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Abstract. Streamflow cannot be measured directly and is
typically derived with a rating curve model. Unfortunately,
this causes uncertainties in the streamflow data and also in-
fluences the calibration of rainfall-runoff models if they are
conditioned on such data. However, it is currently unknown
to what extent these uncertainties propagate to rainfall-runoff
predictions. This study therefore presents a quantitative ap-
proach to rigorously consider the impact of the rating curve
on the prediction uncertainty of water levels. The uncer-
tainty analysis is performed within a formal Bayesian frame-
work and the contributions of rating curve versus rainfall-
runoff model parameters to the total predictive uncertainty
are addressed. A major benefit of the approach is its inde-
pendence from the applied rainfall-runoff model and rating
curve. In addition, it only requires already existing hydro-
metric data. The approach was successfully demonstrated on
a small catchment in Poland, where a dedicated monitoring
campaign was performed in 2011. The results of our case
study indicate that the uncertainty in calibration data derived
by the rating curve method may be of the same relevance as
rainfall-runoff model parameters themselves. A conceptual
limitation of the approach presented is that it is limited to
water level predictions. Nevertheless, regarding flood level
predictions, the Bayesian framework seems very promising
because it (i) enables the modeler to incorporate informal
knowledge from easily accessible information and (ii) bet-
ter assesses the individual error contributions. Especially the
latter is important to improve the predictive capability of hy-
drological models.

1 Introduction

Rational flood hazard management not only requires pre-
dictions of peak flows and associated inundation and water
levels, but also information on their uncertainty (Montanari,
2007; Ramos et al., 2010). In hydrological flood forecasting,
the problem of quantitative assessment and reduction of pre-
dictive uncertainties has been widely recognized (Renard et
al., 2010; Wagener and Montanari, 2011). Recently, a few
frameworks have been proposed to assess the total predic-
tive uncertainty (e.g. Ajami et al., 2007; Beck, 1991; Del
Giudice et al., 2013; Deltic et al., 2012; Kavetski et al., 2006;
Montanari and Koutsoyiannis, 2012; Reichert and Mieleit-
ner, 2009; Renard et al., 2011; Yang et al., 2007; Vrugt et
al., 2008). Typically, the accuracy of model predictions and
uncertainty estimates need to be assessed against calibration
or validation data, which both may be uncertain due to mea-
surement errors. However, it is not clear to what extent uncer-
tainties in calibration data have an impact on the reliability of
flood predictions (Domeneghetti et al., 2012).
Usually, calibration data refer to streamflows for rainfall-

runoff (RR) models. Typically, the influence of the uncer-
tainty in streamflow data for RR models on the predictive un-
certainty is hardly assessed quantitatively by hydrologists in
scientific literature. One reason for this is that streamflow is
usually not measured directly but must be derived from other,
directly measurable quantities such as a water level and ve-
locity with the help of another model. Another is that mod-
ellers often only work with the derived quantities, such as
streamflow, and not with the raw data. Implicitly, the uncer-
tainty in calibration data themselves is assumed to be much
smaller than that from imperfect rainfall information and
to be therefore negligibly small (Di Baldassarre and Claps,
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2011; Di Baldassarre andMontanari, 2009). For example, the
World Meteorological Organisation (WMO, 2008) suggests
that streamflow measurement errors of 5% may be assumed.
This, however, can only be valid when streamflow measure-
ments are of a high quality, e.g. when derived by flow me-
ters with the area-velocity method. This method links stream-
flow to a cross sectional area and a flow velocity, which are
often obtained from manual measurements on a dense grid
for each cross section of interest. It is probably the most
widely used approach to derive streamflows when those are
not directly measured (Di Baldassarre and Montanari, 2009;
WMO, 2008). Unfortunately, the area-velocity method is im-
practicable in the field to obtain continuous or frequent mea-
surements. The method becomes cost-inefficient and time
consuming when numerous records are required because the
grid measurements are labour-intensive. Therefore, stream-
flow is usually computed from water level only as that is sim-
ple to measure and has a small measurement error of 1–2 cm
(WMO, 2008). Usually this water level-streamflow relation
is modelled with a rating curve (RC) that is calibrated for a
certain cross section on area-velocity measurements (Le Coz,
2012). The water level-streamflow relation could also be rep-
resented by a more sophisticated model such as a numerical
hydraulic model (Di Baldassarre and Claps, 2011). Unfortu-
nately, hydraulic models are less practical than rating curves
because they require detailed data on the river channel prop-
erties, which are more often than not unavailable.
RC models, however, should not be considered error-free

for several reasons. First, the RC is based on streamflow
data that are uncertain as they are calculated with a model
(e.g. area-velocity method). Second, the uncertainty of the
RC is caused by parameter uncertainty and structural limi-
tations of the RC. Third, temporary hydrological conditions
such as a seasonal variation of vegetation within the cross
section, stream bed dynamics, debris, ice jams in winter, un-
steady flow conditions and the hysteresis effect add uncer-
tainty to the calculated streamflows (e.g. Di Baldassarre et
al., 2012). Fourth, in most situations the calibration data for
rating curves is limited to normal conditions while flood fore-
casts usually focus on extreme events. This means that the
RC must be extrapolated outside of the observed range (Pap-
penberger et al., 2006). Consequently, all these factors may
introduce a large degree of uncertainty into the streamflow
predictions. Unfortunately, although a number of recent pub-
lications have studied rating curves uncertainties, the contri-
bution of the rating curve to prediction uncertainties has not
yet been investigated systematically.
For instance, Di Baldassarre and Montanari (2009) inves-

