This document is the accepted manuscript version of the following article:
Sschmid, M., Sieber, R., Zimmermann, Y. -S., & Vorburger, C. (2012). Development,
specificity and sublethal effects of symbiont-conferred resistance to parasitoids
in aphids. Functional Ecology, 26(1), 207-215.
http://doi.org/10.1111/3j.1365-2435.2011.01904.x

Development, specificity and sublethal effects of symbiont-

conferred resistance to parasitoids in aphids

Maike Schmid', Raphael Sieber' , Yannick-Serge Zimmermann'* & Christoph Vorburger3’ 4

! Institute of Evolutionary Biology and Environmental Studies, University of Ziirich,
Winterthurerstrasse 190, 8057 Ziirich, Switzerland

2 Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences
Northwestern Switzerland, Griindenstrasse 40, 4132 Muttenz, Switzerland

3 Institute of Integrative Biology, ETH Ziirich, Universitdtstrasse 16, 8092 Ziirich,
Switzerland

* EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133;

8600 Diibendorf, Switzerland

running headline: symbiont-conferred resistance to parasitoids

correspondence: Prof. Dr. Christoph Vorburger
Institute of Integrative Biology ETH Ziirich
EAWAG
Uberlandstrasse 133
8600 Diibendorf
Switzerland
phone: +41 58 765 5196
fax: +41 58 765 5315
e-mail: christoph.vorburger@eawag.ch



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Functional Ecology Page 2 of 31

Summary

1. One of the most exciting recent discoveries in the field of ecological immunology has been
that insects employ the help of heritable symbionts as a defence against parasitoids and
pathogens. Aphids commonly harbour the facultative bacterial endosymbiont Hamiltonella
defensa, which is known to increase their resistance to parasitoids. It is unknown how this
resistance develops during the aphids' ontogeny, following the transmission bottleneck
between mother and offspring, and how specific symbiont-conferred defences are.

2. We addressed these issues in the black bean aphid, Aphis fabae, by exposing aphids of
different age classes to the parasitoid Lysiphlebus fabarum. The susceptibility of aphids that
were either naturally or experimentally infected with H. defensa was compared with that of
uninfected aphids.

3. Susceptibility to parasitoids decreased with aphid age, but aphids harbouring H. defensa
showed an earlier and/or steeper decline to lower levels of susceptibility than aphids without
this symbiont. This is consistent with the hypothesis that during aphid development,
symbiont-conferred resistance builds up with bacterial population growth, which we
documented using quantitative PCR.

4. Parasitoids that successfully overcame the symbiont-conferred resistance still suffered
from sub-lethal effects of H. defensa. They exhibited lower emergence, delayed development
and reduced size compared to parasitoids developing in aphids without H. defensa.

5. The most striking result was a strong interaction on the rates of parasitism between aphid
sublines infected with different isolates of H. defensa and the parasitoid lines they were
exposed to, suggesting a high specificity of symbiont-conferred resistance.

6. Based on these results we conclude that when faced with hosts possessing H. defensa,

aphid parasitoids are under selection to preferentially attack the youngest host stages and /or
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26  to discriminate against symbiont-protected aphids. Furthermore, the specificity induced by H.
27  defensa in the interaction between host and parasitoid is likely to have important

28  consequences for coevolution. It may result in negative frequency-dependent selection and
29  thus promote genotypic variation.

30

31 Keywords: Aphis fabae; coevolution; Hamiltonella defensa; Lysiphlebus fabarum; parasitoid;

32  quantitative PCR, resistance; symbiosis
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Introduction

Parasitoids of insects provide some of the best empirical examples of optimal host choice,
such as choosing larger hosts to better provision their offspring (Salt 1941), or adjusting the
offspring sex ratio to the size of available hosts (Charnov et al. 1981; King 1988). Because of
its relevance for breeding biocontrol agents, host choice has repeatedly been addressed in
aphid parasitoids of the subfamily Aphidiinae (Hymenoptera: Braconidae). These solitary
parasitoids can attack all four nymphal instars as well as adult aphids. The plentiful resources
provided by later host stages typically allow parasitoids to develop faster and to a larger body
size (Sequeira & Mackauer 1992; Colinet et al. 2005), yet attacking larger aphids is more
dangerous and time-consuming because of their more effective behavioral defenses (Chau &
Mackauer 2000). Young aphids are easier to subdue (Chau & Mackauer 2001), but the
smallest stages are most likely to die from the oviposition itself (Colinet et al. 2005), which is
wasteful for the parasitoid. Given these trade-offs, it is not surprising that several studies
found that aphid parasitoids preferentially attack intermediate instars of their hosts (Weisser
1994; Colinet et al. 2005; Tahriri et al. 2007), although this strategy is by no means universal
(e.g. Chau & Mackauer 2001; Lin & Ives 2003).

