring in the PS reac-
tors. Also, a notable increase in the concentration of cultivable
bacteria in the reactor effluent was observed, although this
value was about an order of magnitude lower than the concen-
tration of intact cells (Fig. 5B). While there is no reason to view
these detached bacteria as malignant, their presence has to be
taken into account when downstream processes are considered
(e.g., potential impact on GAC filters or the need for post-
treatment disinfection). Moreover, it has been observed for
these reactors that operation at low temperatures (<5°C) often
resulted in considerable increases in the concentrations of cul-
tivable bacteria, probably ascribable to altered hydraulic con-
ditions (M. Dignum, unpublished data).

Potential problems with biomass in PS reactors. High bio-
mass concentrations in the PS reactors may also contribute to
unforeseen operational problems. Excessive filamentous
growth is a known problem in activated-sludge systems, result-
ing in bulking sludge and numerous well-described problems
with sludge settling (21). Disturbance layers, characterized by
fluffy, caulifiower-like CaCOj; particles and adverse reactor
behavior (e.g., reduced crystallization), have been detected
previously during routine sampling of PS reactors, requiring
intensive manual removal of the sludge/pellets (E. Baars, per-
sonal communication). Figure 3F shows a representative SEM
image of particles from such a layer, sampled from another
treatment plant in the Netherlands (Weesperkarspel; Amster-
dam), where the problem of disturbance layers in PS reactors
is known to occur. The presence of a large quantity of filamen-
tous bacteria and the absence of organized crystallization
structures are evident. While the specific role of bacteria in the
formation of these disturbance layers is not known, it is clear
that their presence contributes to the bulking nature of the
disturbance layer. Additional research on the microbiological
factors involved in the bulking phenomenon (e.g., community
composition and specific growth conditions) might aid in fu-
ture operation and control strategies.

Conclusions. We have shown that centralized drinking water
PS reactors, preceded by an oxidation step, are opportunisti-
cally colonized at high densities by a diverse bacterial commu-
nity. These organisms proliferate in the presence of highly
biodegradable nutrients in the water after ozonation, as soon
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as the pH in the water is neutralized as a result of calcite
crystallization. The colonizing bacteria contribute actively to
the drinking water treatment process by the removal of a con-
siderable amount of assimilable organic carbon, enhancing the
biological stability of the water. However, there is evidence to
suggest that excessive bacterial growth can contribute to the
establishment of problematic “disturbance layers” in PS reac-
tors. Finally, most of the biomass in normally operating PS
reactors is irreversibly captured in the calcite matrix and is
eventually removed from the reactors together with the pellets
as a reusable product.
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