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Abstract

This review describes and compares statistical failure models for water

distribution pipes in a systematic way and from a uni�ed perspective. The way

the comparison is structured provides the information needed by scientists and

practitioners to choose a suitable failure model for their speci�c needs.

The models are presented in a novel framework consisting of: 1) Clari�-

cation of model assumptions. The models originally formulated in di�erent

mathematical forms are all presented as failure rate. This enables to see dif-

ferences and similarities across the models. Furthermore, we present a new

conceptual failure rate that an optimal model would represent and to which

the failure rate of each model can be compared. 2) Speci�cation of the de-

tailed data assumptions required for unbiased model calibration covering the

structure and completeness of the data. 3) Presentation of the di�erent types

of probabilistic predictions available for each model.

Nine di�erent models and their variations or further developments are pre-

sented in this review. For every model an overview of its applications published

in scienti�c journals and the available software implementations is provided.

The uni�ed view provides guidance to model selection. Furthermore, the

model comparison presented herein enables to identify areas where further

research is needed.
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1. Introduction

1 1 Need for deterioration models

The structural condition of urban water distribution infrastructures is im-

portant for the continuity and quality of the water distribution services provided

by these systems. The �nancial investments needed for the rehabilitation,

adaptation, and expansion of existing urban water systems (incl. water treat-

ment as well as drainage and wastewater treatment) are estimated at 1% of

the annual GDP in the OECD member states, rehabilitation accounting for up

to half of the total needs (OECD, 2006).

Targeted research programs in e.g. Canada1, Australia2, the United States3,

and Europe4 also acknowledged the need for approaches to assess the dete-

rioration and failure development of urban water distribution networks. This

is because pipe deterioration may have a signi�cant impact on some of the

fundamental objectives of water distribution networks, e.g. reliability and con-

tinuity of service. It is important to be able to predict future deterioration in

order to determine the optimal amount and timing of the required rehabili-

tation e�orts. These are central inputs for technical asset management and

de�ning the long-term budgets. Knowledge about how the structural condi-

tion of pipes develops over time is key to designing and choosing replacement

and maintenance strategies.

A range of software has been proposed to support water supply infras-

tructure asset management based on pipe deterioration models (Burn et al.,

2003; Cardoso et al., 2012; Kleiner and Rajani, 2010; Le Gat, 2009; Renaud

et al., 2012; Saegrov, 2005). This allows, for example, comparing rehabilita-

tion strategies based on key performance indicators, such as \main failures" or

\water resources availability" (Alegre et al., 2006). Any rehabilitation strategy

can be de�ned by, for example, incorporating constraints such as budget or

1Several projects of the National Research Council Canada (http://www.nrc-cnrc.gc.

ca/eng/achievements/highlights/2008/aging_water_systems.html)
2Sustainable Asset Management Program developed by CSIRO (http://www.

webcitation.org/6UB8dXfP3)
3Aging Water Infrastructure Program of the US Environmental Protection Agency (http:

//www.webcitation.org/6UB8jPf2P) several projects of the Water Research Foundation

Asset Management (http://www.webcitation.org/6UB8nn7tE)
4European Union FP5 project CARE-W (http://www.webcitation.org/6UB8sNy2c)

several follow-up projects by di�erent funding agencies AWARE-P (http://www.

webcitation.org/6UB8xroUh) EU FP7 project i-TRUST (http://www.webcitation.org/

6UB9662Zn)
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work load, while the deterioration models should represent the deterioration

behavior of the pipes as realistically as possible.

Even though modeling the deterioration of water distribution and drainage

systems shares some challenges such as frequently incomplete data sets, its

modeling is di�erent due to the speci�c characteristics of each system and

to the unique characteristics of the available data. Water distribution system

data contain information about when events (e.g. pipe failures) occurred while

drainage system data usually provide information about the condition of the

pipes at the time of the inspection. Therefore we do not include statistical

sewer deterioration models into this review. In this review, only statistical

pipe failure models (as de�ned in the next subsection) developed for water

distribution systems are considered.

1 2 Aim of this review and models covered

The aim of this review is to describe and compare statistical pipe failure

models in a systematic way. This is intended to support practitioners and

scientists in choosing a suitable statistical pipe failure model to support pipe

rehabilitation and asset management decisions as well as to identify research

needs. Available reviews by Kleiner and Rajani (2001), Liu et al. (2012), and

to a very limited extent also Nishiyama and Filion (2013) and St. Clair and

Sinha (2012) (adding information regarding arti�cial neural networks and fuzzy

logic models) give a broad overview of statistical pipe failure models. These

reviews, however, do not provide the information needed for objective model

characterization, comparison and selection as recognized by Liu et al. (2012).

Instead, we discuss statistical pipe failure models from a novel uni�ed per-

spective consisting of: i) a clari�cation of the model assumptions independent

of how the models are expressed mathematically in the original publications

(Section 3.1), ii) a speci�cation of detailed data assumptions for model calibra-

tion covering the structure and completeness of the data (Section 3.2), and iii)

a presentation of the type of probabilistic predictions published (Section 3.3).

We further provide references to illustrative applications and available software

implementations as published in the literature. For the �rst point we math-

ematically reformulated the models to represent them by their failure rates.

We present a novel conceptual failure rate in Section 3.1 that includes all

desired properties to which the failure rates of the models can be compared

to. In the second point the often only implicitly assumed data characteristics

important for model calibration are discussed. The third point deals with the

presented predictions for each model as obtaining pipe failure predictions is
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usually the major motivation for using pipe failure models and the formulation

of appropriate predictive distributions requires care.