Another important determinant of host suitability is of course its physiological resistance,
i.e. the ability to prevent parasitoid development after oviposition. The limited evidence
available suggests that physiological resistance of aphids increases with age (Walker & Hoy
2003; Xu et al. 2008). A specific feature of aphids is that variation for resistance to
parasitoids occurs at two levels. First, natural populations of aphids exhibit significant genetic
variation reflecting differences in innate immune defences (von Burg et al. 2008; Sandrock,
Gouskov & Vorburger 2010). Second, aphids also differ in whether they are infected with

facultative bacterial endosymbionts. One of these symbionts, Hamiltonella defensa (Moran et
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al. 2005), has been shown to strongly increase resistance to hymenopteran parasitoids (Oliver
et al. 2003; Ferrari et al. 2004; Oliver, Moran & Hunter 2005; Desneux et al. 2009;
Vorburger et al. 2009). Mechanistically, this protection is related to the presence of toxin-
encoding bacteriophages within H. defensa's genome (Degnan & Moran 2008a; 2008b;
Oliver et al. 2009). These toxins appear to kill the eggs or early larvae of the parasitoids.

Just like the obligate endosymbiont of aphids, Buchnera aphidicola, facultative symbionts
are maternally transmitted with high fidelity to either eggs (during the sexual generation) or
live-born nymphs (during the asexual generations). Each of these transmissions imposes a
bottleneck on the bacterial population (Mira & Moran 2002), which then grows back to its
normal size during the aphid's development. It is thus possible that the protective effect of
defensive endosymbionts such as H. defensa is initially weak in newborn nymphs and only
builds up as the bacterial population grows inside the developing aphid. Based on this
reasoning, we hypothesize that age effects on susceptibility to parasitoids differ between
aphids with and without defensive endosymbionts.

We carried out two experiments to test this hypothesis in the black bean aphid, Aphis
fabae (Scopoli) (Fig. 1), exposing different age classes of aphids with and without H. defensa
to the parasitoid Lysiphlebus fabarum (Marshall). In the first experiment, we compared aphid
clones that were naturally infected or uninfected with H. defensa. Such comparisons can
provide correlative evidence for H. defensa's role in the change of susceptibility with aphid
age, but they do not allow a clean separation of host genetic variation and symbiont-conferred
effects. Therefore, the second experiment was carried out with artificially created sublines of
a single aphid clone that were either uninfected or infected with two different isolates of H.
defensa, in which we also documented the build-up of symbiont populations in the course of

aphid development using quantitative PCR. Finally, we were also able to assess the
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specificity of symbiont-conferred resistance by exposing the different isolates of H. defensa

in the same genetic background to multiple lines of the parasitoid.

Materials and Methods

INSECTS

The black bean aphid, Aphis fabae, is an important pest on many crops throughout the
temperate regions of the northern hemisphere (Blackman & Eastop 2000). It is a host of
several aphid parasitoids, the most important of which is Lysiphlebus fabarum (Stary 2006).
Exceptionally among aphid parasitoids, L. fabarum reproduces by thelytokous
parthenogenesis in most populations (Belshaw et al. 1999; Stary 1999; Sandrock &
Vorburger 2011). This is very valuable for experimentation, because it allows the use of
genetically homogeneous parasitoid populations founded by single parthenogenetic females
(isofemale lines). Females of L. fabarum oviposit a single egg into aphids. The larva then
hatches and develops through several instars inside the still active host, which is only killed
before parasitoid pupation. Metamorphosis takes place within a cocoon spun inside the host's

dried remains, forming a so-called 'mummy' from which the adult wasp emerges.

