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Abstract: The Critical Assessment of Small Molecule Identification (CASMI) Contest

was founded in 2012 to provide scientists with a common open dataset to evaluate their

identification methods. In this review, we summarize the submissions, evaluate procedures

and discuss the results. We received five submissions (three external, two internal) for

LC–MS Category 1 (best molecular formula) and six submissions (three external, three

internal) for LC–MS Category 2 (best molecular structure). No external submissions were

received for the GC–MS Categories 3 and 4. The team of Dunn et al. from Birmingham

had the most answers in the 1st place for Category 1, while Category 2 was won by

H. Oberacher. Despite the low number of participants, the external and internal submissions

cover a broad range of identification strategies, including expert knowledge, database

searching, automated methods and structure generation. The results of Category 1 show

that complementing automated strategies with (manual) expert knowledge was the most

successful approach, while no automated method could compete with the power of spectral

searching for Category 2—if the challenge was present in a spectral library. Every participant

topped at least one challenge, showing that different approaches are still necessary for

interpretation diversity.
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1. Introduction

Mass spectrometry has become one of the most important analytical techniques in both the
environmental sciences and metabolomics. The potential of untargeted approaches is increasing rapidly
with the recent advances in high accuracy mass spectrometry and the result is an explosion in the number
of options available to process data and identify compounds, but few systematic comparisons of these
different approaches exist. With the sheer number of options available, it is impossible to evaluate all
programs oneself.

With CASMI, the Critical Assessment of Small Molecule Identification, we initiated an open contest
to let the experts showcase their own programs and strategies, so that users can compare the results and
choose the strategies that apply to them best. Since the experts and programmers generally know their
own settings best but have access to different data, CASMI addresses this by providing one common
set of data. CASMI was inspired by CASP, the Critical Assessment of (protein) Structure P rediction
contest series initiated in 1994 [1,2].

We set up a website [3] to publish spectral information for a set of known compounds that were
unknown to the participants, along with some background information to help with the identification,
where available. We then called on the mass spectrometry community to propose identities for the
unknowns. We introduced four categories, two for liquid chromatography coupled with high accuracy
(tandem) mass spectrometry (LC–HRMS/MS) and two for unit resolution gas chromatography–mass
spectrometry (GC–MS) data. There were 14 challenges for Categories 1 and 2 (best molecular formula
and best structural formula, respectively, for LC–HRMS/MS) and 16 challenges for Categories 3 and 4
(best molecular formula and structural formula, respectively, for GC–MS). The challenges and categories
are discussed in detail in the “CASMI: Challenges and Solutions” article within this special issue [4],
which also includes annotated spectra of the LC–HRMS/MS challenges. A summary table including the
14 LC–HRMS/MS challenges is given in Table A1.

1.1. Background of the Inaugural CASMI

The idea to found CASMI came up in early 2012, along with the opportunity to guest edit a
special issue of Metabolites. Although this was a somewhat “backwards” start (with the proceedings
in place before the competition even existed), the rest fell into place quite quickly. The organisation
team consisted of one representative from bioinformatics/metabolomics (S. Neumann) and one from
environmental chemistry (E. Schymanski), with the aim of bringing both (and additional) communities
together to improve the exchange and learn from each other’s methods. An advisory board was
also formed, consisting of four members: V. Likic (founding Editor-in-Chief of Metabolites),
S. D. Richardson (US EPA), S. Perez Solsona (CSIC, Spain) and L. Sumner (Noble Foundation,
US). Participants were recruited via email, social media, public announcements at several meetings
(including SETAC, ASMS, IMSC and in workshops; see [5] for more details) and finally in a Spotlight
article in MetaboNews [6]. Mailing lists were available to participants to sign up for announcements
and discussion.
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The key dates for CASMI were:

20/05/2012: Public release of www.casmi-contest.org
20/07/2012: Public release of challenge data
31/01/2013: Deadline for submissions (extended to 05/02/2013)
06/02/2013: Public release of solutions
22/02/2013: Public release of automatic evaluation (07/03/2013 for resubmissions)

In this review we first outline the contest rules and evaluation measures, then describe the participants,
their methods and submissions. We then discuss the results by challenge and conclude with some
perspectives for future CASMIs. Details on the challenges and solutions are given in a separate paper [4];
a table containing the LC–HRMS/MS challenges is given in Appendix A.

2. Methods: Evaluation and Ranking of Participants

It was obvious to us already while establishing the rules for CASMI 2012 that it would not be possible
to establish only one, simple evaluation measure to compare the performance of the participants. There
was already sufficient variety in the scoring systems of our own methods to get a feel for the flexibility
that would be needed, and we had to be prepared for many cases that we could not anticipate in advance.
In this section we describe the measures we used and their advantages and disadvantages, using data
from the CASMI contest. Although we only needed to use the absolute rank of the correct solution to
declare the winners in the end (see below), we still present all evaluation methods in this review.

2.1. Absolute Ranking

An absolute ranking is the simplest measure of evaluating entries, and this is what we used to declare
the winners of the CASMI contest in the end. In real identification efforts, one needs to know how
many “incorrect” solutions are placed higher than the correct solution. Although at the first glance an
absolute rank appears simple, the devil is in the details, e.g., if several candidates have an identical score.
A “best case” absolute ranking will look better, but is overly positive and ignores the fact that several
candidates with equal scores existed. The “worst case” rank is rather pessimistic, but represents the
situation more realistically as all candidates with equal scores will need to be considered in identification
efforts. Although compromise values such as the average of the two could be calculated, these have
little meaning in real life and were not considered further. As a result, we used worst case rank in our
evaluation, as follows:

RankWorstCase = BC + EC

where BC and EC stand for the number of candidates with Better and Equal scores, respectively. If the
score of the correct candidate is unique, then EC = 1.