tigated uncertainty present in river flow records when derived
with the rating curve method and concluded that those may
include errors of up to 25% of estimates in the extrapolation
range. Moreover, Domeneghetti et al. (2012) showed that
those extrapolation errors dominate over all other sources
of uncertainty in rating curves. The usage of rating curves
to derive streamflows in the extrapolation range was further

investigated by Di Baldassarre and Claps (2011), who rec-
ommended using a numerical hydraulic approach to derive
water level-streamflow curves for cross sections instead of a
traditional extrapolation method. The main drawback of this
approach is that it requires detailed data on the topology and
input. In addition, it is also not free from errors due to (i)
structural limitations of the hydraulic model, (ii) uncertainty
about its parameters and (iii) measurement errors (Di Bal-
dassarre et al., 2012). While exploring the uncertainty of cal-
ibration data is an ongoing issue, considerable progress has
been made in the uncertainty assessment of hydrological pre-
dictive models. The main challenge lies in investigating the
relevance of individual uncertainty sources. In this regard,
several methods have been proposed to separate total predic-
tion uncertainty into the individual contributions from (i) in-
put uncertainty e.g. due to poor rainfall data (Kavetski et al.,
2006; McMillan et al., 2011; Sikorska et al., 2012), (ii) model
structure deficits (Reichert and Mieleitner, 2009; Renard et
al., 2011), (iii) parameter uncertainty (Ajami et al., 2007;
Vrugt et al., 2008) and (iv) measurement errors (Di Baldas-
sarre and Montanari, 2009; McMillan et al., 2010). All of
these studies, however, focus either on the analysis of the pre-
dictive uncertainty of hydrological models with rather crude
assumptions on the uncertainty in calibration data or on the
uncertainty of calibration data alone without considering the
resulting uncertainty in hydrological predictions. However, a
systematic approach to integrate both the rainfall-runoff and
rating curve models is currently lacking. The only attempt to-
wards integration was undertaken by McMillan et al. (2010),
who investigated the impact of errors in streamflow measure-
ments on the streamflow predictions informally. For the ap-
plied resampling approach to construct uncertainty intervals
of the RC model no formal justification is provided. The sub-
sequent calibration of the RR model is based on an informal
likelihood with the help of Monte Carlo Markov chain algo-
rithms. A consequence of the application of an informal like-
lihood function is that the resulting prediction uncertainty is
mapped on the RR model parameters entirely. This prohibits
an assessment of the importance of the different sources of
uncertainty, such as rating curve and rainfall-runoff model
parameters.
In this manuscript, we propose a formal Bayesian ap-

proach to quantify the uncertainty in hydrological predic-
tions of water levels by means of an integrated assessment
of a rainfall-runoff (RR) model and the corresponding rat-
ing curve (RC). This enables the derivation of the predictive
distribution of water levels and to simultaneously assess the
uncertainty contribution of the RC to the total predictive un-
certainty. For the first time, we compare the contribution of
the RC to those of the parameters of the RR model formally.
The ability to predict water level for given rainfall is impor-
tant for design studies and risk assessments. Other methods
that rely water level forecast on the known water level or
streamflow (e.g. Coccia and Todini, 2011) are dedicated for
operational forecasting and are not considered in this paper.
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The proposed approach is readily applicable because no addi-
tional hydrometric data on a rating curve than those already
existing are required. Due to the low data demand and the
possibility to use informative prior distributions, it can also
be applied in poorly gauged catchments.
The remainder of the manuscript is as follows. First, we

demonstrate analytically what implicit assumptions are made
by ignoring the RC uncertainty. Second, we detail our ap-
proach for the joint Bayesian analysis of the RC and the RR
model uncertainty. Third, we demonstrate its feasibility in a
case study on a small catchment in Poland (Warsaw, Sluzew
Creek). Fourth, we discuss the strength and limitations of our
approach and derive practical recommendations as well as di-
rections for future research. Finally, we draw our main con-
clusions.

2 Methods

2.1 Water level-runoff model

Unfortunately, in many hydrological applications streamflow
is not directly measurable, although reliable flood modelling
and prediction ideally requires continuous or frequent mea-
surements. Therefore, streamflow has to be derived from
other, measurable variables by means of a model that con-
verts them into streamflow. Usually, this is done with a water
level-runoff model (LR) that relates the streamflow Qt to the
water level Lt :

Qt = LR(Lt ,θLR) + ELR
t , (1)

where θLR is the parameter vector of the LR and ELR
t is an

error term.
Typically, the LR model (Eq. 1) has empirical parameters

that can only be calibrated if some simultaneous observa-
tions of Lt and Qt are available; Lt is measured directly and
Qt usually indirectly by means of the area-velocity method
(WMO, 2008). Thereby, uncertainties in Qt are about 3–6%
on average but may increase to about 20% under poor mea-
surement conditions (Sauer andMeyer, 1992). The error term
ELR

t therefore represents uncertainties due to the computa-
tion of Qt and due to structural limitations of the LR model.
These are always present, if only due to the hysteresis effect,
where the same Lt can be observed for different Qt at the
rising and the falling limb of a flood hydrograph.

2.2 Rainfall-runoff modelling

Rainfall-runoff models (RR) predict the streamflowQt based
on input information X1:t that typically contains at least
mean areal precipitation within the catchment. Every RR
model can be written as

Qt = RR(X1:t ,θRR) + ERR
t , (2)

where θRR is the parameter vector of the RR model and
ERR

t is an error term. In contrast to common practice, ERR
t

does not necessarily need to have an expected value of zero
(Reichert and Mieleitner, 2009). Therefore, ERR

t here repre-
sents structural deficits of the RR model and all other uncer-
tainty not explicitly accounted for as input uncertainty. Usu-
ally, RR models are calibrated against “measured” stream-
flow (McMillan et al., 2010; Wagener and Montanari, 2011).
The calibration, however, is complicated by the fact that the
output of the RR model (Qt) cannot be measured directly.