EXPERIMENT 1 - NATURALLY INFECTED APHIDS

The six clones of A. fabae used in this experiment represented a subset of those used in a
recent study of genotypic and endosymbiont-conferred variation for susceptibility to
parasitoids in this species (Vorburger et al. 2009). All six clones differed in their multilocus
microsatellite genotypes. Four of these clones (A06-323, A06-327, A06-329 and Af6) were
infected with the defensive endosymbiont H. defensa (designated H+) and exhibited high

resistance to L. fabarum when tested as 2-3 days old nymphs (Vorburger et al. 2009). The
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other two clones (A06-333 and A06-407) did not harbour H. defensa (designated H-) and
were highly susceptible to L. fabarum when tested at the same age (Vorburger et al. 2009)
One of these clones, A06-333, harboured another bacterial endosymbiont called Regiella
insecticola (Moran et al. 2005). So far, there is no evidence that this bacterium affects
susceptibility to parasitoids in A. fabae (Vorburger et al. 2009), which is consistent with a
study on this endosymbiont in pea aphids (Oliver et al. 2003). But note that a defensive strain
of R. insecticola has been discovered in a different aphids species, Myzus persicae
(Vorburger, Gehrer & Rodriguez 2010). As parasitoids we used a single isofemale line of
parthenogenetic L. fabarum (labelled 07-64) that had not been used in any previous
experiments. It was collected in September 2007 in Wildberg near Ziirich, Switzerland, from
a colony of A. fabae on Chenopodium album.

Our experiment quantified the susceptibility to this parasitoid in aphids of five different
age classes from all six clones of A. fabae. The age classes were 0-1 days old (1st instar
nymphs), 1-2 days (1st to 2nd instar), 2-3 days (2nd instar), 3-5 days (3rd instar) and 5-7 days
old (4th instar). The general assay was to expose groups of aphids to wasps for a fixed period
of time and measure the proportion of individuals mummified (i.e. successfully parasitized)
as an estimate of susceptibility to the parasitoid (Henter & Via 1995). This measure does not
distinguish between pre-ovipositional defences (e.g. avoidance behavior) and physiological
resistance against the parasitoid egg or larva, but previous studies have shown that it largely
reflects the latter. Clonal differences in mummification rates do not arise from differences in
parasitoid oviposition (Henter & Via 1995), and parasitoids seem equally likely to oviposit in
aphids with and without defensive endosymbionts (Oliver ef al. 2003). Every combination of
aphid clone and age class was replicated five times, amounting to a total of 150 aphid

colonies tested.
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We started the experiment by splitting each aphid clone into five sublines that were
maintained on caged seedlings of broad bean (Vicia faba, var. 'Scirocco') grown in 0.07 1
plastic pots at 20°C and a 16 h photoperiod. Sublines were reared on random positions in five
different plastic trays (randomized complete blocks) for one generation prior to the actual
experiment. This procedure avoids confounding differences among clones with
environmental maternal effects that may be carried over from the stock culture. Susceptibility
to parasitoids was assayed in the second subline generation. This generation was started by
allowing adults from the first subline generation to reproduce on new seedlings for a defined
period of time. We used six adults for 24 h to found the youngest three age classes (0-1, 1-2
and 2-3 days old) and three adults for 48 h to found the oldest two age classes (3-5 and 5-7
days old). Setting up these test colonies was temporally staggered such that in each block, all
five age classes were available for exposure to parasitoids at the same time. For this we first
counted all aphid nymphs on the plants (mean colony size: 19.5 + 7.5 SD) and then added
two female L. fabarum to each colony. These wasps had been reared on a highly susceptible
clone of A. fabae not included in this experiment, and they were approx. 1 — 2 days old when
used. The wasps were allowed to attack the aphids for six hours and then discarded. Nine
days after exposure to parasitoids, successfully parasitized aphids were clearly recognizable
as mummies and counted. Six replicates had to be excluded from the analyses because the
wasps escaped from the cages during the 6-h exposure period.

We analysed the proportion of aphids mummified (i.e. successfully parasitised) using a
generalised linear model with the logit link function and - to account for overdispersion -
quasibinomial errors. We tested for the effects of experimental block, age class, aphid clone
and the age x clone interaction. As recommended by Crawley (2005) for quasibinomial fits,
F-tests rather than 3 -tests to compare deviances of models with and without the effects to be

tested. All analyses were carried out in R 2.9.2 (R Development Core Team 2009).