This paper is organised as follows: Section 2 describes the di�erent types

of pipe failure models; this section is important to underline why we have

focused the review on the statistical pipe failure models. A thorough expla-

nation of model properties is presented in Section 3, allowing the structure of

the model review presented in Section 4 to be understood. The core of this

review are Section 4 and Table 1; the models are critically discussed, focusing

on the following model properties: structure, calibration, predictions, further

developments, applications and software implementations. Section 5 contains

a discussion on how the review may assist model selection and potential for

future developments is identi�ed.

Readers interested only in the model properties and assumptions may want

to proceed directly with Section 4 and consult Table 1. Readers looking for

details, the structure of this review and the reasons for the proposed uni-

�ed perspective may also read the introductory sections of this paper (Sec-

tions 2 and 3).

2. Types of deterioration models

Deterioration models for water distribution systems can be di�erentiated

by at least three dimensions: the smallest described entity, the type of events

that are modeled, and the modeled process. The smallest entity dimension

relates to whether individual pipes (pipe models) or a pipe network (network

models) are described. A model can describe di�erent events: the occurrence

of failures (failure models) or the end of the life span (lifetime or lifespan mod-

els). Finally, models aim to represent di�erent processes, either by mimicking

physical processes (physically-based models) or by attempting to describe the

data generating process (statistical models). Any combination of these dimen-

sions is possible, although from the available literature, only a part of these

combinations is covered.

This three-dimension categorization (by entity, type of event, and process

modeled) di�ers from other reviews, which are mostly based on a model cat-

egorization originating from Kleiner and Rajani (2001) (cf. section 2.3). The

new categorization aims to avoid the following drawbacks of the Kleiner and

Rajani (2001) characterization: i) it is based on the mathematical formula-

tion of a model rather than on its underlying assumptions, ii) extensions with

covariates are relatively simple so that \single-variate" models can always be
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extended to \multi-variate models" and are not a model limitation per se as

discussed in Section 3.1, and iii) the \deterministic" category refers to statis-

tical regression models which, strictly speaking, are also \probabilistic".

2 1 Individual pipe vs network models

Many of the earlier models describe the failure rate of a complete network

(see Table 1 in Kleiner and Rajani, 2001). The network failure rate summarizes

the overall condition of a network and is therefore an important performance

indicator to assess the structural and operational condition (such as continuity

of service) of the whole system. Predicting directly how the failure rate of a

complete network changes is di�cult because technical management actions

are generally performed at pipe level. Furthermore, the age and material dis-

tributions of the pipe network change over time so that a simple extrapolation

of the failure rate is not adequate. To consider this, it is necessary to model

the behavior of the pipes individually. The system wide failure rate can then

be derived by aggregating the individual predictions. For this reason, we only

consider pipe-based deterioration models in further detail within this review.

2 2 Failure vs lifetime (or lifespan) models

Both the failure behavior and the lifespan of pipes depend on deterioration

processes. Models describing the lifespan are less exible than failure models

because the de�nition of a lifespan implies a combination of pipe deterioration

and the management strategy that de�nes when a pipe reaches the end of

its (e.g. economic, operational,...) life (Le Gat et al., 2013; Scholten et al.,

2013). The problem with lifespan models is that they do not assess pipe

deterioration, but rather when a pipe has been replaced in the past due to some

reason. This may often be due to other reasons than structural condition, e.g.

because of collaborative works with other infrastructure sectors or because of

the available budget to be spent within a prede�ned time period. Therefore, the

results of such models can neither be compared across networks nor are they

useful to assess di�erent future management strategies. Pipe failure models

do not have these limitations: the failure behavior is modeled in isolation,

which can then be combined with any management strategy. Assessing how

the number of pipe failures in a network evolves under di�erent management

strategies is one of the most important and practically relevant questions in

rehabilitation planning. As this requires pipe failure models, we only consider

these in this review.
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2 3 Statistical vs physically-based models

Pipe deterioration models either aim to model the occurrence of the result-

ing failures statistically or describe the physical deterioration processes (such

as corrosion) directly.

Statistical models and their historical development are extensively reviewed

in Kleiner and Rajani (2001). This review has been recently updated in a report

to US EPA (Liu et al., 2012). Kleiner and Rajani di�erentiate three model

categories: deterministic probabilistic multi-variate and probabilistic single-

variate. This is based on whether models accommodate input and parameter

uncertainties (if true: probabilistic, otherwise: deterministic) and whether sev-

eral inuencing covariates apart from pipe age are considered (if true: multi-

variate, otherwise: single-variate). Liu et al. (2012) have added the \type

of deterioration" to this di�erentiation, i.e. whether the condition is rated or

a breakage frequency calculated. Arti�cial intelligence models, such as arti�-

cial neuronal networks, are also statistical models as they can be considered

as highly exible non-linear regression models (with the di�erence that most

model assumptions cannot be expressed explicitly).

An extensive review of the physically-based models is given by Rajani and

Kleiner (2001), again with an update in Liu et al. (2012). These models often

require the (costly) acquisition of data on individual pipe and environmental

characteristics. This is generally only feasible for a few highly critical, large-

diameter transmission pipes, but not for the whole distribution network (Kleiner

and Rajani, 2001). For this reason, we limit the review to statistical models.