The absolute rank was calculated by sorting the submissions by score and then searching for the
position of the correct answer, as well as the number of candidates with equal score. The correct
molecular formula for Categories 1 and 3 was identified using a straightforward string comparison. To
avoid problems with different notation systems, all molecular formulas were first normalised using the
R package Rdisop [7,8].
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The comparison of structural candidates for Categories 2 and 4 was more complicated. We accepted
two different structure representations, the standard InChI [9,10] or the SMILES code [11]. A simple
string comparison of SMILES could easily miss the correct solution, because many valid SMILES are
possible for the same molecule. Thus, the structure representations in the submissions were converted
to the InChI Key during the evaluation using OpenBabel version 2.3.0 [12]. The first 14 letters (the first
block) of the InChI Key describe the molecular connectivity or skeleton. The second block contains
8 letters describing the stereochemistry, tautomerisation and isotopes. Two additional letters provide
information about the version of InChI (conversion) used and the last letter indicates the charge state.
Although designed to be nearly unique, identical InChI Keys are possible for two totally different InChI
strings, but this is very rare [13]. As mass spectrometry cannot generally determine stereochemistry
(there are exceptions but this was beyond the scope of the current CASMI), we considered a structural
candidate to be correct for CASMI if the first block of the InChI Key was identical to that of the correct
solution. Where candidates with different stereochemistry were present, we took the match with the
highest score to determine the rank.

The winner(s) of a single challenge were those participants who achieved the best absolute rank.
The overall winner of a category was then the participant who achieved the most wins, based on their
original submissions.

The disadvantage of absolute ranking is that it does not take the number of candidates into account. If
two participants both have the correct solution at rank 50 and one candidate list contains 100 candidates,
while the other contains 1000, the latter is certainly the more selective of the two, although the absolute
result is the same. The selectivity can be assessed using relative ranking.

2.2. Relative Ranking

The relative ranking position (RRP ) is a measure of the position of the correct candidate relative to
all the other candidates and is shown in the equation below. As higher scores are inherently considered
“better” than low scores, we used the RRP defined in, e.g., [14], such that RRP = 1 is good and
RRP = 0 is not. For each submission, the total number of candidates (TC), the number of candidates
with a better score than the correct structure (BC) as well as the candidates with an equal (EC) and
worse score (WC) were used to calculate the RRP as follows:

RRPCASMI =
1

2

(
1− BC −WC

TC − 1

)
This RRP is only defined where TC ≥ 2 and also cannot be calculated for cases where the correct
solution is absent. If the solution was present and all candidates have the same score, then RRP = 0.5.
The relative ranking is a compact way to represent how well the candidate selection (scoring) performs
for large and variable result sets, demonstrated with a few examples from CASMI 2012 here. Details on
the participants are given below in Section 3.

– For Challenge 1, Category 2, Shen et al. have TC = 6, BC = 4, WC = 1 and a RRP of 0.20;
while Ruttkies et al. have TC = 1423, BC = 21, EC = 24, WC = 1378 and a much higher
RRP = 0.98, although the absolute rank of 45 is worse than Shen et al.’s 5;
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– For Challenge 1, Category 2, Oberacher and Dunn et al. have TC = 1 and the RRP is undefined
(both were correct), while Gerlich et al. have TC = 1356, BC = 0, WC = 1355, with
RRP = 1.00; here Oberacher, Dunn et al. and Gerlich et al. share the honours, which is not
visible from the RRP.

– For Challenge 12, Category 2, all participants missed the correct answer; the RRP is undefined.

While the RRP has obvious strengths, namely putting the absolute rank into perspective where
hundreds or even thousands of candidates need to be considered, one potential problem is that a
participant could “cheat” by not pruning irrelevant candidates from the end of the list, thus inflating
the RRP . In other words, the RRP can also put participants with only a few high quality candidates in
disadvantage. This can in turn be addressed by weighting this relative ranking with the candidate scores.

2.3. Normalised Scores and Weighted RRP

Most identification methods use some form of scoring to rank the candidates. In order to compare the
different scoring schemes of the participants, we normalised all scores s̃j =

sj∑
i si

in a submission such
that

∑
i s̃i = 1 and calculated a weighted RRP using the score s̃j of the correct solution to obtain the

sum of all better-scoring candidates wBC =
∑

s̃i>s̃j
s̃i and equivalently wEC =

∑
s̃i=s̃j

s̃i to give:

wRRPCASMI = 1− wBC − wEC

The following examples from CASMI submissions help to interpret these values:

– For Challenge 10, Category 2, Ruttkies et al., Gerlich et al. and Meringer et al. had the correct
solution with absolute ranks 302, 307 and 63, respectively. The wRRPs of 0.01, 0.35 and 0.49
show that the scoring used by the latter two were more useful than the first in selecting the correct
candidate, however given normalised scores (s̃) of ≤ 0.01 for all three, few users would have
considered these candidates;

– For Challenge 2, Category 2, Shen et al. and Gerlich et al. have wRRPs of 1.00 and
0.91 respectively.

– For Challenge 13, Category 1, Dührkop et al., Neumann et al. and Meringer et al. all have
rank = 1, RRP = 1.00 and wRRP = 1.00, with TC = 20, 141 and 10, respectively.
The normalised scores of 1.00, 1.00 and 0.14, respectively, indicate that the scoring system of
Dührkop et al. and Neumann et al. weight the top candidate heavily—which is advantageous
when the top candidate is correct, but can offer a false sense of security when interpreting the
results.