2.3 Standard rainfall-runoff model calibration
procedure

RR models are typically calibrated in four steps:

1. The water level is measured and the corresponding
streamflow is computed for few conditions, e.g. with
the area-velocity approach described in Sect. 2.1.

2. Based on these data, the water level-runoff (LR) model
is then calibrated. Mostly, a model according to the
Eq. (1) is used and normally distributed errors with
zero mean are assumed.

3. Streamflow data Q̂t are calculated from the water level
Lt using the previously calibrated LR at the best pa-
rameter estimates while neglecting the error of the LR.

4. The RR model is calibrated to match the computed
streamflows Q̂t . This can be formalized as

Q̂t = LR(Lt , θ̂LR) = RR(X1:t ,θRR) + ERR
t , (3)

where θ̂LR is the parameter vector that led to the best
fit of the LR at step 2.

This procedure might be suitable if only the “best fitting”
parameters are of interest. However, for predictive uncer-
tainty analysis it has two conceptual flaws. First, the error
term of the LR model is “lost” in the third step, which can be
seen by comparing Eqs. (1) and (2):

Qt = LR(Lt ,θLR) + ELR
t = RR(X1:t ,θRR) + ERR

t .

It is important to realize that the remaining error term in
Eq. (3) cannot not include the LR uncertainty, as the RR
model is calibrated against the average value ofQ for a given
water level. Therefore,ELR

t is never “seen” by the RRmodel.
Second, the uncertainty of the estimated parameters θ̂LR is

neglected. Unfortunately, both flaws might lead to overconfi-
dent predictions.

2.4 Modelling water level

The two problems of the RR model calibration procedure
presented above can be circumvented by modelling the wa-
ter level directly. To this end, instead of an RR model, a
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rainfall-water level (RL) model is formulated that relates the
inputs X1:t to the direct measurable water level L1:t . Such a
RL model can be constructed by combining the deterministic
parts of the RR model (Sect. 2.2) with the inverse of the LR
model (Sect. 2.1):

Lt = RL(X1:t ,θRL) + ERL
t = LR−1(Q̂t ,θLR) + ERL

t =
LR−1(RR(X1:t ,θRR),θLR) + ERL

t , (4)

where the parameters of the RL model are denoted by θRL.
ERL

t represents an error term and now includes structural
deficits of both, LR and RR submodels, as well as (a pre-
sumably small) measurement error of the water level. Addi-
tionally, ERL

t will also compensate for all other uncertainty
contributions that are not explicitly accounted for here. Indi-
rectly, input uncertainty is also represented in ERL

t .

2.5 Inference and predictive distribution

2.5.1 Likelihood function

Statistical parameter estimation uses a likelihood function,
which requires assumptions of the error term ERL

t . As it is
well known that the residuals of hydrological models are
heavily auto-correlated (e.g. Sikorska et al., 2012; Yang et
al., 2007), we assume a continuous error process that is
equivalent to a first order autoregressive process and combine
it with a Box-Cox transformation as proposed by Yang et
al. (2007). The advantage of such an error model, in contrast
to the traditional Gaussian approach, which assumes inde-
pendent and identically distributed errors with a zero mean,
is that it helps to meet the underlying statistical assumptions
with regard to temporal autocorrelation and heteroscedastic-
ity (Sikorska, 2012; Sikorska et al., 2012; Yang et al., 2008).
This lumped error model describes all error sources that are
not explicitly acknowledged, here mainly input and structural
uncertainty of the model. The error model parameters (θERL)

are the asymptotic standard deviation (ERL1) and character-
istic correlation time (ERL2) of the autoregressive process.
For details we refer to Sikorska et al. (2012).
The proposed likelihood function has a frequentist inter-

pretation and therefore a maximum likelihood estimation
would be possible. However, RR models are usually over-
parameterized with correlated parameters (Beck, 1991; Wa-
gener et al., 2004). For these reasons, the Bayesian inference
is more suitable for hydrological models as it allows prior
knowledge to be incorporated in the calibration process by
means of a prior probability distribution of the model param-
eters. Thus, identifiability problems in the calibration process
are avoided (Gelman et al., 2003). The same holds for the RL
model.

2.6 Bayesian inference and predictions

Given a likelihood function pRL(L|θRR,θLR,X) of the RL
model and the data {L,X} (where L is the calibration data

and X is the input data), the prior parameter distribution
p(θRR,θLR) is updated as

p(θRR,θLR|L,X) ∝ pRL(L|θRR,θLR,X)p(θRR,θLR). (5)

The knowledge about the future realization of the water level
Lp conditioned on past calibration and input data {L,X} and
future input Xp is described by

p(Lp|L,X,Xp) =
∫ ∫

pRL(L
p|θRR,θLR,Xp)·

p(θRR,θLR|L,X)dθLRdθRR. (6)

For almost all models these distributions must be ap-
proximated by Markov Chain Monte Carlo methods (see
Sect. 2.7).

2.7 Prior distribution of RR and RC model parameters

Several methods are available to define the prior distribution
on RR submodel parameters without a need for calibration
data. One possibility would be to use methods that derive
model parameters from catchment properties, as described
by Sikorska et al. (2012). In contrast, defining the prior dis-
tribution of the LR parameters, and in particular of the RC
method, requires some field observations. An informative
prior on the RC parameters can be easily obtained from al-
ready existing hydrometric measurements of cross-sectional
average velocities and corresponding water levels. Here, we
suggest calibrating the RC as in Eq. (1) with the standard
maximum likelihood method. The distribution of the param-
eter estimator can then be derived using large sample size
properties of the maximum likelihood estimator (e.g. Harrell,
2010) and can serve as a prior afterwards.

