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Abstract: Considerable uncertainty exists regarding the ability of reach-scale habitat restorations to promote
ecological integrity and affect community composition in degraded streams and rivers and the time scales at
which these effects take place. Restoration of habitats on the reach scale (hundreds of meters to a few kilometers)
is expected to support threatened species because many of them are habitat specialists. In contrast, generalist
species are predicted to be replaced in restored reaches. We used a large data set for 62 reach-scale restoration
projects in 51 stream systems in Germany, Switzerland, and Liechtenstein and analyzed the changes in fish
community composition induced by the restorations in terms of species richness, species turnover, Brillouin
diversity index, total fish abundance, and proportion of alien and endangered species. We further analyzed the
temporal dynamics of the fish community recovery over a period of 19 y postrestoration. Species richness and
Brillouin diversity index increased in most of the restoration projects (66 and 57%, respectively), but recovery
to historical reference conditions was not achieved. Total abundance was enhanced by most of the projects. Spe-
cies composition in restored reaches underwent directed shifts for at least 10 y, with high and variable species
turnover in the first years that decreased over time. The effects of restoration on Brillouin diversity index were
highly variable in the first few years after restoration, but tended to increase over time. These dynamics must be
considered more carefully in future protocols for evaluating restoration results, and final evaluation of restoration
outcomes on fish communities should not be made too early. Our results indicate that reach-scale habitat res-
torations may be a suitable tool for increasing local fish abundance and slightly enhancing species diversity. How-
ever, more targeted approaches are needed to support threatened species and repress alien species.
Key words: meta-analysis, recolonization, stream, rehabilitation, success, failure, abundance, species diversity,
species richness, endangered, invasive, evaluation

Over the last 3 decades, an increasing number of reach-
scale river-restoration projects have been carried out to re-
store degraded rivers to more natural conditions (Bern-
hardt et al. 2005, Wohl et al. 2005). In the earlier phase of
river restoration almost no monitoring of outcomes was
done (Kondolf 1995, Bernhardt et al. 2005), but in recent
years, an increasing number of case studies have been pub-
lished (Alexander and Allan 2007, Comoglio et al. 2007,
Nagle 2007, Baldigo et al. 2010, Buchanan et al. 2012). How-
ever, integration of these results is still rudimentary, and
therefore, considerable uncertainty remains about the ef-
ficacy of river habitat restorations for achieving ecologi-
cally defined goals. In Germany (as throughout the Euro-

pean Union) and Switzerland, revised legislation requires
restoration measures to increase the ecological quality of
water bodies (Commission of the European Communities
2007, Schweizer Bundesamt für Umwelt 2009). This legis-
lation will increase future investment in restoration proj-
ects. Therefore, information on the ecological benefits and
limitations of restoration techniques for entire fish commu-
nities and for individual species is highly relevant and will
help to improve future restoration programs.

Some studies affirm that defined hydromorphological
goals (e.g., more heterogeneous flow pattern, natural river
course and bed structures) commonly are achieved follow-
ing restoration (Palmer et al. 2010, Jähnig et al. 2011, Stoll
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et al. 2013). More recently, indicators of ecological suc-
cess have been developed to measure the benefits of resto-
ration for biota (Woolsey et al. 2007). However, the met-
rics of ecological success used differed markedly among
studies. This inconsistency makes it difficult to gain an
overall picture of the benefits and limitations of river res-
torations in supporting natural species diversity. Never-
theless, the common tenor of many of these studies is that
biological responses lag behind expectations (Roni et al.
2008, Palmer et al. 2010, Sundermann et al. 2011, Haase
et al. 2013). The effectiveness of techniques is expected
to vary along the stream continuum (Thomas 2014).

The timing of the evaluation may be particularly crucial
for obtaining a reliable and comparable evaluation out-
come. If the evaluation is made too early, slowly dispersing
species may not have had the chance to colonize newly
created habitats. On the other hand, if evaluation takes
place too late, some newly created habitat features may
have degraded again, especially when the scale of the res-
toration is much smaller than the scale of the actual envi-
ronmental problem (Weigel et al. 2003). Lake et al. (2007)
differentiated 4 general pathways of recovery following
restoration and argued that recovery might be character-
ized by succession in species colonization rather than
a straight line to a stable endpoint. Initial colonization
relies on the dispersal abilities of stream fishes and is
expected to vary considerably among species. Albanese
et al. (2009) found that the speed of recolonization by fish
species of abandoned stream sections was explained by
the mobility of species. In the phase after initial coloniza-
tion, basic ecological theory predicts that pioneer species
will be replaced by species with good competitive abilities
(Spieles 2010). Repeated sampling is preferable for analyz-
ing the dynamics of restoration outcomes. However, only a
few authors apply this time-consuming and expensive sam-
pling scheme, so analysis of a large number of restoration
projects, each sampled at a different point in time after
the restoration work, may provide insight into the dynam-
ics of species and community recovery in restored river
reaches.Meta-analyses of large numbers of restoration proj-
ects also are useful for drawing general conclusions about
the success of different restoration practices and guiding
future restoration practice (Nagle 2007, Bernhardt and
Palmer 2011).