The normalisation thus gives good results for those with few candidates and a very wide range in
scores if the correct solution is in the top ranks, while those who have many candidates whose scores
differ relatively little suffer from low normalised scores.



Metabolites 2013, 3 417

2.4. Similarity Between Submissions and the Correct Solution (Category 2)

The remaining question in the evaluation was assessing the chemical similarity between the candidates
submitted by participants and the correct solution. This allows us to also assess how close (or misleading)
the better candidates were, and how close the contestants were who missed the correct solution.
Participants reliant on database entries are unable to identify the correct molecule if it is not in any
spectral library or compound database, but they could still get very close. There is also a difference
between a contestant who, e.g., obtained the wrong formula and thus also completely incorrect structural
candidates and a contestant who reported the wrong positional isomer of the correct compound.

In the case of chemical structures, it is possible to calculate the similarity between any candidate
structure and the correct solution. A common approach is to generate the “fingerprints” of two different
molecules and compare these to come up with a similarity measure. We used the extended binary
(1024 bitset) fingerprint calculation from the Chemistry Development Kit (CDK) to determine the
fingerprint bitsets for candidates [15,16]. The Tanimoto similarity (TS) was then used to compare the
bitsets [17,18]. As only the bits of value 1 are considered relevant in this comparison, we can define A
and B as the number of bits equal to one in each bitset and C as the number of common bits equal to one
in both bitsets. The TS is then:

TS =
C

A+B − C

with a value between 0 and 1. The following simple example shows the CDK fingerprint bitsets for
ethanol and ethane, respectively, and the resulting Tanimoto similarity.

[301 638 742 743 930]; [638 743];TS = 0.4

A similarity measure of 1 corresponds to compounds with the same fingerprint, typically identical or
very similar structures. Alternative fingerprints and distance functions are available; our choice was
directed mainly by accessibility in the evaluation framework we used (see Section 2.5).

We used the similarities to compile plots of all (Category 2) entries from each contestant, with a dash
for each candidate, where the length of the dash corresponds to the similarity with the correct solution.
By marking the most similar molecule and the correct answer (where present), it is thus possible to assess
quickly where the correct answer lay within the list of candidates (sorted by score) and also, for those
who missed the correct answer, which was the most similar entry. The resulting similarity calculations
thus allow us to assess which contestant was the “closest” if all contestants missed. We demonstrate
this here using real examples from the participants; details about the participants are below in Section 3.
Example plots for Challenges 3 and 10 are shown in Figure 1.

– In Challenge 3, Category 2, the entry from Ruttkies et al. contained the correct compound, while
the other three contestants in this category missed it. The correct answer and TS with the most
similar entries from the other participants are shown in Figure 2. This figure and the similarity
scores show that Dunn et al. were the closest of the three contestants that missed.

– In Challenge 10, Category 2, Dunn et al., Shen et al. and Oberacher all missed the
correct solution, 1-aminoanthraquinone. However, all entries contained the positional isomer
2-aminoanthraquinone, in third, first and second place (by score), respectively. The Tanimoto
similarity between the two positional isomers is 0.842.
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Figure 1. Similarity calculations for Category 2 entries for Challenges 3 (left) and 10 (right).
Each candidate is represented by a grey dash, scaled by the similarity between candidate and
the solution. The green circle indicates the correct answer if present; the blue dash indicates
the most similar compound, with the TS adjacent. y-axis: number of candidates (log scale);
x-axis: participant.
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This similarity measure provides important information in the absence of the correct solution and
allows a quick assessment of whether the submission contained very similar structures or a very mixed
set of structures. If the submission contains only very similar structures, it may be possible to deduce
the compound class or a maximum common substructure of the unknown. This would equate to a
“Level 3” identification (putatively characterised compound class) in the proposed minimum reporting
standards in metabolomics [19]. This idea has also been applied recently in various ways, including
“prioritising” candidates for MetFrag [20] and even defining substructures for structure generation [21].
If the candidates include many diverse structures, this task is more difficult and not even a compound
class can be proposed.
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2.5. Evaluation Framework

All evaluations and the corresponding graphics were performed with a set of scripts based on the
statistics framework R [22], using extension packages including rCDK [23] and Rdisop [7]. The
summary tables were created using xtable and reshape2, which allowed us to publish the results of
the automatic evaluation rapidly. The evaluation script is available from the CASMI web site [24].

3. Results by Participant

In this article, we will refer to the participants by their surnames rather than their methods, as this
enables us to associate a consistent, short description with each submission (as not all methods have a
short, descriptive name). In this section we describe the methods briefly; the participants have described
their methods more extensively in the individual papers submitted as part of this special issue [25–30].

3.1. Participation Rate

The individual results for each category, challenge and participant are available on the CASMI
website [31]. Three external participants took part in Category 1 (Dunn et al. [25], Shen et al. [26]
and Dührkop et al. [27]). As we had processed the challenges with our own methods to test the
evaluation, we also submitted these results as two “internal participants” (Neumann et al. [29] and
Meringer et al. [30]).

Three external participants entered Category 2, Dunn et al. [25], Shen et al. [26] and Oberacher [28].
As for Category 1, we submitted entries using our own methods as three internal participants,
Ruttkies et al. [29], Gerlich et al. [29] and Meringer et al. [30]. No external participants submitted
results for Categories 3 and 4 and the internal submission is presented on the CASMI website for
completeness. Although this is not discussed in this article, some discussions can be found in [30].