2.8 Cross-validation for predictions and prediction
measures

To assess the predictive distribution of water levels, we
performed a leave-one-out cross-validation (e.g. Wang and
Robertson, 2011). Thereby a single event is randomly se-
lected as a validation data and the remaining events as a
model calibration set. The computation was repeated in or-
der to use each event once to validate the model.
The efficiency of model predictions is measured by the

Nash–Sutcliffe (NS) index (Nash and Sutcliffe, 1970) es-
timated for the best model prediction (mode of the poste-
rior). The uncertainty bands are assessed by the data cov-
erage DC (α) (also known as reliability, Del Giudice et al.,
2013; Montanari and Koutsoyiannis, 2012; Sikorska, 2013)
defined as the fraction of the data covered by the prediction
interval given by the α/2-quantile and the (1-α/2)-quantile.
Theoretically, the DC (α) should be larger or equal to 1-α.

2.9 Influence of the RC on total prediction uncertainty

To assess the influence of the RC on total prediction uncer-
tainty, we compare it to the uncertainty of the RR model
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by means of a sensitivity analysis (Table 1). To this end,
we compare the total prediction uncertainty to two scenar-
ios where either the RR parameters (A) or the RC param-
eters (B) are kept constant at the maximum of their poste-
rior marginals. Remaining parameters are sampled from the
posterior distribution conditional on the maximal posterior
marginals of those parameters that are kept constant in each
of two scenarios (RR in A and RC in B). Then, we compare
the uncertainty of each scenario to that of the total predic-
tive distribution. The reduction of uncertainty then indicates
the relative importance of the RR and RC components. This
comparison of prediction uncertainty is preferable to a local
sensitivity analysis because it takes into account estimated
mutual interactions between the parameters.

2.10 Implementation

The RL model and the inference procedure were imple-
mented in R (R Development Core Team, 2011). The pos-
terior probability distribution was sampled with the adaptive
Monte Carlo Markov Chain (MCMC) algorithm proposed by
Haario et al. (2001). Specifically, we used the implementa-
tion of Chivers (2012) to produce three chains with 100 000
samples each. The number of samples and chains resulted in
a reasonable compromise between fully exploring the poste-
rior distribution and fast computations.
The R script is available on request from the corresponding

author.

3 Case study

3.1 Test catchment and data

For a case study, we chose the upper part of the Sluzew
Creek catchment (Warsaw, Poland), which has an area of
about 28.7 km2 (Ared: 18.3 km2) (see Fig. S1 in Supple-
ment). Sluzew Creek is a third-degree watercourse and a trib-
utary of the Wilanowka river, which flows into the Vistula
River. The catchment is located in the lowland and is there-
fore rather flat, with an elevation from 95m to 110m above
sea level and surface runoff dominated by land use charac-
teristics. The Sluzew Creek catchment has undergone rapid
urbanization in the last three decades and today urban ar-
eas cover 58.7% of the catchment. As a consequence, it is
strongly affected by floods dominated by torrential rainfalls
which mostly occur during spring-summer seasons and in the
lower (highly urbanized) part of the catchment (Sikorska and
Banasik, 2010; Sikorska et al., 2012). Although the catch-
ment is partly urbanized and a few anthropogenic hydraulic
infrastructures are located along the stream, the streamflow
is not disturbed during ordinary to middle-high flow con-
ditions (Barszcz, 2009). At the analysed gauging profile an
undisturbed streamflow is observed till the water level ex-
ceeds 180 cm (see Fig. 1). For more details on the case study,
the reader is referred to Banasik et al. (2008) and Sikorska

Table 1. Uncertainty analysis scenarios. θRR – parameters of the
RR submodel, θRC – parameters of the RC submodel, θERL – pa-
rameters of the RL lumped error model (ERL).

Scenario θRR θRC θERL

A x o x
B o x x

Note: x – uncertainty explicitly accounted for,
o – uncertainty neglected (parameters kept at
the maximum of the posterior).

and Banasik (2010). As for most small catchments, no rou-
tine monitoring programme exists. We therefore performed
our own monitoring program that consisted of regular mea-
surement of precipitation data (3 locations) and stream water
levels at the catchment outlet (Supplement). In addition, we
measured a cross-sectional streamflow during a set of field
experiments by means of the area-velocity method (WMO,
2008), see Fig. 1.
In total, data on 8 storm events were collected during

2011 which were all used in cross-validation (Sect. 2.6.).
An empirical RC was constructed based on 11 water level-
streamflow records using a power-law model and the recom-
mended range for its extrapolation was set at 180 cm (see
Fig. 1). This water level was not exceeded for any of the anal-
ysed storm events.

3.2 Water level-runoff submodel

As an LR in Eq. (1), we used a power law equation, which
is widely used as a rating curve (Di Baldassarre and Claps,
2011; Domeneghetti et al., 2012). It fits our observations well
(Fig. 1):

LR(Lt ,θRC) = RC1(Lt −RC2)RC3 ⇔ LR−1(Qt ,θRC) =(
Qt

RC1

)1/RC3
+RC2, (7)

where the parameters of the LR submodel are here combined
to θRC = {RC1,RC2,RC3}. Alternatively, if a single power
law equation does not fit the observed data sufficiently well,
more sophisticated structure of a RC (Dottori et al., 2009)
or a non-stationary RC (Westerberg et al., 2011) could be
applied.