Only a few attempts to summarize findings on the eco-
logical outcomes of river-restoration projects have been
published. Baldigo et al. (2010) analyzed the responses of
fish communities to restorations that aimed to restore a
natural channel design and found that overall community
richness, diversity, and biomass increased as an effect of
restoration at 4 of 6 sites, but that different species reacted
differently. In contrast, Pretty et al. (2003) found no signifi-
cant effects of addition of in-stream structures on fish spe-
cies richness, abundance, or species composition in a study

of 13 restoration projects. Roni (2003) also found limited
effects on fish densities in a study of the response of ben-
thic fish to the addition of large woody debris (LWD) in
29 North American rivers. Similar results were obtained by
Kail et al. (2007), who assessed 50 river-restoration proj-
ects in Austria and Germany involving the addition of
LWD. In the study by Kail et al. (2007), ecological outcomes
lagged behind expectations, especially when compared with
natural stream sections with an intact LWD regime. After
analyzing a set of 18 restoration projects that used a wide
range of restoration techniques, Stoll et al. (2013) found
only marginal improvements in the fish communities. They
attributed this lack of effect to limited dispersal capacities
of fish and impoverished surrounding species pools from
which restored river reaches could be colonized. A number
of investigators focused on the effects of restorations on
individual species or groups of fish, typically species that are
interesting for anglers. For example, salmonids react posi-
tively in terms of abundance and biomass to the addition of
artificial instream structures (Schlosser 1987, Stewart et al.
2009, Whiteway et al. 2010). The effects were visible mainly
in smaller streams, where river health was good (Stewart
et al. 2009). Lorenz et al. (2013) found that restorations have
positive effects on population recruitment of already estab-
lished species even though only few new species colonized
restored reaches. Hence, the results of these meta-analyses
are partly contradictory. As long as the focus of studies is on
the response of limited sets of fish species (e.g., salmonids
only) or on the effects of single restoration techniques (e.g.,
addition of LWD), generalization of the results will remain
difficult.

First, we analyzed the reaction of entire fish communi-
ties based on species richness, abundance, and diversity
to a wide range of restoration projects. From a conserva-
tionist’s point of view, the proportion of endangered and
alien species is of interest. Whether restorations are a suit-
able means to promote endangered fish species and to
confine nonnative fish species is under debate (Kennard
et al. 2005, Loo et al. 2009, Korsu et al. 2010). Second, we
generated an overview of how the 46 most common fish
species in Central Europe responded to restorations in-
dividually and summarized their response to restorations
based on ecological species traits. Third, we assessed the
temporal dynamics of the colonization process after the
restoration work. To carry out those analyses, we gathered
fish community data from 62 restoration projects and un-
restored control reaches from Central Europe. Those proj-
ects represent typical stream habitat-restoration projects
at the reach scale that aim to improve the general ecologi-
cal quality of stream reaches. The projects were typical of
central European restorations that have the goals of con-
serving and enhancing ecological diversity in general, in-
stead of a single flagship species. Some restoration tech-
niques are based on removal of artificial constructions (e.g.,
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for bank stabilization) to allow riverine self-organizing
dynamics rather than on construction of static artificial
habitats. Therefore, we excluded projects that focused on
the reestablishment of connectivity because the resulting
effects on fish species and communities are not related
to changes in habitat quality but rather to facilitation of
dispersal (Bond and Lake 2003, Doyle et al. 2005). The
knowledge gained in such multirestoration data analyses
provides insight into the potential of reach-scale river-
restoration projects to support individual species and lo-
cal fish communities. This insight enables more target-
oriented planning of restoration projects and helps prevent
costly failures in reaching restoration aims.

METHODS
Sampling sites

Projects used in our study contained both restora-
tions and rehabilitations. Restoration is defined as the
re-establishment of structure, functioning, diversity, and
dynamics to historic reference conditions, whereas reha-
bilitation seeks to repair ecological processes and to in-
crease ecosystem productivity as rapidly as possible (Aron-
son et al. 1993). The 2 terms have slightly differentmeanings,
but we use restoration in our study because it is more com-
monly used for any efforts to bring rivers back to a more
natural state.

We analyzed 62 reach-scale river-restoration projects
in 51 streams and rivers in Germany, Switzerland, and
Liechtenstein. Sites were distributed over an altitudinal
gradient ranging from slow-flowing rivers in the German
lowlands (minimum altitude = 7 m asl) to streams in the
pre-alpine regions of Switzerland (maximum altitude =
572 m asl). The median was 285 m asl. The 39 German
projects were in the central federal states of Bavaria, Hesse,
North Rhine-Westphalia, Saxony-Anhalt, Lower Saxony,
Schleswig-Holstein, and Rhineland-Palatinate. In Switzer-
land, most of the 21 projects were situated north of the
alpine mountain range, but one project was on the south-
ern side of the Alps in the Po drainage. Two projects were
in Liechtenstein. Most of the projects (80%) were carried
out in lower-order rivers with stream widths <15 m, but
the data set also included some projects from larger rivers
with widths up to 117 m (median = 7.0 m). All projects
were attempts to enhance the naturalness of rivers and
streams by creating diverse habitats to facilitate a more
natural and diverse freshwater fauna. Some projects also
were attempts to recreate longitudinal and lateral connec-
tivity. These goals were addressed with a variety of individ-
ual techniques (Fig. 1), and in most projects, several meth-
ods (3.6 ± 1.8 [SD]) were used.