Page 8 of 31
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EXPERIMENT 2 - EXPERIMENTALLY INFECTED APHIDS

The second experiment followed the same basic design as experiment 1 and used the same
aphid age classes. However, instead of different aphid clones, we compared three sublines of
a single clone of A. fabae that were either uninfected or experimentally infected with one of
two different isolates of H. defensa. For this we used clone A06-407, which was also
included in experiment 1. This clone is naturally uninfected with H. defensa or any other
known facultative endosymbiont of aphids (Vorburger et al. 2009). A microinjection protocol
as described in Vorburger et al. (2010) was used to generate two H. defensa-infected sublines
of this clone, A06-407""® and A06-407%, Briefly, we injected H. defensa-containing
hemolymph from two naturally infected donor clones, A09-76 and A06-323, into 4th instar
nymphs of the recipient clone using a fine glass needle attached to a microinjection pump
(FemtolJet, Eppendorf). Successful transfections lead to stable, heritable infections in the
recipient subline, which we confirmed by diagnostic PCR with H. defensa-specific primers
(McLean et al. 2011) for the first three generations after transfection and again before use of
these sublines in the experiment.

As parasitoids we used three different parthenogenetic lines of L. fabarum. In addition to
line 07-64, the line already used in experiment 1, we used line 06-15, collected in May 2006
from A. fabae on Vicia faba in Sarzana, Italy, and line 09-231, collected in June 2009 from A.
urticata on Urtica dioica in Sierre, Switzerland. We included three rather than a single
parasitoid line in experiment 2 to better cover the variation present in parasitoid populations
and to test for genetic specificity of symbiont-conferred resistance. Previous experiments
suggested that the aphids' own defences against parasitoids are very general (no evidence for
aphid clone x parasitoid line interactions on rates of parasitism in aphids without H. defensa,
see Sandrock, Gouskov & Vorburger 2010), but that the presence of H. defensa has the

potential to induce specificity in this interaction (Vorburger et al. 2009; Rouchet &
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Vorburger, unpublished data). This could result from genetic interactions between parasitoids
and the hosts' heritable endosymbionts, which would have important consequences for the
coevolutionary dynamics in this system (Hamilton 1980; Carius, Little & Ebert 2001;
Woolhouse et al. 2002).

All combinations of aphid subline, parasitoid line and aphid age class were replicated
seven times in experiment 2, with replicates arranged as seven randomized complete blocks.
The main response variable was again the proportion of aphids mummified, but in this
experiment we also followed the fate of these mummies for blocks 4 - 7 of the experiment.
We determined the rate of emergence (proportion of mummies from which parasitoids
hatched), parasitoid development time (mean time from oviposition to adult emergence of all
hatching mummies in a replicate) and parasitoid dry weight of three randomly selected
individuals per replicate (or fewer, if less than three emerged). These measurements of
parasitoid performance were taken to test if parasitoids that successfully overcome symbiont-
conferred resistance and develop in aphids harbouring H. defensa are equally fit as
parasitoids developing in aphids without this symbionts. Developing in aphids with H.
defensa may also have sublethal effects on parasitoids (Nyabuga et al. 2010).

The proportion of aphids mummified and the proportion of mummies from which
parasitoids emerged were again analysed using a generalised linear model with logit link and
quasibinomial errors. Development time and dry weight of parasitoids were analysed with a

linear model.

ESTIMATION OF H. DEFENSA DENSITIES IN DIFFERENT APHID LIFE STAGES
The development of H. defensa densities relative to aphid growth was quantified by
TagMan real-time quantitative PCR (qQPCR hereafter), using an ABI 7500 Fast Real Time

PCR system (Applied Biosystems). To estimate H. defensa densities, we quantified the copy

10
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206  number of the dnaK gene with the following primers and probe (Chandler, Wilkinson &
207  Douglas 2008): forward CAAGCGGATTATTAATGAACCCA, reverse

208 TGGTGCTATTCCCTTTTCCCT, probe CGCGGCCATTGCCTACGGTTT. As an index of
209  aphid cell number we quantified the copy number of A. fabae's EF1o. gene (Koga, Tsuchida
210 & Fukatsu 2004), using a primer and probe set developed by Microsynth AG (Balgach,