3.3 Conceptual rainfall-runoff submodel

We applied a simple, conceptual, event-based RR model that
combines the SCS-CN method (Mishra and Singh, 2010)
to separate the effective rainfall from the total precipita-
tion with an instantaneous form of unit hydrograph model
(IUH) (Khaleghi et al., 2011; Nash, 1957). The parame-
ters of the applied RRmodel, θRR = {RR1,RR2,RR3,RR4},
are: catchment area (RR1), maximal potential retention of a
catchment (RR2), retention time of a linear reservoir (RR3)

www.hydrol-earth-syst-sci.net/17/4415/2013/ Hydrol. Earth Syst. Sci., 17, 4415–4427, 2013
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Fig. 1.Monitoring cross section (left and middle) and prior information on the rating curve (right); the reference point for both is a cease-to-
streamflow reference level; dashed grey lines depict observation range, upper grey line cuts off a justifiable extrapolation range from the valid
bathymetric profile (till flood plains); right figure: black dots illustrate measured water level-streamflow relations, black solid line presents
prior mean rating curve.

and the number of identical linear reservoirs (RR4). The RR
model based on the SCS-CNmethod, due to the limited num-
ber of parameters, is a common choice to model the direct
surface runoff in rainfall-runoff processes in (small) catch-
ments with no long time series available (e.g. Seibert, 1999;
Sikorska et al., 2012). Lumped models are justified when the
modelling focus lies in the catchment outlet only (Coutu et
al., 2012). Such models, due to their simplicity and trans-
parency of modelled patterns, are frequently used as an ap-
plication example for uncertainty analysis approaches (e.g.
Blöschl and Montanari, 2010; Dotto et al., 2012; Sadegh and
Vrugt, 2013; Seibert and McDonnell, 2013; Uhlenbrook et
al., 1999).

3.4 Formulating prior knowledge on the RR and LR
model parameters

The prior distribution for the parameters of the RR and LR
submodel has been derived from catchment characteristics
as described in Sikorska et al. (2012). For the RC submodel
parameters θRC, the prior was inferred from reference mea-
surements of water level and velocity (Sect. 2.5.3) shown in
Fig. 1. To allow for a fair comparison of RC and RR er-
ror contributions, we only used data from a relatively short
period. This should avoid bias due to seasonal or long-term
changes, such as changes in the catchment land use and sur-
face properties or cross-section geometry. The prior for the
parameters of the error model (θERL) is more difficult to
specify because they do not have a direct physical interpre-
tation. To express this lack of knowledge, we selected rather
wide distributions (see also Table 2). Correlation between pa-
rameters was only considered in the prior for θRC as their in-
teraction is known from the maximum likelihood estimation
(see Sect. 2.5.2). The other parameters were assumed to be
independent, which is common practice in uncertainty stud-
ies (e.g. Reichert and Schuwirth, 2012; Sikorska et al., 2012).

Fig. 2. Prior (solid line) and posterior parameter distribution (grey
area); RR parameters (θRR), RC parameters (θRC) and ERL

lumped error model parameters (θERL).

3.5 Results

3.5.1 Results of the statistical inference

The RL model described in Sect. 2.4 was calibrated and
validated using the leave-one-out cross-validation method
(Sect. 2.6.) with all eight recorded rainfall-water level events.
All parameters (θRR, θRC, θERL) were inferred simultane-
ously and the posterior parameter distribution was obtained
from a calibration where all eight events were used simulta-
neously. For the parameters of the Box-Cox transformation,
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Table 2. Prior distribution derived for the Sluzew Creek. θRR – parameters of the RR submodel, θRC – parameters of the RC submodel,
θERL – parameters of the RL model error term (ERL).

Expected value (E) and
Model/ parameter/name and meaning Distribution standard deviation (SD)

Rainfall-water level (RL) model (θRL)

Rainfall-runoff (RR) submodel (θRR)

RR1 area of a catchment [km2] Normal E = 28.3; SD= 2.8
RR2 max potential retention of a catchment [mm] Log-normal E = 55; SD= 33
RR3 retention time of a linear reservoir [h] Log-normal E = 2.0; SD= 1.0
RR4 number of linear reservoirs [–] Log-normal E = 3.2; SD= 1.0

Rating curve (RC) submodel (θRC)

RC1 coefficient, or streamflow scale [–]

Multivariate

E = −7.5; SD= 1.1
RC2 location parameter, or cease to streamflow-water

normal
E = 16.8; SD= 6.6

level, in units of the water level, e.g. [cm]
RC3 exponent, linked to the type and shape of the E = 0.6; SD= 0.1

hydraulic control [–]

Lumped error model (ERL) (θERL)

ERL1 asymptotic standard deviation of the errors [cm] Gamma E = 2; SD= 2
ERL2 characteristic correlation time of the autoregressive Gamma E = 300; SD= 200

process [min]

Fig. 3. Posterior parameters correlations; RR1:RR4 – RR parame-
ters (θRR), RC1:RC3 – RC parameters (θRC) and ERL1:ERL2 –
ERL lumped error model parameters (θERL).

we used λ1 = 0.5 and λ2 = 0, which proved to be a good as-
sumption for this catchment (Sikorska et al., 2012).
In general, the marginal posterior distributions of the

model parameters (θRR, θRC) show a similar shape as the
prior but, as expected, have smaller variances (Fig. 2).