3. Properties of statistical pipe failure models

3 1 Formulating statistical pipe failure models

Statistical pipe failure models describe the occurrence of failures as a

stochastic process, as depicted in Figure 1. Mathematically it is not important

what a failure event represents. Often failures are de�ned as events that re-

quire an immediate action, such as pipe bursts. However, other de�nitions are

possible depending on the available data. Also, failures are not distinguished

by cause, i.e. failures due to deterioration of the pipe are treated similar to

failures due to external random e�ects. The mental model behind Figure 1

assumes that i) a pipe can fail anytime, ii) repair happens immediately after

a failure, and iii) pipe age and number of failures are unlimited. The �rst as-

sumption is evident; a pipe failure can occur whenever a pipe is in service. The
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Figure 2 Conceptual failure rate of a drinking water pipe Four e�ects are illustrated

i) increase due to installation failures ii) temporal increase after a failure because of the

stress of the repair iii) persistent increase after each failure because the repair permanently

weakened the structure iv) slow constant increase over time due to deterioration

For many technical systems, including drinking water pipes, \bath tub"-

shaped failure rates are often assumed (Kleiner and Rajani, 2001). The rate is

initially high due to stress and potential problems right after installation, e.g.

caused by low-quality joint welding. It decreases quickly and is followed by

a slow increase over time due to infrastructure deterioration. Since pipes are

repairable, the failure rate is probably more complex. Figure 2 shows a concep-

tual failure rate for water distribution pipes with four expected characteristics:

i) high failure rate at the beginning due to installation problems, ii) a sudden

failure rate increase after every failure because of the stress of the repair, iii)

a persistent increase after each failure because repairs weakened the structure

permanently, and iv) a slow constant increase over time due to deterioration of

the pipe. The spatial dependency of the failure rate on failures of other pipes

in the system is not represented in Figure 2, although it has been reported

(e.g. Kleiner and Rajani, 2001) that failures can trigger failures in neighboring

pipes due to, for example, sudden pressure changes in the system.

A model that represents all these features would be vastly complex and

the parameter estimation from failure data extremely challenging. Therefore,

all published models include simpli�cations, assuming a failure rate that repli-

cates only parts of the conceptual failure rate presented in Figure 2. General

statements on how severely such simpli�cations inuence the performance of

the models cannot be made in the absence of a full representation of the

conceptual model.

Every model|independent of its mathematical description|has a corre-

sponding representation of the failure rate. We consider a comparison of the

explicitly or implicitly assumed failure rate to be a good basis to discuss and

visualize di�erent model assumptions. The actual mathematical expression of
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the failure rate is not necessarily easy to interpret, especially for models orig-

inally not described by the failure rate. Therefore, a visual representation of

the failure rate for each model considered in this review is presented in Table 1.

The core assumptions, such as whether the failure rate depends on the number

of previous failures or on the pipe age, are also stated.

Model covariates

In this review we do not focus on what covariates are explicitly considered

in each model. This is mainly because any characteristics with su�ciently

complete records can be introduced as model covariates (also called covariables

or explanatory variables).

The selection of covariates is a complex task as it depends on the pre-

dictions of interest, data availability and its signi�cance in inuencing pipe

failure behavior. Finding relevant covariates is an iterative process as charac-

teristics considered relevant by the analyst or expert might not be adequately

represented in the data. Di�erent approaches have been used to determine

covariates, covering non-parametric estimators (Carri�on et al., 2010) and sta-

tistical tests (Fuchs-Hanusch et al., 2012; Kleiner and Rajani, 1999). The

result of a statistical test is only valid in the context of the (failure) model the

test was performed with. Cross-validation provides a more robust approach

to assess the predictive uncertainty for a given set of covariates (e.g. Harrell,

2001, chapter 5).

The extension of a model with covariates is relatively straightforward. Co-

variates are usually taken into account by means of linear predictors �T x, where

� is a vector of additional parameters and x is the vector of covariates. Qual-

itative covariates (such as material) are considered with the help of dummy

variables, see e.g. Montgomery et al. (2012).

The linear predictor can be incorporated into the model in di�erent ways.

One common way is the proportional hazards approach: the failure rate �i(t)

for pipe i with covariates xi is

�0(t) exp(�
T xi)

where the base failure rate �0(t) is de�ned by the model structure.5 If co-

variates are included with the proportional hazards approach, it is theoretically

5The parameters � can be estimated without de�ning the base failure rate �0(t) this is

known as a Cox regression (e g Harrell 2001 chapter 19) and is an important reason for the

popularity of proportional hazard models However to enable predictions of future failures

the base failure rate must be speci�ed
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appealing to include the logarithm of the pipe length as covariate in x. This re-

sults in the failure rate being directly scaled by the length li of a pipe segment,

i.e. �i(t) = �0(t) l
�
i
. If � = 1, then pipe segmentation has no inuence; for

example, the predicted number of failures is the same regardless of whether

the predictions are made for a pipe with length l or split into two pipes with

lengths l1 and l2 so that l1 + l2 = l .

3 2 Data requirements for calibration

All models have parameters that must be calibrated. In some cases, pa-

rameter values are available from other studies or experts are able to provide

estimates. In most situations, however, it is preferable to calibrate the model

with local failure data or data from national data bases (Grigg, 2009). The

maximum likelihood (ML) method and Bayesian inference are two commonly

applied approaches for data-based model calibration. The uncertainty of the

estimated parameters can be quanti�ed by both methods; Bayesian inference

results in the complete distribution of the parameters, whereas con�dence

intervals can be approximated for ML estimates.

Both approaches require the formulation of the likelihood function: that is

the conditional probability (density) of observing data D given a probabilistic

model with parameters �. It is often symbolized as p(Dj�) or L(�). The

formulation of the likelihood function is based on the model assumptions as

well as on assumptions about the data quality and completeness. The latter

point is particularly important, but sometimes overlooked. Pipe failure data

typically show one or more of the following characteristics (Scheidegger et al.,

2013):

� Right censored observations: As long as there are pipes in service,

data is right censored. It corresponds to the time from the last failure

or laying date to the time of observation.

� Left truncation: Left truncation occurs if a pipe was installed before

failures were systematically recorded. As a consequence, it is not known

how many failures occurred before the recording period and when (see

Figure 3, ii and iv).

� Absence of replaced pipe data: Information about replaced pipes is

often missing. Either because a pipe was replaced before data were

recorded, or a replaced pipe was deleted from the database together

with the corresponding pipe failure data because the database was es-

tablished with the objective of reecting the current state of the system.
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This leads to "survival selection" (Renaud et al ., 2011) due to the under-
representation of pipes with poor failure histories in the data set which 
have already been removed (visualized in Figure 3, iii and iv). 