211  Switzerland): forward CAGCAGTTACATCAAGAAGATTGG, reverse

212 CATGTTGTCTCCATTCCATCCAG, probe CCCAGCCGCTGTTGCTTTCGTTCC. The
213  probes were modified with FAM as the 5'-terminal reporter dye and BHQ-1 as the 3' terminal
214  quencher dye. We carried out the qPCR reactions in triplicate using 25 ul volumes with 5 ul
215  of template DNA. Gene copy numbers for the H. defensa dnaK gene and the A. fabae EF 1o
216  gene were estimated in six replicate aphids from each of the five age classes for sublines
217  A06-407"7° and A06-407"% used in experiment 2. Aphids were frozen at -80°C until DNA
218  extraction, which was carried out using the 'salting out' method described in Sunnucks &
219  Hales (1996). The DNA pellet of a single aphid was resuspended in 70 ul of TE buffer and
220  stored at -20°C before use in qPCR. Gene copy numbers were estimated from a standard
221  curve generated with serial dilutions of a synthetic standard produced by Microsynth AG and
222  then calculated per aphid. These values were analysed with a linear model, testing for the
223  effects of aphid age class, H. defensa isolate (H76 vs. H323) and the age x isolate interaction.
224

225 Results

226

227 EXPERIMENT I

228 Host age class had a highly significant effect on the proportion of individuals that were
229  mummified (Table 1). Older aphid nymphs were less susceptible to the parasitoid L. fabarum

230 than younger nymphs (Fig. 2). There was also significant variation in susceptibility among

11
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aphid clones (Table 1), which was not surprising given that four of them harboured a
defensive symbiont. However, the protective effect of H. defensa became evident only in the
older age classes. Up to two days of age, the proportion of aphids mummified was similar
between clones with and without H. defensa. Two of the H. defensa-protected clones (A06-
329 and Af6) started showing increased resistance in the 2-3 days age class, but the other two
(A06-323 and A06-327) were still very susceptible at that age. Their susceptibility dropped
strongly at > 3 days of age (Fig. 2a). These differences were reflected in a significant age
class x clone interaction (Table 1). In the oldest two age classes, clones harbouring H.
defensa were about three times more resistant on average than the two clones without this

symbiont (Fig. 2b).

EXPERIMENT 2

Also in the second experiment, host age class had a highly significant effect on the
proportion of individuals that were mummified (Table 2), again reflecting a decrease in
susceptibility with age (Fig. 3a). The variation among the three sublines of A. fabae clone
A06-407 was highly significant as well (Table 2). Experimental infection with H. defensa
strongly increased resistance to L. fabarum, with one of the two isolates, H76, providing a
higher level of protection (Fig. 3a). In contrast to the first experiment, the protective effect of
the symbiont was already evident in aphids of the youngest age classes. Nevertheless, the
development of susceptibility to parasitoids with age differed among the three sublines,
resulting in a significant age class x subline interaction (Table 2). In the two sublines
harbouring H. defensa, susceptibility dropped most strongly after two days of age, whereas in
the subline without H. defensa, a drop in susceptibility was evident only at an age > 5 days
(Fig. 3a). The three asexual lines lines of L. fabarum used in experiment 2 also varied

significantly in the proportion of hosts they could parasitise successfully (Table 2). However,

12
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their relative success depended strongly on the host subline (Fig. 3b), which was reflected in
a highly significant subline x parasitoid interaction (Table 2). All parasitoid lines could
parasitise the subline without H. defensa, line 06-15 being most successful on average. The
subline harbouring H. defensa isolate H323 was more resistant on average, but this isolate
provided almost no protection against one line of L. fabarum, 07-64. The subline harbouring
H. defensa isolate H76 was the most resistant on average. It was almost completely resistant
against parasitoid line 06-15 and very resistant against line 07-64, but line 09-231 still
managed to mummify >10% of individuals harbouring this isolate of H. defensa. Overall, a
different parasitoid line was most successful on each of the three aphid sublines.

The presence of H. defensa in A. fabae not only affected the rate of parasitism achieved by
the different parasitoid genotypes, it also influenced host suitability in more subtle ways.
There was a significant subline effect on all three parasitoid performance traits (Table 3). For
the proportion of mummies hatching, this effect was largely due to a lower rate of emergence
in the subline harbouring H76, suggesting that this isolate of H. defensa causes increased
parasitoid mortality also at the mummy stage (Fig. 4a). There was also a significant effect of
aphid age class, reflecting a slightly lower emergence from mummies when aphids were
attacked at low to intermediate ages (Fig. 4a). The hosts' possession of H. defensa also led to
a longer development time of the parasitoids, but this effect was much more pronounced for
the H76 isolate (Fig. 4b), which prolonged development by approximately 1.5 days on
average. The delay of parasitoid emergence caused by H76 increased with the age at which
aphids were attacked (Fig. 4b), resulting in a significant age class x subline interaction (Table
3). The host subline had a significant effect also on parasitoid body size, estimated as dry
weight (Table 3). Wasps developing in aphids harbouring H. defensa remained smaller on

average than wasps developing in the H. defensa-free subline (Fig. 4c). The age at which