The lack of participants can be narrowed down to two main reasons. The first was that our assumption
that all methods could read an open data format (such as plain text peak lists) was incorrect and some
systems only read native formats—which cost us at least one participant. It is imperative for the benefit
of researchers, scientists and users alike that all systems can deal with at least one open format, not
only to ensure transparency in the methods, but also to allow users to mix and match methods. The
time requirements for both the submissions and the (optional) contribution to the special issue also
discouraged potential participants. However, the participants we had covered a wide range of methods
and provided plenty of interesting results, as discussed below.

The first CASP contest in 1994 had 33 challenges, 35 participants and 100 submissions in total. We
had fewer external participants (4 in total) but received a total of 30 and 39 official submissions for
the 14 LC–HRMS/MS challenges in Categories 1 and 2, respectively, which approaches the submission
number for the inaugural CASP. Counting our internal submissions, we topped the number of CASP
submissions easily, with 130 submissions in total for the LC–HRMS/MS challenges. Thus, we are
optimistic that CASMI will grow into an established initiative like CASP.
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3.2. Summary Results by Participant

The summary statistics for Categories 1 and 2 are presented in Tables 1 and 2. Participants were
allowed to enter updated submissions (resubmissions) following the competition deadline as Challenges
2, 4 and 6 suffered from a calibration issue that was only discovered after the submission deadline and
Challenge 12 contained misleading noise peaks (for more details see [4]). These were not counted in
declaring the winner (as the solutions had already been made public), but are included in the table below
for completeness. The resubmitted statistics given in the tables include the original challenge results
for challenges where no resubmissions were made. The original submissions for each participant are
also displayed visually in Appendix B, Figures B1 to B6, including the rank of the correct compound,
where applicable.

Table 1. Summary statistics for Category 1 by participant, before and after resubmission.
Subm.: number of submissions; Cor(win): number of submissions with correct answer
present and wins in brackets; r resubmitted results. Other abbreviations: see text. Wins
given for original submissions only.

Participant Subm. Cor(win) Avg. Rank Avg. TC Avg. BC Avg. RRP Avg. wRRP Avg. s̃

Dunn et al. 11 9(9) 1.11 1.4 0.1 0.500 0.926 0.889

Shen et al. 14 8(3) 2.88 11.1 1.9 0.719 0.670 0.168

Dührkop et al. 14 8(5) 2.25 128.8 1.3 0.992 0.625 0.602

Dührkop et al. r 14 12 5.75 134.7 4.7 0.883 0.423 0.406

Neumann et al. 13 9(5) 4.33 639.1 3.3 0.991 0.565 0.561

Neumann et al. r 14 12 4.83 1915.0 3.8 0.997 0.508 0.434

Meringer et al. 14 11(9) 4.45 34.4 2.7 0.847 0.759 0.275

Meringer et al. r 14 14 3.29 36.6 1.7 0.941 0.885 0.226

Table 2. Summary statistics for Category 2 by participant, before and after resubmission.
r resubmitted results. Abbreviations: see Table 1 and text.

Participant Subm. Cor(win) Avg. Rank Avg. TC Avg. BC Avg. RRP Avg. wRRP Avg. s̃

Dunn et al. 11 3(2) 5.7 4.7 3.3 0.556 0.606 0.4294

Ruttkies et al. 14 9(2) 401.0 1618.9 138.4 0.813 0.547 0.0041

Ruttkies et al. r 14 14 319.7 1226.3 188.1 0.838 0.616 0.0069

Shen et al. 14 4(2) 5.5 19.4 4.3 0.614 0.520 0.1226

Gerlich et al. 14 11(5) 237.5 1631.2 236.5 0.882 0.864 0.0020

Gerlich et al. r 14 14 305.4 2878.1 304.3 0.873 0.862 0.0010

Oberacher 5 3(3) 1.0 1.2 0.0 − 1.000 1.0000

Meringer et al. 6 5(2) 23.4 307.7 22.4 0.470 0.457 0.0887

Meringer et al. r 6 6 29.2 258.5 28.2 0.551 0.535 0.0741

Although the results from internal participants for Categories 1 and 2 are included in this paper to give
a wider overview of the methods available, the internal participants were not considered in declaring the
winner for the CASMI contest (and would not have won any category if they had been included).



Metabolites 2013, 3 421

3.3. External Participants

The following paragraphs summarise the external participants and their results, counted in declaring
the winner of CASMI. The information about the submissions was taken largely from the abstracts the
participants provided with their entries; for more details see the articles prepared by the participants as
part of this special issue [25–28].

W. Dunn et al. [25] entered both Category 1 and Category 2, using Workflows 1 and 2 of
PUTMEDID-LCMS [32]. The accurate mass and isotope abundance pattern were used to generate one
or more molecular formulas for the challenges in Category 1. In Category 2, automatic and manual
searching for candidate structures was performed using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [33] and ChemSpider [34], in that order, followed by in silico fragmentation with
MetFrag [35] version 0.9 and manual assessment to remove entries considered biologically unreasonable.

Dunn et al. were clear winners of Category 1, supported by the summary statistics presented in
Table 1. Eight answers were correct in first place, one in second place and only two submissions did not
contain the correct answer (Challenge 2, which had 30 ppm error in the original data and Challenge 13,
where the one formula submitted was unfortunately incorrect—the correct formula was absent in the
reference file applied in Workflow 2). The only 3 challenges this team did not enter were Challenges 11,
12 and 16, which showed non-standard ionisation behaviour. Although their average RRP appears poor
(0.5), their average TC is 1.4 and the RRP is only defined when TC > 2.