The length of the restored sections ranged between
100 and 12,000 m (median = 700 m). In the long re-
stored reaches in particular, individual restoration tech-

niques might have been realized only in sections rather
than the entire stretch. Therefore, the restored net length
might be shorter than indicated. The projects were un-
dertaken between 1990 and 2009, but most were done
after 1999. Outcomes were evaluated 1 to 19 y after con-
struction. Half of all projects were evaluated <4 y post con-
struction. In 9 projects, the effect of restorations on fish
communities was assessed with a before–after restoration
comparison approach. In the remaining 53 projects, an
impact–control approach was applied based on fish data
from the restored and nearby unrestored reaches from the
same river. In all 62 projects, changes in the fish commu-
nity were evaluated with species presence–absence data.
Additional data on fish abundance were available for 57
projects. Fish abundance data were comparable between
the restored and unrestored control reach within projects,
but not among projects because sampling effort and pro-
cedure differed among projects. For example, some stretches
were sampled with 1 electrofishing run, whereas others had
up to 3 repeated runs per stretch.

Sampling protocols differed between Germany and Swit-
zerland/Liechtenstein. Fish communities in Germany were
sampled based on a standardized protocol compliant with
the European Water Framework Directive (Diekmann et al.
2005). Sampling took place in August and September 2007
and 2008. The sampling was described in detail by Stoll
et al. (2013). Fish data from Switzerland and Liechtenstein
were provided by the cantonal administrations (environ-
mental, fisheries, and hydroengineering departments) upon
email request. Our request stated explicitly that all reports
would be of interest, regardless of whether the project was
considered successful or not. In return, the anonymity of
project data was guaranteed to the cantons. Some additional
data sets were extracted from scientific works, such as
diploma theses and reports. Therefore, sampling protocols
(sampling stretch, number of repeated electrofishing runs
and season, when sampling took place) sometimes varied
among projects. We used only relative numbers (percent-
ages, ratios) resulting from a direct comparison between
pairs of control and restored sites in our analyses. Therefore,
differences in the efficiency of samplings between projects
can largely be neglected. Seasonal differences in sampling
dates might affect data from systems inhabited by migratory
species. The number of migratory species in the Swiss rivers
was very low, so we consider the effect of those inconsis-
tencies as justifiable and small enough to permit us to ana-
lyze all projects together.

Data analysis
We organized data with a common data sheet that sum-

marized relevant data on: 1) stream characteristics, 2) res-
toration method, 3) sampling protocol, and 4) species
presence, or if available, abundance data at the restored
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and control reaches. We assessed the length of the re-
stored section, river width at the restored section, catch-
ment area upstream of the restored section, and altitude
as stream characteristics. We differentiated 16 individual
restoration methods. On average, 3.6 of these methods
were applied in each restoration (range: 1–9; Fig. 1). In
the section on sampling protocols, we recorded whether
restored reaches were sampled in a before–after restora-
tion design or a restored and unrestored control reach
were sampled simultaneously. We also recorded the time
between implementation of the restoration and the sam-
pling. Species abundance data from the restored and con-
trol reaches were standardized to a sampling area of 1 ha.

We used information on the threat status of each spe-
cies from the Red List of Freshwater Fish Species of
Germany and Switzerland (Bless et al. 1998, Kirchhofer
et al. 2007), which are local adaptations of the International
Union for Conservation of Nature (IUCN) red list, to calcu-
late the change in abundance of endangered species. Data
were applied for each country separately (Liechtenstein ac-
cording to the Swiss red list). We grouped the 3 highest
threat classes (nearly extinct, highly endangered, endan-
gered) as endangered, and we did not consider extinct spe-
cies. We assigned species that were potentially endangered

to the group of not endangered fish. In Germany and
Switzerland, 27 and 11 species, respectively, were defined
as endangered. We calculated the proportion of endan-
gered species in total fish abundance for restored and con-
trol sections.

We defined the following fish species as alien to Ger-
man and Swiss streams: Pseudorasbora parva,Micropterus
salmoides, Leuciscus idus (ornamental form), Oncorhyn-
chus mykiss, and all species belonging to the genus Lepo-
mis (mostly Lepomis gibbosus). Sander lucioperca was also
considered as alien in the study streams because none of
the catchments lay within the natural distribution range
of this species (Kottelat and Freyhof 2007). Other species
may have been alien to individual subcatchments where
they did not occur naturally. However, such small-scale
range expansions did not qualify for classification as an
alien species because reliable historic references of occur-
rence were not available for all 46 species in the 51 streams.