13
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aphids were stung had a significant effect on wasp dry weight, too. Parasitoids from hosts
that were attacked in the 5-7 days age class were largest on average (Table 4, Fig. 4c¢).

Taken together, these results indicate that even when parasitoids are able to overcome the
symbiont-conferred resistance of their host, they suffer from negative effects of developing in

an aphid harbouring H. defensa.

SYMBIONT DENSITIES

Aphid age class obviously had a highly significant effect on gene copy numbers of the A.
fabae EF1a gene (F4 49 =35.39, P <0.001) as well as the H. defensa dnaK gene (F4, 43 =
53.40, P < 0.001). Copy numbers for either gene did not differ between the two sublines
harbouring different isolates of H. defensa (EFIc: Fy 49 =1.04, P =0.312; dnakK: F, 43 =
1.95, P =0.169), nor were there significant age x subline interactions (EFIa: F4 49 =0.23, P
=0.918; dnaK: Fi 43 = 0.31, P =0.868). Copy numbers of both genes increased exponentially
with aphid age. However, the increase of dnaK (H. defensa) was steeper up to an aphid age of
2-3 days and shallower thereafter, as revealed by the log-scale plot (Fig. 5), such that the ratio
of dnaK to EFI  copies was highest at the intermediate age classes (Fig. 5). Copy numbers
of the H. defensa dnaK gene were very high and exceeded those of A. fabae's EF1 o gene

between two- and more than eightfold, depending on aphid age.

Discussion

We showed that the susceptibility of A. fabae to its parasitoid L. fabarum decreases with
age, and that the temporal trajectory of this decrease differs between aphids with and without
the defensive endosymbiont H. defensa. The proportion of aphids mummified by parasitoids

declined earlier and/or more steeply in aphids harbouring this defensive symbiont. We regard
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this as evidence that the protective effect of H. defensa builds up during aphid development
and is not yet fully developed at birth, presumably due to a transmission bottleneck between
mother and daughter (Mira & Moran 2002). The evidence from the first experiment is
correlational, because we worked with naturally infected or uninfected clones and could not
separate the symbiont's effect from genetic variation among clones. This was possible in the
second experiment using experimentally infected lines with the same genetic background,
and they provided generally consistent results. In these lines we also documented with
quantitative PCR how the symbiont population builds up rapidly during the aphid's
development. Interestingly, the H. defensa cell number increased faster than the host cell
number up to an aphid age of about three days, but more slowly thereafter, such that the ratio
of symbiont to aphid gene copy numbers peaked around mid-development. However, the
strength of symbiont-conferred defences was not determined by this ratio, because resistance
was highest in the latest nymphal instars. The rapid increase of aphid gene copy numbers in
the second half of development may be related to offspring growth. Aphid nymphs already
contain the developing embryos of the next generation, which are ready to be born soon after
adult ecdysis (telescoping of generations).

A marked difference between the two experiments was that in the first experiment,
symbiont-conferred resistance was only evident in the intermediate and older age classes,
while the experimentally infected lines benefitted from some protection against parasitoids
already at the youngest age. Although the experimental protocols were very similar, we
cannot exclude that this difference may be due to some environmental variation between
experiments. An alternative explanation is that the protective effect depends not only on the
specific isolate of H. defensa and the genotype of the attacking parasitoid, as clearly evident
from experiment 2, but also on the host's genetic background. Possibly, the expression of

symbiont-conferred resistance is particularly strong in the clone we used for the second
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experiment. As yet there is no evidence for such interactions on resistance to parasitoids
(Oliver, Moran & Hunter 2005), but they have been documented for other traits affected by
endosymbionts (McLean et al. 2011).