The team was unable to maintain their momentum in Category 2, where they submitted entries for
the same 11 challenges. The correct answer was present in only three of the 11 entries, but here they
were quite successful and won two of these challenges. Challenge 1 was correct and ranked first (equal
with Oberacher and Gerlich et al.), while for Challenge 5 the correct answer was ranked 4th, higher
than the other three entries (ranks 5, 275 and 386). The entry for Challenge 14 was ranked 12th, behind
Gerlich et al. (rank 1) but in front of two others (ranks 22, 39). The correct answer was missing in the
remaining eight submissions, but Challenges 3 (TS = 0.86) and 10 (TS = 0.84) were very close (see
Figure 2) and Challenge 4 was also quite close (TS = 0.74). As this team have mainly metabolomics
experience, it is not surprising that they were more successful for the first six (metabolomics) challenges,
rather than the environmental challenges.

H. Shen et al. [26] entered Categories 1 and 2 using FingerID [36] to predict the structural fingerprints
of the challenge data, which were then used to search KEGG [33]. Mass spectra from MassBank [37]
were used as training data.

This team submitted entries for all challenges in Category 1, with the correct solution ranked 1 for
three challenges and ranks between 3 and 5 for another five challenges. The correct answer was missing
for the remaining six challenges. This was the only team to get the correct answer for Challenge 2 using
the original data, despite the 30 ppm error. Again, this team was more successful for the metabolite
challenges rather than the environmental challenges.

Shen et al. won two challenges in Category 2, with the answer for Challenge 2 in 1st place
and Challenge 6 in 11th place, higher than the only other participant with the correct entry present
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(Gerlich et al. with rank 25). The correct answer had rank 5 for Challenges 1 and 5, for the latter only
just behind the winner’s rank of 4. The correct entry was missing for the remaining 10 challenges, but
they got close in two cases—Challenge 4 (TS = 0.91) and 10 (TS = 0.84). Since this team based their
searches on KEGG, it is not surprising that they missed the answers for many challenges, especially
Challenges 10–17.

K. Dührkop et al. [27] entered Category 1 with a command line version of SIRIUS, combining isotope
pattern and fragmentation tree scores [38,39]. The PubChem Molecular Formula search [40] was used
to search for a (de)protonated form of the compound, for molecules with an intrinsic charge a protonated
form was also added with a lower score.

SIRIUS performed excellently for Challenges 10–17 with expected ionisation behaviour, with the
correct solution in first place for 5 of these challenges. The non-standard ionisation and in-source
fragmentation of Challenges 11, 12 and 16 lead to an incorrect precursor assignment and the correct
answer was missing in these cases. For Challenges 11 and 16 the correct formula was almost present,
but with the incorrect number of hydrogen—at rank 1 and 5, respectively. The results for Challenges
1–6 (TOF data) were less successful, with ranks 3, 8 and 2 for Challenges 1, 3 and 5, respectively. As
this team used a hard cut-off of 5 ppm (which was the error margin originally quoted on the web),
they missed the correct answer for Challenges 2, 4 and 6 in their original submissions. Using the
recalibrated data, they obtained rank = 2 for these three challenges. Because the mass accuracy decreased
after recalibration for Challenge 5, the rank was worse with the recalibrated data (29, compared with 2
previously). With the removal of interfering peaks in Challenge 12, they achieved a resubmission rank
of 18 for this challenge. Interestingly, although Dührkop et al. improved their number of correct answers
with their resubmission, the results for Challenges 5 and 12 had a negative impact on the overall statistics.

H. Oberacher [28] entered Category 2 using automated searches of 4 spectral libraries. MassBank [37]
was searched for all MS types, METLIN [41] for MS/MS spectra. The MS/MS and Identity searches in
the NIST database [42] were also used, as well as the MSforID search in the ‘Wiley Registry of Tandem
Mass Spectral Data MSforID’ [43,44]. The reference spectra in the different libraries were obtained
on a variety of instruments and analytical settings and are thus not always directly comparable with the
challenge data.

Although only 5 submissions were made, three of these were single suggestions that were correct and
thus the winner in those challenges (Challenges 1, 13 and 15). The correct solution was missing in the
other two submissions, but Challenge 10 was very close (TS = 0.84; positional isomers—see above) and
although Challenge 14 was not too far off (carbazole instead of 1H–benz[g]indole; i.e., a rearrangement
of the aromatic rings), TS = 0.39 indicates only a poor similarity according to the fingerprint we
used. Overall, the results of Oberacher show the power of spectral library searching very well, when the
compound is present in the library—as well as showing the disadvantages when the correct compound
is not in the library.

Oberacher was a deserved winner of Category 2, with clearly the best average rank, only one fewer
submission containing the correct answer than the other two (external) participants in this category and
many fewer “misses”.
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In light of the descriptions above and the summary statistics in Tables 1 and 2, we hope the readers
and participants will agree with us that:

. . . the winner of Category 1 is . . . Dunn et al.

. . . the winner of Category 2 is . . . Herbert Oberacher.

3.4. Internal Participants

Although the colleagues of the organisers of CASMI could not take part in the contest officially, we
took the opportunity to evaluate our approaches on the challenges as well.

We did our best to approach the challenges objectively and did not optimise the parameters or scoring
intentionally to improve the results. However, as our institutes are the sources of the challenges, our
groups obviously have experience with these compounds and it was difficult to be completely objective.
As for the external participants, the information is summarised below and in Tables 1 and 2, while details
are described in separate articles as part of this special issue [29,30].

S. Neumann et al. entered Category 1 using a small script to extract the isotope patterns from the MS
peak lists for processing using Rdisop [7], based on the disop library [8]. No efforts were made to detect
[M+H]+ or adducts as this script was only designed to test the evaluation scripts.