These three characteristics result in the data situations depicted in Figure 3 . If 
present in the data, any of these characteristics must be considered explicitly in 
the likelihood function. Ignoring this leads to systematically biased estimations 
that cannot be corrected by increasing the amount of data (e.g. Scheidegger 
et al. , 2011). Thus, even under identical failure model assumptions, different 
likelihood functions must be derived depending on the data characteristics. 

Theoretically, the Ii ke Ii hood function can be de rived for any failure model 
and data situation. Practically, the mathematical expressions become elabo-
rate and may lead to challenging numerical problems. For th is reason Table l 
presents the data characteristics considered in the published likelihood func-
tions of the models. Note that, given a likelihood function, both Bayesian 
inference and ML estimation are possible for any model. Bayesian inference 
and ML are alternative approaches for model calibration and not a property of 
the model. 

left truncation ------.. 
i) I I 

I . ~ 
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I 

ii) I 0 

iii) 
., 

I ' 

~ 
I . 

iv) 

41> time 
no observations +-recording period___. 

FiCJure 3 Common data situations for mode! calibration R~ords are only available for the 
duration ofthe recordinCJ period (ween shaded) i) failures are r~orded since the pipe !ayinCJ 
date data of replaced pipes are available ii) only failures which occurred within the recordinCJ 
period are documented data of replaced pipes are available iii) failures are recorded since 
the !ayinCJ date data of replaced pipes are unavailable (red hatched) iv) only failures within 
the recordinCJ period are documented data of replaced pipes are unavailable 

3 3 Predictions 

Prediction of future pipe failures, or more precisely the future failure proba-
bility, is often the main motivation for the use of pipe failure models. Statistical 
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Figu re 4 Different condit ional and uncondit iona l predictions For the hatched orange t ime 
periods fa ilures should be predicted For the shaded green recording period fa il ure records 
are available 

pipe failure models t reat fa ilures as rea lizat ions of a random process. There-
fore. only probabilistic statements about unobserved (fut ure) failures can be 
made. Hence. every pred iction must be expressed as probability distribut ion. 
hereafte r referred to as predictive distribution. Th is distribution is usually 
summarized by stat ist ics such as mean or standard deviat ion. 

D ifferent questions require different pred ictive distributions. Figure 4 il-
lust rates five possible pred ictions of unobserved fa ilures. If no information 
about t he fa ilure history of a pipe is ava ilable. only unconditional pred ictions 
are possible (Figure 4. i and ii ). Uncondit ional pred ict ions are useful to com-
pare t he fa ilure behavior of different types of pipes . e.g. d ifferent materials 
and vintages. Mathematically. such a pred ictive probab ility d ist ri bu t i on for t he 
number of fa ilures N in an interva l I could be symbolized as 

Prob(N1). 

It is common t hat some informat ion of t he pipe fa ilure history is available. Th is 
shou ld t hen be considered in t he pred ictive distribution (Figure 4. iii-v). We 
denote t his as conditional pred iction. Cond it ional pred ictions are req uired to 
imulate how an existing pipe (or system) evo lves over t ime. If HJ represents t he 
known fa ii u re history of a pipe wit hin t he observat ion i nterva I J. t he pred ictive 
probability distribution of N1 is t he cond it ional d istribution 

Prob(N1 I HJ) = Prob(N1• HJ)/Prob(HJ). 

If t he pred ictions are formulated different ly. for example as t he distribution of 
t he t ime to t he next fa ilure. t he equations above must be rewritten correspond-
ing ly. However . t he distinct ion between condit ional and uncondit ional pred ic-
t ions st ill ho lds. Some models are based on t he assumpt ion t hat t he probability 
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for failures is independent of the failure history, i.e. Prob(NI j HJ) = Prob(NI).

Hence, in this situation conditional and unconditional predictions are identical.

Unconditional predictions are usually rather simple to formulate or to simu-

late with Monte Carlo procedures. The often more relevant conditional predic-

tion can be cumbersome (although theoretically possible) to derive. Generally,

the predictions become more complex the more the failure rate depends on the

failure history of a pipe. For every model in this review, the kind of predictions

described in the publications as analytic equations or Monte Carlo procedure

are listed in Table 1.

4. Published models

The main properties of the reviewed statistical pipe failure models are sum-

marized in Table 1, using the de�nitions presented in Section 3. For every

model the failure rate � is presented (sometimes slightly simpli�ed to facilitate

comparisons). The following notation is used throughout this section: pipe

age is denoted by t, the pipe age at the ith failure by ti with the convention

t0 = 0, the number of failures occurred before t by n(t), and the kth model

parameter as �k . A visualization of each failure rate can be found in Table 1.

Additional clari�cations for each model are given when necessary, followed

by a description of applications and software availability.

Eisenbeis (1994)

Model structure This model is based on the assumption of Weibull-distributed

inter-arrival times between failures and can be expressed as failure rate

�(t; tn; n) =


�1 (t)

�1�1 ; n(t) = 0

�2
(
t � tn(t)

)�2�1 ; 1 � n(t) < 4

�3
(
t � tn(t)

)�3�1 ; 4 � n(t)

Three di�erent Weibull distributions are calibrated: for the time to the

�rst failure, inter-arrival times up to the fourth failure, and the inter-

arrival times of all following failures. Pipe properties and external condi-

tions are considered by means of a proportional hazards approach. The

e�ect of past failures is represented by an additional binary covariate

stating whether any failure has occurred within 15 years since a previous

failure.
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The failure rate goes back to zero after each failure, hence implying that

stress due to repairs is not modeled. Furthermore, continuous deterio-

ration of the pipe cannot be considered.

Further developments The model is described in English in Eisenbeis et al.