The results of both experiments suggest that parasitoids could improve their success on
symbiont-protected hosts by adaptive host choice. The probability of successful parasitoid
development was higher in younger hosts for all aphid clones and sublines tested, but
selection on parasitoids to attack young nymphs would certainly be stronger when hosts
harbour H. defensa. It would thus be interesting to test if parasitoid populations living on
hosts with a high prevalence of H. defensa have evolved a different host stage preference

compared to parasitoids on hosts without defensive symbionts.

SUBLETHAL EFFECTS OF H. DEFENSA ON PARASITOIDS

In agreement with the correlative study by Nyabuga et al. (2010), we found that the
presence of defensive symbionts in their hosts may also have sublethal effects on aphid
parasitoids. Wasps that managed to develop successfully in aphids protected by H. defensa
showed reduced emergence, prolonged development time and smaller size. Interestingly,
these effects were stronger in the aphid subline harbouring isolate H76, which also provided
higher resistance overall. It is possible that parasitoid mortality (i.e. aphid resistance) and the
sublethal effects on surviving parasitoids have the same mechanistic basis, namely the
exposure to phage-encoded toxins produced by H. defensa (Oliver et al. 2009). Thus, from a
female parasitoid's perspective, the disadvantage of attacking symbiont-protected aphids is
twofold. Its offspring are less likely to develop at all and if they do survive, they may suffer
from reduced fitness. This should result in selection on female parasitoids to recognise and
avoid hosts that harbour defensive symbionts, but as yet we are unaware of any evidence that

L. fabarum or any other aphid parasitoid exhibits such discrimination.
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355 It is not possible to determine whether the observed negative effect of H. defensa on the
356  dry weight of emerging wasps represents an indirect effect mediated by aphid body size or a
357  direct response to the presence of the symbiont. We did not quantify aphid body size in the
358  present experiment, and the evidence from previous experiments is ambiguous. Comparisons
359  of naturally infected and uninfected clones of A. fabae suggested a positive rather than a
360 negative effect of H. defensa on aphid size (Vorburger et al. 2009; Castaneda, Sandrock &
361  Vorburger 2010), but a recent study of experimentally infected lines revealed a slight

362 negative effect (Vorburger & Gouskov 2011). Thus, we cannot exclude that wasps

363  developing in symbiont-protected hosts are smaller because of a negative effect of H. defensa
364  on aphid size.

365

366  SPECIFICITY OF SYMBIONT-CONFERRED RESISTANCE

367 Probably the most striking result of this study was the strong host subline x parasitoid line
368 interaction observed in experiment 2. The level of protection provided by the two isolates of
369  H. defensa depended to a large extent on the genotype of the attacking parasitoid. This stands
370 in stark contrast to an experiment using numerous clones of A. fabae without H. defensa,
371  which revealed ample genetic variation for resistance but no evidence for host line x

372  parasitoid line interactions (Sandrock, Gouskov & Vorburger 2010). Because all aphids used
373  inexperiment 2 were genetically identical, it is clearly the endosymbiont that is responsible
374  for the specificity of the interaction observed here. Facultative endosymbionts such as H.
375  defensa are faithfully transmitted from mother to offspring and thus represent part of the
376  heritable (clonal) variation available to selection by parasitoids. As a result of their genetic
377  interaction with parasitoids, they may transform a host-parasitoid system in which resistance
378 and infectivity behave like running speed in a predator-prey relation (Sasaki & Godfray

379  1999) to a system that is characterised by strong genetic specificity as observed, for example,
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in Daphnia-pathogen interactions (Carius, Little & Ebert 2001; Luijckx ef al. 2011). Such
genotype x genotype interactions lead to negative frequency-dependent selection between
hosts and parasites and thereby promote genotypic variation (Woolhouse et al. 2002). That
endosymbionts not only provide their hosts with protection against parasitoids but also alter
the reciprocal selection between hosts and parasitoids by inducing genetic specificity is

remarkable. The evolutionary consequences of this effect deserve further attention.
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517 Figure captions
518

519 Fig. 1. A winged adult and several nymphs of the black bean aphid, Aphis fabae, under attack
520 by two individuals of the aphid parasitoid Lysiphlebus fabarum. Photograph by Christoph
521 Vorburger.

522

523  Fig. 2. Susceptibility of five age classes of the black bean aphid, Aphis fabae, to the

524  parasitoid Lysiphlebus fabarum. (a) Means plotted separately for all six clones used in

525  experiment 1, and (b) averaged across clones that do (H+) or do not (H-) harbour the

526  defensive endosymbiont Hamiltonella defensa.