We computed a suite of 6 metrics to evaluate the suc-
cess of the restoration projects. These metrics evaluate the
composition of local fish communities. Such metrics are
commonly used in the analysis of river-restoration assess-
ments (Weber and Peter 2011). These compositional met-
rics were: species richness at the restored reach, species

Figure 1. Overview of the frequency of restoration techniques realized (multiple techniques per project).
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turnover as a result of restoration, change in total fish
abundance, change in species diversity, and changes in the
proportions of endangered and alien species. We stan-
dardized abundance data to 1 ha of area sampled to cal-
culate the difference in total fish abundance between
restored and unrestored conditions. Species richness was
the total number of species found, regardless of abun-
dance. We calculated change in species richness as the
difference in species numbers between restored and unre-
stored control reaches. We calculated species turnover as
the sum of all species that either disappeared or newly
appeared at a restored reach compared to the unrestored
control. We used the Brillouin Index to calculate fish di-
versity based on abundance data standardized to sampling
area. This index is suitable for electrofishing data because
it is not sensitive to differences in sampling efficiency
among methods (Pelz and Luebbers 1998). We were able
to examine shifts in species diversity only in the 50 proj-
ects that provided abundance data and had >1 species
present in both restored and unrestored control reaches.

We compared the number of projects for which these
6 metrics increased or decreased as a result of the res-
torations. To compensate for random fluctuations in total
fish abundance and diversity, we defined a threshold value
of 10% change, which is a typical threshold for identifying
effects, e.g., in ecotoxicology (Shieh et al. 2001). We classi-
fied metrics for which changes were <10% as unchanged.
We classified metrics for which changes were >10% as
increased or decreased. For alien and endangered species
richness, we used the same threshold (10%) to identify
differences in species composition.

We carried out statistical analyses using R software
(version 3.1.2; R Project for Statistical Computing, Vienna,
Austria). We used general linear models to identify the
characteristics of the restoration project that affected res-
toration success or failure for fish communities. Response
metrics for fish communities included change in total fish
abundance, change in species number, species turnover,
and change in the Brillouin Index. We used altitude, re-
stored reach length, time since restoration, river width,
and catchment size as independent variables. Models were
stepwise backward selected until the minimum Akaike In-
formation Criterion (AIC) was reached. Significant rela-
tionships detected by the general linear models were fur-
ther analyzed with quantile regression with the focus on
temporal dynamics in restoration outcomes (Cade and
Noon 2003). Quantile regressions are useful for wedge-
shaped data distributions with unequal variation (Kail et al.
2012).

We used a Mantel test to assess whether increases or
decreases in the abundances of individual fish species were
related to individual restoration methods (Oksanen et al.
2013). Absolute values of changes in abundance (increases
and decreases) were ln(x + 1)-transformed. We used the

function vegdist to calculate Euclidean distance matrices
for restoration methods and changes in fish communities.
Significance was assessed using 999 permutations. In a 2nd

approach, we used redundancy analysis (RDA) to examine
whether observed changes in fish community composition
were related to the restoration methods applied. Signifi-
cance was assessed using 999 permutations.

We used the net colonization rate to characterize the
reaction of individual species to restorations. First, we com-
pared the percentage of newly colonized reaches across all
restoration projects to the number of reaches in which a
species was already present at unrestored reaches. Second,
we grouped species by their functional traits, as defined by
Grenouillet and Schmidt-Kloiber (2006) for European fresh-
water species. We chose only traits that are logically linked
to habitat alterations resulting from restoration: habitat
preference, velocity preference, feeding habitat, and repro-
ductive habitat. We assessed functional trait response on
the basis of absence/presence and abundance. We summed
the number of species per project with the defined trait over
all projects and calculated the proportion that responded
for each functional group of fishes. We compared the re-
sults for each functional group to the mean response of all
species in all projects to visualize response trends by func-
tional characteristics of species.

RESULTS
Community response

No significant relationship was detected between the
restoration methods used in the individual projects and
changes in abundances of individual fish species (Mantel
test: R = –0.12, p = 0.95; permutation test following RDA:
df = 15, F305 = 1.17, p = 0.12; Fig. S1). Total fish abun-
dance increased in 58% of all projects (Fig. 2A). In 29% of
the projects, fish abundance decreased in restored reaches
relative to unrestored control reaches. Restoration-related
changes in abundance were greater in high- than in low-
elevation rivers (Table 1).

Species richness was greater in restored (9.4 ± 5.5 [SD])
than in unrestored control reaches (7.9 ± 5.7) (paired t-test:
t61 = 4.3, p < 0.001). Species richness increased after res-
toration in 66.1% of all projects (Fig. 2B). In 9 projects
(12.9%), fewer species were detected in restored than in
unrestored control reaches. In 19.4% of projects, species
richness did not differ between restored and unrestored
control reaches. The increase in species richness at a re-
stored reach was positively related to the width of the re-
stored reach and upstream catchment area, and species
richness at restored reaches was greater in lowland than
in upland rivers (Table 1).