(1999), where the \number of previous failures" is incorporated as a

covariate. Also, a detailed description of a Monte Carlo procedure for

deriving the predictions by simulation is given. It takes explicitly into

account that the number of previous failures varies in the course of the

simulation. Another slight modi�cation is described in Le Gat and Eisen-

beis (2000). There, only a single Weibull distribution is estimated for all

inter-arrival times. The problem of left-truncated data is discussed with

the ad-hoc proposition of including a covariate that represents the age

at the last known failure, if any, and otherwise the age at the beginning

of observation period.

Model applications Of all models considered in this review, the model by

Eisenbeis (1994) and its adaptations is perhaps the one with the largest

number of reported applications (e.g. Alvisi and Franchini, 2010; Le Gat

and Eisenbeis, 2000; Lei and S�grov, 1998; Martins et al., 2013; Pelletier

et al., 2003). The network sizes in the applications range from 155 to

1 243 km. All model applications use the pipe installation period or year

as a model covariate.

Software The model by Eisenbeis et al. (1999) is implemented in CARE-W-

PHM (Eisenbeis et al., 2002).

Gustafson and Clancy (1999)

Model structure This model is described as a Semi-Markov Process. Sepa-

rate generalized Gamma distributions were calibrated to model the time

between failures of di�erent failure order. Then, statistical tests were

performed to investigate whether the calibrated distributions are sta-

tistically di�erent from exponential distributions. Although statistically

signi�cant di�erences were found, the authors have chosen to model all

inter-arrival times after the �rst failures by means of exponential distri-

butions:

�(t; n) =


�1�2 (�2t)

�1�1 ; n(t) = 0

�n(t)+2; 1 � n(t) < 10

�13; 11 � n(t)
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The use of exponential distributions simpli�es the implementation; how-

ever, no additional details are provided.

Exponential distributions result in a constant failure rate and hence can-

not model deterioration over time. Still the model is quite exible be-

cause separate rates up to the 11th failure are estimated, which requires

a large data set.

Calibration Gustafson and Clancy (1999) state that the predicted number of

failures is unrealistically high with an \immediate and sustained increase

of 50% [. . . ] when compared to the previous �ve years." For compar-

ison, a simpler model based only on exponential distributions was also

calibrated, with a predicted increase of failures of only 20%. This di�er-

ence is surprising, as the second model is a special case of the original

model structure. The result may be explained by the reduction of the

parameter uncertainty due to the smaller number of parameters of the

simpli�ed model.

Model applications This model was applied to at least two pipe systems in

Canada; one of the systems is described in the paper that proposes the

model, and the other is presented by Osman and Bainbridge (2011).

In the �rst application pipe and failure data sets are not fully described

but it is noteworthy that the �rst failure record dates back to 1958. In

the second application the pipe and pipe failure data sets are also not

described in detail, though the authors mention that the data used are

left-truncated and right censored.

Software The distributions of the time between failures were estimated using

the SAS LIFEREG procedure (SAS Institute, 1990).

Pelletier (2000)

Model structure In the paper proposing this model di�erent combinations

of Weibull-Exponential models were investigated. The most complex

model assumes two independent Weibull distributions for the time to the

�rst failures and inter-arrival time to the second failures, an exponential

distribution for the inter-arrival time to the third failures, and another

exponential distribution for all following inter-arrival times:

�(t; tn; n) =


�1�2 (�2t)

�1�1 ; n(t) = 0

�3�4 (�4(t � t1))
�3�1 ; n(t) = 1

�5; n(t) = 2

�6; n(t) � 3
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Maximum likelihood ratio tests were performed to compare the models.

A shorter publication in English is available as well (Mailhot et al., 2000).

The model structure is somewhat similar to Gustafson and Clancy (1999)

but simpler and hence with fewer parameters to estimate which may be

advantageous for smaller data sets.

Calibration data This publication is probably the earliest in explicitly dis-

cussing the problem of left-truncated data in a rigorously mathematical

way and in which a correct likelihood function for such data is derived.

Model applications Mailhot et al. (2000), Pelletier et al. (2003), Alvisi and

Franchini (2010) and Toumbou et al. (2014) applied the model to �ve

systems. The �rst two studies used the Chicoutimi (Canada) system,

which has also been used in the application of the Eisenbeis (1994)

model (e.g. Pelletier et al., 2003). The lengths of four of the �ve sys-

tems studied is shorter than 352 km. The study presented by Alvisi and

Franchini (2010) applies the model to a large water distribution network

with approximately 2 400 km of pipes.

R�stum (2000)

Model structure The model proposed by R�stum (2000) is based on the

assumptions that the failure rate increases with the age of the pipe.

The applied failure rate

�(t) = �1�2t
�2�1

corresponds to the Weibull distribution and covariates are included via

a proportional hazards approach. This failure rate describes a non-

homogeneous Poisson process (NHPP). An attractive feature of NHPP

models is that the distribution of the number of failures in an interval

can be expressed analytically (e.g. Cook and Lawless, 2010).

The main limitation of NHPP models is that while deterioration is rep-

resented, the inuence of previous failures on the failure rate cannot be

modeled.

Calibration A Poisson process is memoryless by de�nition, i.e. the failure rate

is not inuenced by the number of previous failures. This simpli�es

the calibration because left-truncated data do not require a di�erent

likelihood function.
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Predictions Similarly, due to the memoryless property, all conditional predic-

tions are mathematically identical to unconditional predictions.

Further developments Kleiner and Rajani (2010) and Economou et al. (2012)

are modi�cations of the model of R�stum (2000). To discuss the impli-

cations of the modi�cations in detail, these models are separately pre-

sented in this review.