Originally, submissions were made for 13 of the 14 challenges, with 5 entries containing the correct
solution ranked first, one in second place and three others with the correct solution ranked between 5
and 18. Five entries were missing the correct solution, while no submission was made for Challenge 16.
The resubmitted entries were more successful, with six number one ranks and only two challenges
missing the correct solution.

M. Meringer and E. Schymanski [30] entered all categories with different MOLGEN programs.
MOLGEN–MS/MS [45] was used to enter Category 1, using a combined match value calculated from
the MS isotope pattern match and MS/MS subformula assignment. MOLGEN 3.5 and 5.0 [46,47] were
used for Category 2, with substructure information taken from fragmentation patterns and consensus
scoring [48] combining in silico fragmentation results from MetFrag [35] with steric energy calculations
from MOLGEN–QSPR [49]. MOLGEN–MS [50,51] was used for Categories 3 and 4, augmented
with substructure information from the NIST database [42]. Category 4 was scored by combining
MOLGEN-MS fragmentation, MOLGEN–QSPR steric energy and, where applicable, partitioning
behaviour calculated using EPI SuiteTM [52] in a consensus approach [48].

All challenges were entered for Category 1, with the correct solution ranked first for 6 challenges,
three ranked 4th, two lower results (8, 23) and three missing the correct solution. As for the SIRIUS
submissions, this was due to the incorrect 5 ppm error margin. Resubmissions for Challenges 1–6
resulted in a total of 9 number 1 ranks, 3 placed 4th still and two lower ranks (11, 14). In the end this
resulted in more number 1 ranks than the CASMI winner, Dunn et al., but a poorer average rank (3.29,
compared with 1.11 for Dunn et al.).

Submissions were made for 6 of the 14 challenges in Category 2. The correct answer was present
in all entries except one in the first round, with ranks between 3 and 63; two of these entries were
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also the best ranks for these challenges (Challenge 10, 11). These results are very good for structure
generation approaches, but are “best case” results due to the prior experience of the participants with
these and similar compounds. The correct answer was missing for Challenge 17 due to an incorrect
substructure and was rectified after the submission deadline, where the correct answer was present at
rank 58. Although these results are purely indicative and did not run in the competition, they do show
that identification with structure generation is feasible with sufficient substructure information.

C. Ruttkies et al. [29] entered all challenges in Category 2 using MetFrag [35]. The peak lists
were merged and converted into query files containing the exact mass of the precursor ions, which
were deduced from the LC–HRMS/MS challenge data using simple heuristics. This caused incorrect
candidate lists for Challenges 11 and 12, which were resubmitted later with the correct precursor
information. Candidates were obtained from a local PubChem mirror (snapshot from September 2010),
with an exact mass window of 5 ppm (except for the resubmission of Challenge 5, where 10 ppm
was used), which meant that the correct candidate was missing from Challenges 2, 4 and 6 initially.
For Challenges 10–17 the MetFrag score was used alone, while the Metabolite Likeness [53] was also
included in the scores for Challenges 1–6. For the resubmission, an InChI Key filtering was employed
to remove duplicate candidates and stereoisomers.

MetFrag had the highest average rank of all participants (320 following resubmissions—see Table 2),
mainly due to the large candidate numbers that were not filtered manually. For the original submissions,
MetFrag had the best ranked correct answer for two of the challenges (3 and 17) and was thus on par with
three of the other participants who also had two “wins”. For Challenge 3, MetFrag was the only entry
with the correct structure present (see Figure 1), while MetFrag outperformed MetFusion (see below) for
Challenge 17 despite retrieving more candidates for this challenge. Following resubmissions, the correct
solution was present in all MetFrag entries.

M. Gerlich et al. [29] entered Category 2 with MetFusion [14]. Submissions were made for all
challenges. The peak lists were preprocessed as for MetFrag above, except that candidates were obtained
from PubChem online with a default exact mass window of 10 ppm and an additional InChI Key
filtering to remove duplicate candidates and stereoisomers. MassBank [37] was searched for ESI spectra:
following resubmission also including APCI and APPI spectra. All calculations were performed using
the command line version of MetFusion. As for MetFrag, the correct answer was missing for two
challenges initially due to an incorrect precursor mass, while for Challenge 3 the correct solution was
missing due to an incomplete PubChem query.

In the original submissions, MetFusion had the lowest rank for five challenges (1, 4 and 14–16);
three of these with the correct structure also ranked 1st. Two of these (Challenges 1 and 15) were equal
with Oberacher; Challenge 1 also with Dunn et al. After resubmission, three challenges had the correct
answer ranked 1st (Challenges 1, 13 and 14). The average RRP of 0.873 (following resubmissions) is
quite good and the highest of all participants, but the average rank of 305 means that many candidates
still achieve better scores than the correct candidate in most cases. This is supported by the very low
normalised score values. Altogether, MetFusion would theoretically have won seven challenges after
resubmission. The details are given in [29].



Metabolites 2013, 3 425

4. Results by Challenge

In this section we present various statistics of CASMI 2012 by challenge, so readers can judge the
various evaluation measures, the difficulty of the challenges and the success of the different strategies
for themselves.

4.1. Statistics for Category 1

Summary statistics for Category 1 by challenge are shown in Table 3. This table clearly shows which
challenges were relatively easy for the participants and which were more challenging. The results for
Challenge 2 (with recalibrated data for most participants) are quite surprising: despite the highest mass,
and thus, more possible candidate formulas within the error parameters given, the average rank of 1.3
is a fantastic result. Overall, following resubmission all submissions contained the correct answer for 7
challenges (1, 4–6, 10, 14–15), although only two of these had an average rank of 1.0 and could thus be
termed “easy”. Surprisingly for the molecular formula calculation, the average TC is very large, ranging
from 10.8 for Challenge 14 to 2931 for Challenge 2. These values are driven largely by the contributions
of Neumann et al., where no additional heuristics (such as nitrogen rule, double bond equivalents etc.)
were used to filter the candidate formulae, and Dührkop et al., to a lesser extent. This demonstrates that
with so few participants, the averages are heavily weighted by individual contributions and we do not
wish to over-interpret the results here.