Species turnover in restored reaches was >30% of all spe-
cies present in unrestored control conditions in 71% of the
restoration projects. In most projects, the restored reach

Volume 34 September 2015 | 979



lost 1 or 2 species and gained 1 to 5 new species (Fig. 2C).
Species turnover and the age of the restoration in years
were inversely related (Table 1). Results of quantile re-
gression (based on medians) and least-square regression
(based on means) relating species turnover (ST) to the age
of the restoration (t) were similar (quantile regression: ST =
5.27 – 0.27t; least-square regression: ST = 5.20 – 0.26t, n =
62, R2 = 0.12, p = 0.006; Fig. 3A). Quantile regression fur-
ther revealed that the variability in species turnover was
particularly high in the first years after restoration (Fig. 3C).
Slopes were stable and similar to the least-square regres-
sion slope over large central parts of the quantile range
(Fig. 3A, E). In ∼5% of projects, no species turnover oc-
curred. Species turnover increased with the width of the
restored reach (Table 1).

Species diversity, expressed by the Brillouin Index,
showed a similar pattern to species richness. A large frac-
tion of projects showed an increase in diversity (57%),
whereas 28% showed reduced diversity. In 15% of projects,
no change in diversity was observed (Fig. 2D). Overall, fish

species diversity was greater in restored than in unrestored
control reaches (paired t-test: df = 49, t = 2.6, p = 0.013).
The change in fish species diversity (ΔDiv), expressed as
the difference in Brillouin index between unrestored and
restored control reaches, increased with the age of the res-
toration (Table 1). Results of the 2 regression approaches
relating ΔDiv to the age of the restoration were very similar
(quantile regression: ΔDiv = –0.05 + 0.05t; least-squares
regression: C = –0.02 + 0.05t, n = 50, R2 = 0.08, p = 0.049;
Fig. 3B). Quantile regression showed that the change in
species diversity was particularly variable in the first years
after the restoration (Fig. 3D), when positive and negative
effects on species diversity were recorded equally often.
However, positive effects dominated with increasing age
of the restoration (Fig. 3B, F). ΔDiv increased with catch-
ment size (Table 1).

The 2 measures for functional subgroups (changes in
the proportion of endangered and alien species) showed
no overall trend with restoration. The proportion of
alien species remained stable in 96.8% of the projects

Figure 2. Percent change in total fish abundance (A), species richness (B), species composition (species turnover) (C), species diver
sity (Brillouin Index) (D), proportion of alien species (E), and proportion of endangered species (F) in response to habitat restoration.
See text for details of calculation of metrics. Black bars indicate a trait shift in the desired direction, gray bars indicate unchanged con
ditions, and light gray bars indicate an undesirable response to restoration.
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(threshold = ±10%). An increase in alien species was ob-
served in 1 project, and a decrease was observed on 1 other
project (Fig. 2E). Endangered species were more variable
(Fig. 2F) because more species were in this category. In most
projects (63.0%), the abundance of endangered species re-
mained almost unchanged. The number of projects in
which endangered species abundance increased (22.2%) was
slightly higher than those in which it decreased (14.8%). The
proportion of endangered species that increased was greater
in wider rivers. Changes in alien species were unrelated to
stream characteristics (Table 1).

To summarize restoration effects at the community
level, positive effects were observed for 3 of 5 metrics:
species richness, abundance, and species diversity. Species
turnover (metric 6) is neutral and cannot indicate whether
an outcome is positive or negative. Of the 50 projects for
which species richness, total abundance, and species di-
versity were calculated, 15 (30%) showed an increase in all

3 categories. No restoration project showed a decrease in
all 3 categories.

Individual species responses
Forty-six fish species were found over all projects com-

bined (Fig. 4). The 7 most abundant fish species that oc-
curred in ≥½ of all projects were: Salmo trutta m. fario,
Squalius cephalus, Gobio gobio, Barbatula barbatula, Cot-
tus gobio, Rutilus rutilus, and Gasterosteus aculeatus. Al-
most half of all species (19) were rare and occurred in
≤5 projects.

Of the 21 species that occurred in ≥10 projects, 12 in-
creased in abundance in ≥60% of the projects. These species
included Abramis brama, Alburnus alburnus, B. barbatula,
Barbus barbus,C. gobio, Leuciscus leuciscus, Phoxinus phox-
inus, P. parva, S. trutta m. fario, S. lucioperca, S. cephalus,
and Thymallus thymallus (Fig. 4). The species that most

Figure 3. Quantile regression of median and linear regression of mean species turnover (A) and change in fish species diversity (B)
as a function of the age of the restoration, and variation in intercepts (C, D) and slopes (E, F) for species turnover (C, E) and species
diversity (D, F) regressions across the quantile ranges. Gray lines indicate regression lines for the quantiles τ = 0.05, 0.25, 0.75,
and 0.95. Black lines and gray area give quantile estimates ± 95% confidence intervals, solid and hatched lines give least square esti
mates ± SE.
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frequently declined in abundance was Anguilla anguilla,
which declined in 59% of projects, followed by Tinca tinca,
which declined in 55% of projects.