Model applications R�stum (2000) has applied this model to the 808 km long

water distribution system of the city of Trondheim, Norway. The details

of the water distribution system are well described in terms of earliest

and latest installed pipe, total number of failures and earliest and latest

recorded failure. The covariates used to demonstrate the applicability

of the model were the logarithm of pipe length, the pipe diameter, time

between construction, the start of failure recording and the logarithm of

the number of previous failures.

Software The model by R�stum (2000) is implemented in CARE-W-NHPP

(\Winroc", Eisenbeis et al., 2002; S�grov et al., 2003) and PARMS

(Burn et al., 2003).

Watson et al (2004)

Model structure The model is formulated as a homogeneous Poisson process,

hence the failure rate

� = �1

is a constant. This is the simplest possible model structure which is likely

to be inadequate for most data sets.

Calibration Bayesian inference to calibrate the rate parameters is proposed.

The posterior distribution is derived analytically for a gamma distributed

prior for the failure rate. An extension for a hierarchical Bayesian model

is discussed but no details are provided.

Predictions As a homogeneous Poisson process is memoryless, the conditional

predictions are identical to the unconditional ones, hence the model can

not make use of information about the failure history of a pipe.

Model applications No application with real data is known. Watson et al.

(2004) demonstrated the model with arti�cially generated data.
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Economou et al (2008)

Model structure This model can be seen as an extension of R�stum (2000).

While the used failure rate

�(t) = �1t
�1�1

is similar, zero-ination is modeled additionally and for every pipe, three

individual parameters are introduced (referred to as random e�ects). As

a result, in total 3n + 3 parameters have to be estimated, with n being

the number of pipes in the calibration data. These parameters cannot be

identi�ed from the data alone; Bayesian inference with an informative

prior distribution is required. Given the very large number of parame-

ters, it can be expected that the inuence of the prior distribution is

considerable. Unfortunately, the selection of the prior distribution is not

discussed and the chosen values appear somewhat arbitrary. Moreover,

the authors do not elaborate much on why three random e�ects per pipe

are required and no tests are presented to establish whether these are

bene�cial for the prediction. The zero ination models a system in which

some pipes fail according to a Poisson process while other pipes do not

fail at all. As a result, the distribution of the number of failures of a pipe

in a given interval is a mixture of a Poisson distribution and a probability

mass for zero failures.

The failure rate of the Poisson process reects the deterioration of pipes.

However, it is very di�cult to reason about how the zero-ination e�ects

the failure rate, especially as the probability that a pipe can fail depends

on the age and other covariates. Furthermore, the presented equation

how the zero-ination is combined with the failure model is erroneous

or at least unclear: the expressed likelihood function seems to contain

random variables (not the probability density of random variables).

Predictions Similar to the model of R�stum (2000), the conditional predic-

tions reduce to unconditional predictions. However, a slight complication

is that the probability that a pipe can fail is implemented as a function of

covariates including the \age at the end of the observation period", as-

suming that older pipes are more likely to fail. It is not mentioned in the

description of the Monte Carlo procedure used for predictions whether

this age covariate is changed within the prediction horizon (as in future

the pipe will be older).

Model applications Application of this model has been reported in at least

two publications (Economou et al., 2012; Kleiner and Rajani, 2012).
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The systems are relatively small, i.e. less than 1 500 pipes (approximately

150 km pipe length for the case study presented in Kleiner and Rajani

(2012)), located in the USA, New Zealand and Canada. The pipe and

pipe failure data sets are reasonably described. Contrary to the most

common covariate used in the other models applications, installation year

or period have not been used in this model applications. Other model

covariates such as pipe length, diameter, maximum absolute pressure

and pressure change were included.

Software The model was implemented in WinBUGS (Lunn et al., 2000) a

software to perform Bayesian inference in an automated way.

Le Gat (2009)

Model structure The model is based on an extension of the Yule process

(Athreya and Ney, 2004) which enables the likelihood functions and pre-

dictive distributions to be expressed analytically as negative binomial

distributions.

The model structure can simultaneously capture the deterioration of

pipes representing an increase of the failure rate after each failure:

�(t; n) = (1 + �1n(t)) �2t
�2�1

Le Gat (2009) provides a complete description of the model which can be

seen as the gold standard for model documentation. Recently, a shorter

description of the model has been published in English in Le Gat (2014).

Calibration data Likelihood functions for di�erent data characteristics are de-

rived. The problem of survival selection is discussed and a model exten-

sion to correct for it proposed. It is based on the assumption that the

probability of a pipe not to be replaced after a failure is a function of

pipe age.

Model applications This model has been applied to several real cases (e.g.

Claudio et al., 2014; Le Gat, 2014; Martins et al., 2013). The length of

the water distribution systems used to demonstrate the applicability of

the models range from 367 to 3 081 km. Similar to other applications,

the water distribution systems are not fully described in terms of earliest

installed pipe, latest installed pipe, total number of failures and earliest

failure record. The covariates used in all three applications of the model
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are the logarithm of pipe length and the pipe diameter. Except in Mar-

tins et al. (2013), additional pipe characteristics such as pipe location,

bedding conditions, connection type, and climate data were used.

Software This model has been implemented in at least two software packages:

Casses (Renaud et al., 2012)6 and AWARE-P (Cardoso et al., 2012)7.

Kleiner and Rajani (2010)

Model structure The model is very similar to the one of R�stum (2000). It

is presented as a non-homogeneous Poisson process (NHPP), but di�ers

slightly in the assumption that the failure rate is piece-wise constant with

a step size of one year:

�(t) = �1btc
�2

The main innovation is that Kleiner and Rajani (2010) introduced \time-

dependent covariates" to account for seasonal inuences on pipe breaks.

If the model is interpreted as NHPP, only deterioration is considered.

This is not the case if the number of previous failures enters the model

as covariate. However, as discussed in the next paragraph that is a

violation of the NHPP assumptions.