The two RR parameters (θRR) indicate that the average
rainfall-runoff process in Sluzew Creek is described by about
1.8 reservoirs (RR4) with a relatively short retention time
(RR3) of 4.9 h. Two other RR parameters (RR1 and RR2)
suggest that, first, during heavy rainfalls only a fraction of the
catchment area, which is probably impervious and closely lo-
cated to the stream, contributes to the surface runoff (RR1).
Second, during intensive precipitation the catchment reten-
tion is less important for surface runoff (RR2). This is rea-
sonable for a small and urbanized catchment, where the re-
sponse of the catchment to heavy rainfalls is expected to be
rapid. Note, however, that the estimation of the RR model
parameters is not the scope of this paper. For more detailed
discussions of the case study results, the reader is referred to
Sikorska et al. (2012).
The posterior of the RC parameters (θRC) is very similar

to the prior. This was more or less expected because mea-
suring rainfall input and water level output is not the ideal
experimental context to learn about the RC parameters. This
also emphasizes the importance of obtaining an informative
prior distribution as described in Sect. 2.5.3. Additionally, a
strong correlation between all RC parameters was observed
(see Fig. 3). Moreover, we observed a significant correlation
between RR and RC parameters (Fig. 3). Intuitively, this can
be explained by a mutual compensation of both submodels.
Finally, for both of the lumped error model parameters

(θERL) information was gained from the data. However, the
interpretation of these parameters is not straightforward since
they do not have an obvious physical meaning. This is further
discussed below.
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Fig. 4. Diagnostic plot of innovations and residuals for chosen events (No. 5, 6, 7); lumped error model: sequence of innovations (top row)
and autocorrelation function (ACF) of standardized innovations (middle row); traditional error model: ACF of standardized residuals (bottom
row).

Figure 4 presents a diagnostic analysis of model innova-
tions in the continuous autoregressive error model for se-
lected events. This error model does not assume that the
residuals are independent and identically distributed (i.i.d.),
which is necessary for the standard Gaussian error model.
Instead, the innovations of the stochastic process have to
be i.i.d. The autocorrelation function of the innovations is
shown in the top row in Fig. 4. While for some events a
slight autocorrelation still remains (see also Supplement), the
statistical assumptions are much better fulfilled than for the
assumption of a standard Gaussian error model (Fig. 4, bot-
tom row). The residuals were computed as a difference be-
tween observed and simulated values corresponding to the
best model prediction. In addition, the innovations are less
heteroscedastic compared to the residuals (Fig. 4, middle
row). Details regarding the statistical assumptions are also
further discussed below.

3.5.2 Total predictive uncertainty and model
performance

To approximate the total predictive uncertainty, a Monte
Carlo simulation with 100 000 runs was performed, draw-
ing repeatedly from the full posterior parameter distribution
obtained from the leave-one-out cross-validation (Sect. 2.6).
Therefore, the predictive uncertainty bands for each event are
the result from a calibration without this event; eight inde-
pendent MCMC chains were generated for every calibration
set of seven events and validated on the remaining one (see
Sect. 2.8). The 2.5% and 97.5% quantiles were computed

and the corresponding 95% predictive uncertainty bands for
three events are presented in Fig. 5a (middle row – grey poly-
gons); solid blue lines correspond to the predictions using the
mode of the posterior density.
The 95% total predictive uncertainty bands obtained,

when accounting for both RR and RC parameters uncer-
tainty, are on average 15% higher than peak water levels
during rainfall-runoff events. Maximum deviations are up to
50% higher than the observations.
For all events, the data coverage DC (1− 0.95) is 0.7 (see

Sect. 2.7), whereas 26% of data points lie above and 4%
below the upper and lower limits, respectively. The uncer-
tainty bands properly cover most of the events, except events
2 and 8, for which larger deviations were obtained (see Sup-
plement). The deviations for event No. 2 can be explained by
changing external factors such as additional water discharges
from sewage systems or overland flows. In contrast, the de-
viations for event No. 8 nicely illustrate the consequences of
extrapolating the rating curve beyond its justifiable range by
the upper limit of the uncertainty interval (Supplement): the
approximated uncertainty bands are clearly overestimated.
Such a high water level as predicted by the model would
most likely not occur in reality because of overland flow out-
side the flood plains (compare to the Fig. 1). As this pro-
cess cannot be modelled accurately with the applied RL, data
coverage is poor and the prediction uncertainty bands are
not reliable (see Discussion). Excluding these two events,
DC (1− 0.95) is 0.86.
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Fig. 5. (a and b) Predicted water levels in the Sluzew Creek using the posterior parameter distribution (events No. 5, 6, 7). (a) Total predictive
uncertainty. Middle row: observations (dotted black lines) and predicted water levels corresponding to the mode posterior values (solid blue
lines). Grey areas present 95% total prediction uncertainty bands, dashed grey horizontal line cuts an extrapolation range for the RC from
Fig. 1. Bottom: influence of the RC parameters. Grey areas describe 95% total prediction uncertainty bands, red lines illustrate 95% limits
for the predictive uncertainty bands whilst ignoring uncertainty in RR parameters (scenario B), green lines illustrate 95% limits for the
predictive uncertainty bands whilst ignoring uncertainty in RC parameters (scenario A). (b) Zoom in of the uncertainty bands in the range of
the runoff peaks. Visibly similar contribution of the RR and RC uncertainty.

The obtained average Nash–Sutcliffe index for the best
model prediction (mode) during the validation mode was
0.61 over all events and 0.69 when excluding events No. 2
and 8. This can be considered as satisfying for the simple
hydrological model applied here.