Six of the species that occurred in ≥10 restoration proj-
ects showed high colonization abilities with a positive net
colonization rate >20%: A. alburnus, A. brama, G. acu-
leatus, L. leuciscus, S. lucioperca, and T. thymallus (Fig. 4).
Three species showed a negative colonization balance and

vanished from more projects than they colonized. These
were: Esox lucius, Gymnocephalus cernuus, and T. tinca.
In summary, A. alburnus, L. leuciscus, S. lucioperca, and
T. thymallus benefited most from river restorations be-
cause they were most able to colonize restored reaches and
to increase their abundance at sites where they had previ-
ously occurred. However, in some projects, these species
vanished or decreased in abundance.

Figure 4. Changes in the occurrence and abundance of individual species in response to habitat restoration. The number of proj
ects showing abundance might be smaller than for occurrence because abundance data were not available for all projects.
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Within the groups of functional traits, habitat prefer-
ence showed the most distinctive response to habitat res-
toration (Fig. 5A, B). Compared to the overall mean, pelagic
fish responded most positively in terms of occurrence and
abundance. Fishes with pelagic–benthic habitat preferences
showed only a slight improvement, and demersal fish in-
creased in occurrence and abundance. Potamodromous

fish decreased in abundance. The response within other
functional groups was less pronounced. The occurrence of
species with a phytophilic preference for reproductive hab-
itat was polarized response with either disappearance or
colonization events. Lithophilic species increased slightly
in abundance, indicating that restoration improved breed-
ing conditions in the interstitial zone.

Figure 5. Changes in abundance (A) and occurrence (B) of fish grouped by functional traits in response to habitat restoration.
Black and gray lines refer to the reference values of the mean fish response over all projects (bars labeled “mean total”). Bracketed
numbers on the x axes indicate the sum of all species with the described trait over all projects.
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DISCUSSION
Community response to river restoration

Our analyses documented differences in fish commu-
nity metrics, such as species richness, species diversity,
and abundance resulting from river restorations. Most res-
toration projects featured a slight increase in species rich-
ness and diversity and a more pronounced increase in
abundance. This general increase in fish abundance can
arise by attraction of individuals to the restored habitats,
increased survival, or enhanced recruitment success con-
sequent to improved conditions (Gowan and Fausch 1996,
Lorenz et al. 2013). Whiteway et al. (2010) analyzed sal-
monid responses in 211 habitat-restoration projects and
found that abundance was enhanced significantly in 73%
of projects. However, even though positive tendencies
were visible in most projects, fish declined in richness,
diversity, or abundance in some restored reaches com-
pared to unrestored control reaches. Lorenz et al. (2013)
showed that most of the increase in abundance was achieved
by young-of-the-year fish, a result pointing to enhanced
reproduction at restored reaches, whereas abundances of
adult fish changed little. Furthermore, how far-reaching
the observed changes were and to what extent natural fish
composition was re-established by restoration techniques
was unclear (Lorenz et al. 2013). Studies of a subgroup of
restoration projects analyzed in our study revealed that
fish communities regained natural reference condition in
none of these projects (Haase et al. 2013, Stoll et al. 2013,
2014). Thus, the perceived success of restorations depends
markedly on the endpoint against which success is eval-
uated (Jähnig et al. 2011).

Whether invasive species, which usually are habitat
generalists (Marvier et al. 2004), can be pushed back by
the restoration of structure-rich habitats that are more suit-
able for more specialized, native species is a matter of de-
bate. Our results suggest that reach-scale river restoration
is not a promising way to confine alien fish species. This
conclusion is in line with that of Eros (2007), who found
that nonnative species distribution was unrelated to habitat
degradation when he analyzed fish species composition on
a network scale at 158 sites in Hungarian streams. Likewise,
we found no indication that alien species particularly bene-
fited from river restorations. This finding is positive given
contrasting predictions that restorations can act as distur-
bances in impaired environments and have the potential to
promote alien freshwater fauna, at least in the initial phase
(Kennard et al. 2005, Loo et al. 2009, Korsu et al. 2010).

Endangered fish showed much greater variation in re-
sponse following restorations than alien species, but be-
cause the number of projects where endangered species
were supported was only slightly higher than those in
which they declined, we cannot conclude that restoration
in general is beneficial for endangered species. Published
literature reporting that river restoration successfully sup-
ports threatened freshwater fish species mostly originates

from tailor-made restoration approaches, where constructed
habitats were focused on the specific needs of these species,
e.g., construction of riffle and pool sequences and cover
habitats for a number of salmonid species (Bartz et al. 2006,
Katz et al. 2007, Floyd et al. 2009). To strengthen endan-
gered fish species sustainably, restoration and conservation
efforts must be broadened over larger spatial scales than
individual reaches to match the scale of the variables and
processes that threaten these species in the first place (Labbe
and Fausch 2000).