Calibration The problem of left truncation is recognized but mathematically

not treated in a formal way. Instead, a covariate representing the \num-

ber of known previous failures" is introduced. This variable is classi�ed

as \pipe and time-dependent", which suggests that the failure rate is

regarded by the authors as a function of age and the number of previous

failures, �(t; n). In this case, however, in contrast to the introduction

of Kleiner and Rajani (2010) the model is not memoryless anymore and

hence does not describe a Poisson process (compare e.g. Cook and Law-

less, 2010, chapter 2.2).

Predictions As a result of including the \number of known previous failures"

the standard equations for NHPP models must not be applied to com-

pute predictions. This complicates the computation of predictive dis-

tributions so that, for example, a Monte Carlo procedure similar to the

one proposed by Eisenbeis et al. (1999) would be necessary. However, a

discussion of this problem is missing in Kleiner and Rajani (2010).

6http://casses.irstea.fr/en/ archived http://www.webcitation.org/6UB9CZ6bw
7http://www.aware-p.org/ archived http://www.webcitation.org/6UB8xroUh
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Note, that the other time-dependent covariates, such as a freezing index,

do not contradict the Poisson process assumptions. They are included

to describe the climate inuences. While \climate-related covariates

can be used to train the model on observed historical breaks but not to

forecast" (Kleiner et al., 2010), they may prevent unusual climate events

from inuencing the failure rate estimation and make the parameter

estimates more comparable between di�erent systems.

Further developments Kleiner and Rajani (2010) also present an extension

of the model to account for zero-ination. It is similar to the approach

proposed by Economou et al. (2008), with the di�erence that no random

e�ects are estimated for individual pipes.

Model applications Three water distribution systems were used to test this

model. One of the systems was presented in the original paper (i.e.

Kleiner and Rajani, 2010), and two other applications were presented

by Kleiner et al. (2010) and (Osman and Bainbridge, 2011). The �rst

two model applications were performed in a small system, 1 091 pipes

representing 146.6 km of network and 490 pipes representing 66 km of

pipe network. The third application was conducted using a system with

more than 30 320 pipes. The covariates used were pipe material, pipe

length, diameter, installation data and climate data.

Software I-WARP (Kleiner and Rajani, 2010). An earlier, multi-variate expo-

nential pipe failure time model by Kleiner and Rajani (2004) is the basis

for I-WARP s predecessor D-WARP.

Scheidegger et al (2013)

Model structure This is a model based on the assumptions that the time

to the �rst failure can be modeled as Weibull distribution and all the

subsequent times between failures with one exponential distribution. The

corresponding failure rate is

�(t; n) =

{
�1�2 (�2t)

�1�1 ; n(t) = 0

�3; n(t) � 1

These are strong assumptions resulting in an inexible failure rate that

cannot represent deterioration over time and is only partly inuenced by

the previous failures. However, these simpli�cations reduce the number

of parameters and hence facilitate the elicitation of prior distributions

which may be important for small data sets.
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Calibration The model was presented to exemplify a general blueprint on

how the likelihood function of any failure model can be adapted to data

lacking the information on replaced pipes so as to avoid survival selection

bias (see Section 3.2). This is achieved by combining the failure model

with a replacement model that encapsulates the assumptions of the past

replacement activities. This approach is similar to the one by Le Gat

(2014), but the probability of a pipe not being replaced depends on the

number of previous failures and not directly on the pipe age.

Predictions Scheidegger et al. (2013) presents the equations for predictions

of type i{vi (illustrated in Figure 4). The conditional predictions of type v

are described in the appendix of Scholten et al. (2014).

Model applications This model was demonstrated in Scheidegger et al. (2013)

using data of a part of the water distribution system of Lausanne,

Switzerland, consisting of about 3 000 pipe segments. Scholten et al.

(2014) applied the model to four mid-size to small Swiss water utilities

(60{715 km) with data a�ected by left truncation and selective survival

to support long-term asset management and also discussed practical

limitations.

Software The model is implemented in R (R Development Core Team, 2012)

and freely available on request.

5. Discussion

This paper presents a review of state-of-the-art statistical pipe failure mod-

els as de�ned in Section 2. Focusing on this class of deterioration models en-

ables a more detailed comparison based on three intuitive but often neglected

points: i) clari�cation of model assumptions; ii) description of the assumed

data characteristics; and iii) presentation of the formulated probabilistic pre-

dictions. The main contribution of this review is that the di�erent models are

presented in a comparable way. This involves reformulating all models as failure

rates and making implicit assumptions about data structures and predictions

transparent.

This systematic approach provides guidance in selecting a suitable model

for a given data situation and desired type of prediction. For example, assume

a water utility with data characterized by a short observation window and no

records of replaced pipes (i.e. left-censoring and selective survival, see Figure 3-

iv). The aim is to predict the future number of failures of the pipes. The failure
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histories for these pipes is partly known and should be considered (prediction

type iv in Fig. 4). In this case, Table 1 shows that all required equations or

Monte Carlo procedures are only available for two models: Le Gat (2009) and

Scheidegger et al. (2013). If instead, the data situation was described by case

ii in Figure 4 (left truncation, no selective survival), the models of Pelletier

(2000), Watson et al. (2004), and Economou et al. (2008) could also be

correctly calibrated. The respective functions for a type iv-prediction would

still need to be derived in the case of the Pelletier (2000) model.

To further discriminate between these models, the description of the failure

rate can be considered as it quickly reveals the fundamental model assump-

tions, such as pipe deterioration or the inuence of the number of failures.

We derived the failure rate for every model in order to enable a comparison

among the di�erently mathematically formulated models. For example, the

failure rate of the model by Gustafson and Clancy (1999) o�ers higher ex-

ibility regarding the representation of subsequent failures than the models of

Scheidegger et al. (2013) or Pelletier (2000). But the later models require

fewer parameters to be estimated and could be the better choice in situations

of small networks with only a few pipe records (Scholten et al., 2014).