3.5.3 Influence of the RC parameter

The contribution of the RC model parameter to the total pre-
dictive uncertainty is shown in Fig. 5, and is assessed under
two scenarios as described in Sect. 2.7 (Table 1).
The corresponding predictive uncertainties were found to

be almost of the same relevance for both scenarios A and B
(RR vs. RC). A difference in the contributions is less than
1% (mean) in the validation mode, with a slight dominance
of the RC uncertainty (scenario B). This can be visually seen
on the bottom of Fig. 5a, where both RR and RC uncertain-
ties intervals lie close to each other and to the total predictive
uncertainty limits. This would suggest, first, that the uncer-
tainty in RR and RC parameters leads almost to the same
predictive uncertainties of water level in the Sluzew Creek
catchment, at least at this monitored cross section. Second,
for this particular case study the uncertainty of RC and RR
parameters around their mode could also be neglected since
both contribute much less to the total predictive uncertainty
than the uncertainty of the runoff-water level model structure

alone (bottom row of Fig. 5a and b). This, however, is not
transferrable to other case studies, and a previous estimation
of the importance of the parameter uncertainties is difficult.
Therefore, the analysis which we suggest should be repeated
for the case study of interest. In addition, the model struc-
ture error contribution is not easy to interpret since the error
model lumps all structural errors into one process: in RC, RR
and RL itself, and likewise for other uncertainties which are
not explicitly considered here, such as the input uncertainty.
Further explanation is provided in the Discussion (point ii).

4 Discussion

In the study presented, we proposed an approach to assess the
uncertainty of water level predictions with consideration of
the uncertainty of the rating curve. To better interpret the re-
sults, we would like to discuss (i) the specific water level pre-
dictions for Sluzew Creek, (ii) methodological aspects, joint
uncertainty assessment and its limitations, and (iii) implica-
tions for practical applications and future perspectives.
Regarding the case study results, generally, the interpre-

tation of estimated parameters is always tenuous as param-
eters lose (some degree of) their physical meaning during
a calibration process if the model structure is not perfect
(Wagener and Gupta, 2005). The posterior distribution of the
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RR parameters suggests that the Sluzew Creek catchment
responds rapidly to heavy rainfalls and that only a part of
the catchment contributes to the streamflow observed in the
stream. This may be explained by the fact that, as in every
event-based model, only the direct runoff which occurs dur-
ing the first phase is modelled, while a slower runoff due to
the catchment retention is omitted. Also other discharges that
are drained by the canalization network are not modelled.
These findings correspond to the results of a previous

study from the same catchment that used a different data
set and a different model (Sikorska et al., 2012). As that
study focused on streamflow predictions, whereas here we
investigate water levels, the parameter estimates cannot be
directly compared. Specifically, the parameters compensate
differently for the structural limitations of the hydrological
models.
In this case we found that the contribution to the total pre-

dictive uncertainty of the RC and RR parameters is small,
with a slight dominance of the RC submodel. However, those
findings are strongly case related and cannot be directly
transferred to other catchments. Therefore, for future stud-
ies we suggest performing first the uncertainty analysis pro-
posed by us to pinpoint individual contributions. Clearly, the
largest contribution still remains the structural uncertainty of
the RL model itself. The uncertainty of the LR model stems,
however, not only from the uncertainty about its parameters.
Additional uncertainty contributions are errors due to struc-
tural limitations of the LR and measurement errors of the
water level. These are included in the autocorrelated error
term, which also lumps all uncertainties of the RR model
that are not explicitly considered, such as the input uncer-
tainty in rainfall data. Therefore, these uncertainties cannot
be separated here and we only compare the uncertainty con-
tribution from the parameters of the two submodels (RC ver-
sus RR). Although we did not attempt to separately assess all
uncertainty contributions, it is conceptually straightforward
to extend this framework with an explicit model for input
uncertainty (e.g. rainfall multipliers) (Kavetski et al., 2006).
Practically, the computational effort could be limiting.
Additionally, the comparably large contribution of the

model structure uncertainty of the simplified rainfall-runoff
model is interesting. Such simplified models only have a few
parameters. They are therefore convenient for flood predic-
tions when only limited data are available so that the appli-
cation of structurally more complex models is not possible.
As our case shows, simple models can predict flood events
satisfactorily as long as the rainfall-runoff in the catchment
follows conventional rainfall-runoff processes i.e. in natural
catchments or when the streamflow is not disturbed due to
external factors (e.g. hydraulic infrastructure). However, all
models are limited in predicting extreme flood events where
unforeseen interactions occur, e.g. external processes that are
not included in the model structure. This also explains why
the statistical assumptions with respect to the innovations
in the applied lumped error model are sometimes violated.

Where this is critical, different error models or transforma-
tions could have also been investigated (Del Giudice et al.,
2013).
It must be also stressed that the applied RR model, as

an event-based model, is limited to model only the rainfall-
runoff process within the catchment while omitting other wa-
ter balance components such as groundwater, base flow and
evapotranspiration. Such simplified lumped models are espe-
cially useful when only the output of the catchment, but not
the processes within the catchment, is of interest.
In our view, the simplified model structure also explains

the dominating uncertainty contribution of the lumped error
model. On the one hand, the limited-model structure causes
large systematic errors in the predictions. On the other hand,
a few model parameters (here: seven) have a relatively well-
defined prior. Together with the larger number of observa-
tions (here: ca. 2000 data points), this results in a very nar-
row posterior distribution. While parameter uncertainty gets
smaller as more data are available, the existing model struc-
ture deficits, as well as input errors, remain the same; hence
the variance of the lumped error term remains the same, i.e.
large.
The approach presented is only useful if the water level is