Community dynamics during recolonization phase
Our analysis revealed temporal dynamics for the met-

rics of fish community changes that were elicited by res-
toration. In the initial phase, high species turnover was
observed. Species turnover declined and species richness
remained constant with increasing age of the restorations,
but changes in species diversity were more persistent and
increased with the age of the restorations. Thus, after a
few years, new species no longer colonize restored reaches,
but the relative proportions of species present continue to
change toward greater community evenness, which is re-
flected by increasing diversity indices (Stirling and Wilsey
2001). Restoration projects often are only the starting point
for further ecological processes and habitat changes that
continue to alter habitat for many years, e.g., after riparian
reforestation. Acuña et al. (2013) estimated that 10 y are
needed for restored riparian zones to begin providing dead
wood to the stream channel. Therefore, we can expect
species to adapt to habitat conditions that vary over time.
Greater habitat complexity should increase species rich-
ness, and in consequence, foodweb complexity is expected
to increase (Woodward and Hildrew 2002), which will al-
low more competitive species to persist in an environment
of increased competition for resources.

Our finding that high species turnover was limited to
the first years after restoration and then declined toward 0
allows another, more pessimistic view of the sustainability
of the restored ecological processes. Initial change followed
by reconvergence to the species composition of unrestored
conditions might indicate that reach-scale restoration activ-
ities initially succeed in re-activating dynamic processes, but
the initial benefit is lost within a few years because these
processes typically are disturbed on a much larger spatial
scale than the reach (Mayer and Rietkerk 2004). For ex-
ample, reach-scale restorations might succeed in creating
loose gravel beds that facilitate gravel-spawning fish re-
cruitment for a couple of years, but if sediment input is
not stopped at the catchment scale, these gravel beds will
re-clog, leading to reduced success of gravel-spawning fish
(Zeh and Donni 1994). With sparse data on older resto-
rations, inferences on the long-term fate of restorations
are equivocal, and we cannot conclusively identify which
background process is causal for the reconvergence to the
prerestoration species composition.

Volume 34 September 2015 | 985



In addition to the processes within restored reaches,
the longitudinal connectivity of the entire stream system
will influence recovery potential. Jansson et al. (2007) em-
phasized the role of free connectivity for the recovery pro-
cess, especially when the dispersal abilities of species are
limited. A study on fish kills after severe bushfires in Aus-
tralia revealed that headwaters with a lower degree of
cross-linking took longer to recover than did better cross-
linked stretches further downstream (Lyon and O’Connor
2008). However, a well-connected stream system by itself
will not guarantee ecological recovery if species have be-
come extinct in entire subbasins and sources of recoloni-
zation are lacking. A study by Stoll et al. (2013) of a subset
of restoration projects in the present study revealed that the
vast majority of the species colonizing the restored reaches
probably originated from immediately adjacent river reaches,
whereas long-distance dispersal played only a minor role.
Diebel et al. (2010) stated that undisturbed species pools
in the immediate surroundings are a key factor in the eco-
logical recovery of restored stream sections. The impor-
tance of connectivity and species pools in the surrounding
reaches also has been emphasized by Hughes (2007).

Most studies of recovery times of freshwater communi-
ties after disturbance conclude that recovery occurs within
few years because: 1) the life-history characteristics of the
species involved allowed rapid recolonization and repopu-
lation; 2) refugia within, up-, or downstream of the affected
reach act as sources for recolonization; 3) in cases of pulse-
disturbances that affect water quality, the flow guarantees
a fast exchange of harmful conditions; and 4) lotic systems
are naturally prone to disturbance events, and therefore,
biota have evolved to cope with these unstable conditions
(Niemi et al. 1990, Yount and Niemi 1990). Recovery after
disturbances also has a spatial component. Shorter reaches
are recolonized more quickly than long river sections. Be-
cause the spatial dimensions of habitat-restoration proj-
ects commonly are in the range of several hundred meters
to very few kilometers, we should expect fast colonization.

Reviews and meta-analyses of recovery times following
stream restorations are scarce. An analysis of various in-
dicators of ecological success for 41 river-restoration proj-
ects in Germany, Britain, and The Netherlands (Matthews
et al. 2010) showed no temporal pattern in short-term reha-
bilitation within the first 5 y after the restorations were com-
pleted. The lack of a time effect between 1 to 5 y after a res-
toration indicates that initial colonization occurred within a
year, but the time period investigated was too short to detect
long-term processes occurring at a slow pace. Moreover,
long-term processes can be obscured by superimposed sto-
chastic effects. Schmutz et al. (2013) found that density of
rare species increased, whereas the number of rare species
and density of other species declined over time at restored
sites (n = 19) evaluated 0.5 to 6 y after restoration in the
Danube. The only publication we found that covered much

longer recovery times was by Trexler (1995), who estimated
that in the Kissimmee River, Florida (USA), where a large-
scale restoration project was carried out, fish required 12
to 20 y to make a full recovery. Much longer recovery times
can be expected for restored ecosystems when ‘species com-
position’ measures the functionality of restored processes,
such as recruitment success and survival or mortality, over
larger time-scales rather than just the ability of restored
reaches to attract dispersing individuals. Responses to re-
stored functionality (e.g., spawning grounds, nursery hab-
itats, or shading by riparian vegetation) might take much
longer to manifest and will depend on the life-history traits
(e.g., age of maturity or development times) of the col-
onizers. However, studies of the long-term (>20 y) effects
of restoration projects are rare (e.g., see Parkyn et al. 2003),
particularly because only a few restorations have reached
this age.