Table 3. Summary statistics for Category 1 by challenge, using resubmitted entries where
available. Chal. = Challenge Number; Subm. = Number of submissions; Correct = Number
of submissions with correct answer present. Avg. = average. Other abbreviations: see text.

Chal. Subm. Correct Avg. Rank Avg. TC Avg. BC Avg. RRP Avg. wRRP Avg. s̃

1 5 5 7.4 906.0 6.4 0.761 0.388 0.221

2 5 4 1.3 2931.2 0.3 1.000 0.764 0.228

3 5 4 10.5 802.0 9.5 0.944 0.455 0.253

4 5 5 1.8 143.6 0.8 0.958 0.546 0.175

5 5 5 7.6 142.8 6.4 0.679 0.505 0.250

6 5 5 2.0 319.0 1.0 0.755 0.605 0.236

10 5 5 1.0 29.4 0.0 1.000 1.000 0.718

11 4 1 4.0 53.3 0.0 0.700 0.400 0.200

12 4 3 10.0 229.5 8.0 0.850 0.213 0.042

13 5 3 1.0 89.8 0.0 1.000 1.000 0.714

14 5 5 1.0 10.8 0.0 1.000 1.000 0.801

15 5 5 2.0 18.0 1.0 0.797 0.675 0.540

16 4 1 4.0 294.8 1.0 0.895 0.749 0.082

17 5 4 1.0 21.4 0.0 1.000 1.000 0.857
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4.2. Statistics for Category 2

Summary statistics for Category 2 by challenge are shown in Table 4. The correct answer was
present in all submissions for only two of the challenges, Challenge 1 (kanamycin A) and 5 (reticuline).
Kanamycin A is well-represented in databases, including the relatively small KEGG Compound
database, but the compound would be difficult for structure generation approaches due to the many
possible substitution isomers on the three-ring system (11 substituents and 4 different groups). Reticuline
is also present in KEGG and has quite a distinctive substructure that is also present in the spectrum
(see [4], Figure A5) but the spectrum itself is very noisy and the distinctive peaks do not clearly dominate
in intensity, such that it is very surprising that this challenge was so successful. Challenges 13–15, with
clear and distinctive fragmentation patterns (see Figures A10–A12 in [4]) were quite successful, with the
correct answer present in 4 of 6 submissions for all these challenges. No external participant found the
correct solution for six challenges (3, 4, 11, 12, 16 and 17). Unsurprisingly Challenges 12 and 16, which
caused difficulties in Category 1 already, had the fewest submissions, with only 3 submissions (including
one external participant). Only four challenges had an average RRP > 0.9 (Challenges 2, 3, 12 and 17),
while three of these four (i.e., not Challenge 12) also had wRRP > 0.9. Interestingly, these challenges
had relatively poor normalized scores s̃; the challenges with the highest average s̃ (Challenges 1, 2, 5, 13
and 15) were also those with the lowest average rank, which makes the normalised score an interesting
metric to assess the scoring success.

Table 4. Summary statistics for Category 2 by challenge, using resubmitted entries where
available. Abbreviations: see Table 3 and text.

Chal Subm. Correct Avg. Rank Avg. TC Avg. BC Avg. RRP Avg. wRRP Avg. s̃

1 5 5 2.4 646.2 1.4 0.732 0.818 0.4166

2 4 3 2.7 221.5 1.7 0.996 0.975 0.1012

3 4 2 11.5 1012.0 10.5 0.994 0.931 0.0033

4 4 2 264.0 1617.3 263.0 0.890 0.741 0.0006

5 4 4 668.3 1798.0 664.3 0.630 0.472 0.0842

6 4 3 105.7 2014.5 104.3 0.773 0.641 0.0190

10 6 3 434.7 287.2 427.3 0.391 0.190 0.0022

11 4 3 65.3 487.3 56.7 0.858 0.816 0.0458

12 3 2 86.0 1783.3 83.5 0.971 0.815 0.0045

13 6 4 2.5 736.5 0.8 0.777 0.865 0.3149

14 6 4 16.0 121.7 13.5 0.723 0.565 0.0227

15 6 4 50.3 877.2 48.5 0.700 0.712 0.2579

16 3 2 1649.5 2129.3 766.0 0.574 0.340 0.0001

17 5 3 53.7 727.4 52.7 0.960 0.911 0.0035

5. Discussion

The results for Category 1 show that molecular formula assignment is perhaps not as easy as often
thought. Although all participants used more sophisticated methods than pure accurate mass assignment,
only four of 14 challenges had an average rank of 1. Even the combination of isotope patterns and
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MS/MS information in the automatic approaches of Dührkop et al. and Meringer et al. was insufficient
to define the correct candidate on the top place in many cases. Many of the challenges offered were quite
large (5 > 350 Da) and did not have specific isotope information. The method of Dunn et al., combining
automated searches with expert knowledge, was unbeatable and shows that it is vital to incorporate
additional information into the molecular formula selection already.