the quantity of interest. While this is the case in many situa-
tions, namely for predicting flood hazard or inundation risk,
other applications require streamflow predictions, e.g. sizing
a culvert or operating a reservoir. If the water level is mod-
elled, streamflow is an internal state of the RL model for
which no probabilistic statements can be made. Conceptu-
ally, an extension that enables the calculation of the predic-
tive distribution of streamflow is possible so that the stream-
flow is inferred for all points in time. A similar problem
is solved with rainfall multipliers when input uncertainty is
considered explicitly and the “true” rainfall must be inferred
(see Sikorska et al., 2012). Rainfall multipliers represent a
single correction factor per rain event, which is estimated si-
multaneously with the model parameters. This is very useful
to reduce the number of inferred parameters. However, in the
case of inferring streamflow, a similar useful simplification
is not obvious because streamflow cannot meaningfully be
divided into events. This requires further research.
Regarding flood level predictions, the Bayesian framework

seems very promising because it enables the modeler to in-
corporate informal knowledge from easily accessible infor-
mation. In addition, the uncertainty of the LR model and
a rating curve in particular may be significant for poorly
gauged stream gauges. For practical applications, it is im-
portant to update it frequently to reduce the uncertainty of
the LR model. This is especially important for dynamic
catchments, where cross sections change seasonally or with
changing land use. To avoid such problems in a practical set-
ting, remote sensing data from satellites could be incorpo-
rated to reduce the uncertainties of already existing rating
curves (Di Baldassarre and Uhlenbrook, 2012). Also popu-
lar nowadays are social networks (e.g. Facebook or Twitter),
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which may be used; e.g. flood-observer groups1 might pro-
vide valuable information to calibrate models a posteriori.
Another important point concerns predictions beyond the

valid extrapolation range of a rating curve. This is always
challenging and should be done based on a cross-section
analysis. Predicted uncertainties outside of a reasonable
range cannot be treated as reliable. This could be improved
by performing more streamflow-water level measurements
during flood flows, especially during flood peaks. Improving
the observations is an obvious way to improve flood predic-
tions. In this regard, flood predictions and the uncertainty due
to model parameters could generally benefit from gathering
more calibration data. However, under changing conditions
of the catchment (e.g. urbanization), its characteristics can-
not be considered stationary. This is a general problem of
every model applied for long-term predictions. A model cal-
ibrated under certain (stationary) conditions cannot forecast
the catchment response under (unknown) changed conditions
but only makes predictions for the given situation (Blöschl
and Montanari, 2010). If one is interested in modelling the
catchment behaviour for different conditions, the parameters
have to be modified accordingly.
Another strategy to improve the predictive capability of

the model can be the reduction of hydrological model struc-
ture deficits. Although the model accuracy usually increases,
this must not necessarily lead to reducing the predictive un-
certainty because of increasing parameter uncertainty (Siko-
rska, 2013). Yet, to effectively reduce structural deficits
of the model the associated uncertainties of model predic-
tions need to be explicitly decomposed. This requires go-
ing beyond the lumped error model and assessing the influ-
ence of the individual uncertainty contributions. Reichert and
Schuwirth (2012) and Reichert and Mieleitner (2009) have
suggested possible procedures that seem promising.
The value of our work is that we provide a method to sys-

tematically incorporate the uncertainty of the calibration data
in rainfall-runoff modelling and showed the deficits of the
usually applied calibration procedure of RR models. This is
especially important since uncertainty analysis or, more gen-
erally, flood predictions cannot be assumed reliable if they
rely on unreliable data. The proposed procedure can be com-
bined with approaches to further decompose the predictive
uncertainty.

5 Conclusions

In this study, we proposed an innovative approach to quan-
tify the complete uncertainty in water levels predictions by
means of an integrated assessment of the rainfall-runoff
model and the corresponding water level-runoff model,
which typically is a rating curve. Specifically, we use
a formal Bayesian framework to assess the uncertainty

1E.g. user group “Flood Group UK”, https://www.facebook.
com/floodgroupuk?ref=ts&fref=ts.

contributions of the parameters of the rainfall-runoff and wa-
ter level-runoff models to the total predictive uncertainty. By
modelling water levels directly, we avoid the unjustifiable as-
sumption that the calibration data are free of errors. Based on
our main results we conclude that:

– Our approach is formulated generally and not limited
to the rainfall-runoff and rating curve submodels pre-
sented.

– In addition, it is not data-demanding since it requires
only already existing hydrometric data on a rating
curve. Using informative prior distributions makes it
also applicable to poorly gauged catchments.

– For structurally simple models, the fulfilment of sta-
tistical assumptions is, arguably, not always perfect.
However, the autocorrelated lumped error model ful-
fils the underlying statistical assumptions much better
than the traditional i.i.d. error model.

– As expected, our results demonstrate that predicted
water levels are unrealistic and usually overestimated
when the rating curve is extrapolated outside the per-
missible range. This range is not necessarily equal
to the measurement range, especially for irregular or
complicated bathymetric profiles. Therefore, it is cru-
cial to continuously update the applied rating curve.

– In the case study presented, the uncertainty contri-
bution from the rating curve parameters was as rele-
vant as that from the rainfall-runoff model parameters.
However, such uncertainty contributions are strongly
case-related and greatly depend on the available mon-
itoring data, chosen submodel structures, and catch-
ment and cross-section properties. Therefore they can-
not be generalized. In our view, to assess the uncer-
tainty contribution from a rating curve requires repeat-
ing the uncertainty analysis proposed in this study.

– The main limitation of the approach presented is that
it is limited to water level predictions. Future research
should, on the one hand, concentrate on extending the
approach to streamflow, which is often not measured
directly. On the other hand, it is important to further
improve the assessment of the individual uncertainty
contributions to obtain better flood predictions.

Supplementary material related to this article is
available online at http://www.hydrol-earth-syst-sci.net/
17/4415/2013/hess-17-4415-2013-supplement.pdf.
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