The uncertainty of the prediction is inuenced by various factors such

as the model assumptions, the amount of calibration data, the qualitative

characteristics of the data, the fraction of pipes with observed failures, and

how much relevant information is contained in the covariates. Due to this

complexity, simple statements on \how much data" a certain model requires

are not valid. Model selection is about �nding a compromise between model

exibility and the number of parameters that is adequate for a given data set.

The comparison of the models presented in this review was not a straight-

forward task. This was partly because some of the important references are

not available in English, and partly because all model assumptions are not

always mathematically clearly de�ned, which makes a full understanding and

replication of the models di�cult. Furthermore, the model predictions are fre-

quently neglected or poorly documented in the available publications. This is

surprising as predictions are the main motivation to apply a pipe failure model.

For all models we briey described their applications as published in scien-

ti�c journals. The data of the pipe systems studied are not always completely

characterized; for example, it is often unclear if the data are left truncated or

if data of replaced pipes are included or not. It is therefore not possible to

corroborate what kind of data most of studied networks have and whether the

available models are adequate.
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The review also identi�ed potential for model improvements. New research

could be conducted in two main directions: i) Making existing models more

widely applicable by deriving additional likelihood functions and predictive dis-

tributions. Table 1 shows many opportunities in this direction; especially exten-

sions to avoid survival selection bias do not yet exist for most of the reviewed

models and conditional predictions for more complex models are often miss-

ing. ii) Developing new models (or extending existing ones) to mimic failure

behavior more realistically. The conceptual failure rate presented in Figure 2

gives some guidance. Furthermore, one aspect that is not yet addressed by

any model is the spatial dependency of failures, i.e. the increased chance of

failures of pipes located in the vicinity of failed pipes.

A major hindrance for practical application is a lack of easy-to-use software

tools for model calibration and failure prediction. The information regarding

the capabilities of the di�erent software is patchy and the model structure, data

assumptions, and possible predictions are often not clearly stated. However,

even the most user-friendly software requires an at least intuitive understanding

of the underlying model to judge how trustworthy the obtained results are.

Developing good strategies for water distribution and other urban water

infrastructures is crucial to ensure long-term service reliability and good quality.

Pipe failure models alone cannot provide the solution but are de�nitely a key

part of it.

6. Conclusions

� Pipe failure models have a signi�cant advantage when compared to pipe

life span models because the failure behavior is modeled independent of

management decisions.

� Left-truncation and survival selection are common characteristics of the

data available in urban water utilities. However, these characteristics

are not taken into account by all models. Di�erent characteristics of

the calibration data require di�erently formulated likelihood functions,

i.e. models shall be selected or developed based on the given data char-

acteristics.

� For many failure models presented in this review the equations or meth-

ods to compute pipe failure predictions are sparsely documented; this is

especially true for conditional predictions.
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� Most of the available pipe failure models consider either an increase of

the failure rate with pipe age or the failure rate is inuenced by the

previous pipe failures. From the models herein reviewed, there is not a

single model structure that appears superior.

� The selection of the most adequate pipe failure model needs to be guided

taking into account the following points: (i) the appropriate likelihood

function should be selected based on the data characteristics; (ii) the

model predictions should match the initial questions, and (iii) the as-

sumption of the failure rate should be in agreement with the experience

of the operator.

� Although there is a relatively large number of pipe failure models available

there is still room for further development. One of the features the re-

viewed models still do not account for is the potential spatial dependency

of failures|a problem frequently reported by urban water distribution

network managers.
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Table 1: Important propert ies of statist ica l pipe fa ilure models. The mathematica l dependencies of the fa ilure rate>- are shown with t 
denoting the pi pe age, t; the age at the ith fa ilure. and n the number of previous fa il ures. D ifferent colors in the g raphica l representat ion 
of the fa ilure rate sepa rate parts with independent parameterizat ion 

"' "' c "J 0 c ·;::; "' "' " ::J c 

E "' a. "' "' "' ~ " ... 
"' -1= ro ·;:: 

·;::; "' ... > "' "' 0 
Publication ~ Failure rate a. u Calibration (cf. Fig . 3) Predictions {cf. Fig . 4) "' 

i) ii) iii) iv) i) ii) iii) iv) v) 

Eisenbeis { 1994) time >.(t . t11 .n) t 1 ~ 4~~ - ./ ./ - - - ./t ./t 

Gustafson and Clancy { 1999) time >.(t .n) i Ln rIT[ . - ./ ./ - - - ./ ./ ./ 

w Pelletier {2000) time >.(t . t11 .n) l4£ll .ll • - - ./ ./ - - ./ ./ 
....... 

I .~ Jc l;err:: R~stum {2000) count >.( t) - ./ ./ ./. - - ./ ./ ./. ./. ./. 

Watson et al. {2004) count >.(-) I lc I II ,(! • - - ./ ./. - - ./ ./. ./. ./. ./. 

Economou et al. {2008) count >.(t) § I .~ Jc 1r .~ ,l • - ./ ./ ./. - - ./ ./ ./. ./. ./. 

Le Gat {2009) count >.(t .n) hv=rll .~ J. • - ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 

Kleiner and Rajani {20 10) count >.(t) §II I 1e *~ * .. - ./ ./• II - - - ./ ./•II ./• II ./•II ./•II 

Scheidegger et al. {20 13) time >.(t .n) ~ 4. ,I. u .~ ,I. • - ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ 

• Not mentioned in the publication . However. the conditional predictions reduce mathematically to the unconditional predictions. Similarly. left-
truncation of the data has no influence on the calibration . 

t Based on the modification according to Eisenbeis et al. { 1999) . 
i Referring to the more complex model in the f irst part of the publication . 
§ Failure rate without influence of the zero-inflation. 
II Only if based on the interpretation as Poisson model. 
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