The results for Category 2, exemplified in the statistics in Table 4, confirm the general opinion about
structure elucidation via MS. Identification efforts are generally very successful when the compound
is present in a spectral library (especially if the spectrum is from a similar instrument), as proven by
the success of Oberacher’s approach, but elucidation becomes more challenging as soon as no related
compounds are present in a spectral library. Automated approaches such as MetFrag and MetFusion
mean that users can retrieve many candidates from compound databases, but it is plain to see from
the very large candidate numbers (average TC ≥ 1000 for both) that the scoring would have be
phenomenally selective to have a chance; the average ranks of 305 (MetFusion) and 320 (MetFrag),
both following resubmission, show that this is not yet the case. However, both achieved the most entries
with the correct candidate present of all participants, even before resubmission. The contestants that used
methods based on the smaller KEGG database, Dunn et al. and Shen et al., appeared less successful as
they missed the correct solution more often, but had much better ranks in the case where the correct
molecule was in KEGG. Their average ranks of 5.5 (Shen et al.) and 5.7 (Dunn et al.) show that if
sufficient information is available for their methods, they were much closer to the success of Oberacher
than the compound database searching or structure generation approaches. Their results also show the
advantage of using specialised databases in the right context. While structure generation can help in the
case of very specific substructure information, this is not yet automated for MS/MS and novel approaches
such as the maximum common substructure approach can have unexpected pitfalls for compounds with
many possible substitution patterns. Thus, expert and sophisticated interpretation techniques are still
essential for structure elucidation via MS/MS and fully-automated strategies have a long way to go
before they can be applied routinely without extensive interpretation or post-processing of the results.

6. Conclusions and Perspectives

This was the first CASMI contest; it was a pleasure and a privilege to organise it and receive
submissions from such high quality research groups. Despite what appears to be low participant
numbers, it spurred a lot of interest and discussions, including those with colleagues who were unable
to find the time to participate. The results from the participants show that the current state-of-the-art
in identification requires an automated approach combined with expert knowledge for the molecular
formula (i.e., isotope patterns and MS/MS fragmentation are insufficient), while database searching is
unbeatable for structure identification where the structure is present in a spectral library. Automated
methods alone are still unlikely to rank the correct structure among the top candidates without significant
input of expert knowledge. However, such automated approaches are required for higher throughput
routine annotation of MS data in biological applications, non-targeted screening in the environmental
sciences and other fields.
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The next CASMI will be coordinated in 2013/14 by T. Nishioka and a team of Japanese mass
spectrometrists. We are willing to support them with suggestions based on our experience. The
evaluation measures presented here provided a good overview of the strengths of individual approaches,
while using the absolute rank to declare the winner proved to be both simple and most realistic for real
identification challenges. The introduction of a new contest category could be considered, where a list
of candidates is provided along with spectral data for the participants to rank using their methods. This
may improve the comparability between the different approaches.

The organising team of CASMI 2012 look forward to participating in the next CASMI and hope to
see many more participants to support this initiative of providing open data to allow the evaluation of
independent methods on consistent data.
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Appendix

A. Summary of CASMI 2012 Challenges

Table A1. LC Challenges for CASMI 2012.

Challenge Trivial Name Formula

1 Kanamycin A C18H36N4O11

2 1,2-Bis-O-sinapoyl-beta-D-glucoside C28H32O14

3 Glucolesquerellin C14H27NO9S3

4 Escholtzine C19H17NO4

5 Reticuline C19H23NO4

6 Rheadine C21H21NO6

10 1-Aminoanthraquinone C14H9NO2

11 1-Pyrenemethanol C17H12O
12 alpha-(o-Nitro-p-tolylazo)acetoacetanilide C17H16N4O4

13 Benzyldiphenylphosphine oxide C19H17OP
14 1H-Benz[g]indole C12H9N
15 1-Isopropyl-5-methyl-1H-indole-2,3-dione C12H13NO2

16 1-[(4-Methoxyphenyl)amino]-1-oxo-2-propanyl-6-
oxo-1-propyl-1,6-dihydro-3-pyridazinecarboxylate

C18H21N3O5

17 Nitrin C13H13N3

The challenges for CASMI 2012 Categories 1 and 2 (LC–HRMS/MS) are shown in Table A1. A table
with structures as well as PubChem and ChemSpider identifiers is available in [4] and on the CASMI
website [3], along with a CSV file for download.

B. Participant Submissions by Score

In Figures B1 to B6 we present plots of the original participant submissions for Category 2 with
the grey dash representing each candidate scaled by the normalised score. The correct answer (where
present) is circled and marked with a dark green dash; the rank of the correct answer is written next to
this dash. These figures are a useful visualisation of the results.



Metabolites 2013, 3 

CJ) 
ID ....... cu 

"'O 
"'O c cu u 

Figure Bl. Category 2 entries of Dunn et al.: Grey dashes represent candidates, scaled by 
the normalised score. Green circle and dash represent the correct entry (when present), with 
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Figure B2. Category 2 entries of Shen et al.: Grey dashes represent candidates, scaled by 
the normalised score. Green circle and dash represent the correct entry (when present), with 
the rank written adjacent. 
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Figure B3. Category 2 entries of Oberacher et al.: Grey dashes represent candidates, scaled 
by the normalised score. Green circle and dash represent the correct entry (when present), 
with the rank written adjacent. 
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Figure B4. Category 2 entries of Ruttkies et al.: Grey dashes represent candidates, scaled
by the normalised score. Green circle and dash represent the correct entry (when present),
with the rank written adjacent.
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Figure BS. Category 2 entries of Gerlich et al.: Grey dashes represent candidates, scaled by 
the normalised score. Green circle and dash represent the correct entry (when present), with 
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Figure B6. Category 2 entries of Meringer et al.: Grey dashes represent candidates, scaled
by the normalised score. Green circle and dash represent the correct entry (when present),
with the rank written adjacent.
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