527

528  Fig. 3. Susceptibility to the parasitoid Lysiphlebus fabarum of one uninfected (H-) and two
529  experimentally infected sublines of Aphis fabae clone A06-407, harbouring two different
530 isolates of the defensive endosymbiont Hamiltonella defensa (H76 and H323). (a) Means
531 plotted separately for the five age classes and overall, averaged across parasitoid lines. (b)
532  Means plotted separately for each parasitoid line used in experiment 2, averaged across age
533  classes, to illustrate the strong host subline x parasitoid line interaction.

534

535  Fig. 4. Effects of host infection with Hamiltonella defensa on (a) parasitoid emergence (mean
536  proportions of mummies hatching), (b) mean parasitoid development time (time from

537  oviposition to emergence), and (c) mean parasitoid size (dry weight).

538

539 Fig. 5. Development with age of aphid cell numbers and endosymbiont populations,

540 quantified as copy numbers of the Aphis fabae EF 1 o gene and the Hamiltonella defensa

541 dnakK gene, respectively, using qPCR.
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Table 1. Analysis of deviance table for the proportion of aphids mummified in experiment 1.
The generalised linear model was a quasi-likelihood fit with logit link and binomial errors,

using a dispersion parameter of 3.34 (see Material and methods).

Effect df Deviance F P
Block 4 13.24 0.974 0.425
Age class 4 262.24 19.286 <0.001
Clone 5 54.44 3.201 0.010
Age x clone 20 131.48 1.934 0.016
Residual 110 431.18
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Table 2. Analysis of deviance table for the proportion of aphids mummified in experiment 2.

The generalised linear model was a quasi-likelihood fit with logit link and binomial errors,

using a dispersion parameter of 3.37.

Effect df Deviance F P
Block 6 78.16 3.86 0.001
Age class 4 108.53 8.04 <0.001
Subline 2 386.68 57.33 <0.001
Parasitoid 2 35.83 5.31 0.005
Age class x subline 8 74.15 2.75 0.006
Age class x parasitoid 8 4481 1.66 0.108
Subline x parasitoid 4 223.67 16.58 <0.001
Age class x subline x parasitoid 16 73.23 1.36 0.163
Residual 263 966.82

25



Functional Ecology Page 26 of 31

Table 3. Analysis of deviance (proportion of wasps emerging) and analysis of variance results (development time and wasp dry weight) for three
parasitoid performance traits. The generalised linear model for the proportions of mummies from which wasps emerged was a quasi-likelihood

fit with logit link and binomial errors, using a dispersion parameter of 1.479.

Proportion of wasps emerging Development time Wasp dry weight

Effect df  Deviance F P df MS F P df  MSx 10* F P
Block 3 2.65 0.60 0.619 3 0.20 0.96 0.417 3 3.58 5.33 0.002
Age class 1 9.07 6.13 0.015 1 0.09 0.44 0.510 1 5.14 7.64 0.007
Subline 2 12.29 4.15 0.019 2 13.88 67.80 <0.001 2 3.51 5.21 0.008
Parasitoid 2 4.69 1.58 0.211 2 0.10 0.50 0.609 2 1.98 2.95 0.059
Age class x subline 2 1.59 0.54 0.585 2 1.73 8.45 <0.001 2 0.55 0.82 0.446
Age class x parasitoid 2 4.78 1.62 0.205 2 0.30 1.45 0.242 2 0.01 0.02 0.986
Subline x parasitoid 3 4.50 1.02 0.390 3 0.16 0.77 0.517 3 0.39 0.59 0.626
Age class x subline x parasitoid 3 9.74 2.20 0.095 3 0.07 0.36 0.782 3 0.34 0.51 0.678
Residual 81 130.34 78 0.21 76 0.67
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Fig. 1. A winged adult and several nymphs of the black bean aphid, Aphis fabae, under attack by
two individuals of the aphid parasitoid Lysiphlebus fabarum. Photograph by Christoph Vorburger.
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Fig. 2. Susceptibility of five age classes of the black bean aphid, Aphis fabae, to the parasitoid
Lysiphlebus fabarum. (a) Means plotted separately for all six clones used in experiment 1, and (b)
averaged across clones that do (H+) or do not (H-) harbour the defensive endosymbiont
Hamiltonella defensa.
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