Effects of spatial environmental gradients
on restoration outcomes

Recovery dynamics might differ over large spatial scales
because species richness and diversity typically decline to-
ward the headwaters (Eros 2007, Troia and Gido 2013).
Fukami and Wardle (2005) stated that natural and anthro-
pogenic gradients must be considered when assessing eco-
logical dynamics. Our analyses showed that species rich-
ness and changes in species diversity at restored reaches
were positively related to river width and upstream catch-
ment size. Other metrics including species turnover, abun-
dance, and changes in the proportion of endangered or non-
native species depended much less or not at all on such
natural gradients. Within the set of reach-scale restorations
that we studied, the actual length of restored sections did
not affect the restoration outcome. If the results we observe
are driven mainly by dispersal from the immediately adja-
cent surrounding reaches, we should not be surprised that
restored length was not important for recovery because
none of the projects we evaluated was done on a catchment
scale. However, if restoration were broadened to include
whole river branches or catchments, entire ecological pro-
cesses might be restored. In contrast, Schmutz et al. (2013)
found a positive correlation between rheophilic fish and
restored stream length at 0.05 to 9.7-km-long restored sites
in the Danube, suggesting that the spatial extent of res-
torations in large rivers needs to be >3.9 km. Such large-
scale recovery processes may lead to different outcomes.
Hypothetically, in such a situation, dispersal would be a
first step in recolonization, but successful recruitment and
survival might further alter fish species composition later
as spawning and nursery habitats become established and
processes continue to be dynamic. This situation was ob-
served in large-scale river-restoration projects completed
in Denmark (Feld et al. 2011).
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Response of individual species and relationship
to ecological species traits

The dispersal and competitive abilities of species are
expected to drive the dynamics of the colonization pro-
cess. Therefore, a more detailed view of individual species
responses may help inform general conclusions and pro-
vide an indication of which species might benefit from
habitat restorations. Alburnus alburnus, T. thymallus,
L. leuciscus, and introduced S. lucioperca consistently re-
sponded positively to the restorations. However, T. thymal-
lus and S. lucioperca are key species of angling interest,
and we cannot rule out the possibility that, in some cases,
the positive response might have been enhanced by stock-
ing. Stocking probably is not a concern for species of no
angling interest, such as A. alburnus and L. leuciscus. The
negative response of A. anguilla after restoration probably
is caused by the loss of artificial habitats, such as rip-raps
and other bank-stabilization structures, commonly occu-
pied by this species (Lasne et al. 2008).

Examination of responses of species groups defined on
the basis of their functional traits revealed a trend within
the habitat-preference group. Pelagic fish benefited more
than demersal fish from restoration. At first glance, this
result seems surprising because an increase in habitat com-
plexity should benefit those species that show a stronger
linkage to in-stream structures. On the other hand, most
demersal species are poor swimmers and would be ex-
pected to disperse slowly. Pelagic fish are better swimmers
and, therefore, are more likely to disperse into restored
reaches and establish themselves. Furthermore, pelagic spe-
cies might benefit from increased heterogeneity in velocity
because rheophilic species also showed a slight increase in
abundance. This trend is in line with findings by Schmutz
et al. (2013), who found that rheophilic species performed
better than limnophilic species at 19 restoration sites in the
Danube. The increase in abundance of lithophilic species in
the reproductive-habitat group may arise from improved
recruitment conditions, e.g., loosening or addition of gravel
and establishment of shallow marginal habitats (Lorenz
et al. 2013). The polarized response of phytophilic fishes
may be an indirect result of macrophyte response to habitat
restorations. Lorenz et al. (2012) showed that macrophytes
respond positively to habitat restoration, so phytophilic
fishes may have benefited from the macrophyte recovery.
The declining abundance of potamodromous fish is proba-
bly not related to restoration efforts, but rather displays the
overall declining trend of migratory species suffering from
fragmentation of riverine ecosystems over large spatial scales
(Freeman 2003).

Conclusion
The results of our meta-analysis demonstrate that fish

communities were positively affected in most reach-scale

restorations aimed at overall hydromorphological im-
provement of rivers. Fish abundance, and to a lesser ex-
tent, species richness and diversity increased, whereas
negative effects were negligible. Nevertheless, historic ref-
erence conditions for fish communities have not been
achieved. Reach-scale river restorations can be considered
a useful management tool to support local fish communi-
ties. However, the lack of effects on endangered species
emphasizes that habitat-restoration techniques chosen for
conservation reasons should include strategies and tech-
niques directed at the species of interest. The return of
communities to unrestored conditions suggests that deg-
radation processes are still present at larger spatial scales.
Such large-scale pressures on riverine systems should be
considered during planning to ensure sustainable restora-
tion effects. Last, the temporal dynamics of community
composition indicates that a final evaluation of restoration
outcomes is not feasible in the first years after completion
of restoration, but that fish communities undergo a suc-
cession process from rapid colonizers to more competi-
tive species. Repeated samplings of species communities
and habitat structure in restoration projects over pro-
longed periods would help clarify the sustainability of re-
covery in reach-scale restoration projects and improve un-
derstanding of the dynamics of species recovery.
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