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Abstract. Spatially distributed models are popular tools in

hydrology claimed to be useful to support management de-

cisions. Despite the high spatial resolution of the computed

variables, calibration and validation is often carried out only

on discharge time series at specific locations due to the lack

of spatially distributed reference data. Because of this restric-

tion, the predictive power of these models, with regard to pre-

dicted spatial patterns, can usually not be judged.

An example of spatial predictions in hydrology is the pre-

diction of saturated areas in agricultural catchments. These

areas can be important source areas for inputs of agrochemi-

cals to the stream. We set up a spatially distributed model to

predict saturated areas in a 1.2 km2 catchment in Switzerland

with moderate topography and artificial drainage. We trans-

lated soil morphological data available from soil maps into

an estimate of the duration of soil saturation in the soil hori-

zons. This resulted in a data set with high spatial coverage

on which the model predictions were validated. In general,

these saturation estimates corresponded well to the measured

groundwater levels.

We worked with a model that would be applicable for man-

agement decisions because of its fast calculation speed and

rather low data requirements. We simultaneously calibrated

the model to observed groundwater levels and discharge. The

model was able to reproduce the general hydrological be-

havior of the catchment in terms of discharge and absolute

groundwater levels. However, the the groundwater level pre-

dictions were not accurate enough to be used for the pre-

diction of saturated areas. Groundwater level dynamics were

not adequately reproduced and the predicted spatial satura-

tion patterns did not correspond to those estimated from the

soil map. Our results indicate that an accurate prediction of

the groundwater level dynamics of the shallow groundwater

in our catchment that is subject to artificial drainage would

require a model that better represents processes at the bound-

ary between the unsaturated and the saturated zone. However,

data needed for such a more detailed model are not gener-

ally available. This severely hampers the practical use of such

models despite their usefulness for scientific purposes.

1 Introduction

Spatially distributed models are popular tools in hydrology.

They are claimed to be useful for supporting decisions in wa-

ter resources management (e.g. Lyon et al., 2006; Heathwaite

et al., 2005; Frey et al., 2009; Agnew et al., 2006). Despite

the high spatial resolution of the computed variables, cali-

bration and validation is often carried out only on discharge

time series at specific locations due to the lack of spatially

distributed reference data (Srinivasan and McDowell, 2009).

Furthermore, distributed models typically have a large com-

putational demand because calculations are performed on

several tens of thousands or hundreds of thousands of cells.

This huge resource requirement prevents meaningful uncer-

tainty analysis that would require ten thousands of model

runs. The predictive power of these models, with regard to

predicted spatial patterns, can usually not be judged because

of these restrictions.

An application of spatial predictions in hydrology is the

forecast of critical source areas (CSAs) for diffuse pol-

lution in agricultural areas (Pionke et al., 1996). Several
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studies have shown that the contributions of different fields

within a catchment to diffuse pollution can differ signif-

icantly (Gomides Freitas et al., 2008; Leu et al., 2004b;

Louchart et al., 2001). This implies that a relatively small

proportion of a catchment can cause the major part of sur-

face water pollution. An area has to be hydrologically ac-

tive to be a CSA. Under typical Swiss climatic and topo-

graphic conditions and for most pollutants except for nitrate,

this means areas where surface runoff and/or macropore flow

occur (Pionke et al., 1996).

If CSAs can be reliably predicted, this offers efficient mit-

igation options, because actions on a small proportion of the

area can strongly reduce the substance input to the stream.

Basically there are two strategies to identify CSAs. They can

be identified in the field or recognized from predictions by

a model that captures the dominant features of the underly-

ing mechanisms. The identification in the field is rather time

consuming; it requires extensive field visits by experts and

interviews with the local farmers. A model prediction can

have advantages over the field identification with respect to

the consistency of the CSA identification in a larger area and

time demand.

Several studies have been carried out to predict CSAs for

different substances (nutrients, pesticides and sediment) on

field and catchment scale (e.g. Srinivasan and McDowell,

2009; Lyon et al., 2006; Heathwaite et al., 2005; Agnew

et al., 2006; Easton et al., 2008) with a variety of differ-

ent modeling approaches (see Borah and Bera, 2003, for re-

view on model concepts for diffuse pollution). Process-based

models were found to be more suitable for CSA prediction by

Srinivasan and McDowell (2009).

If the source areas of pollutants are known based on spa-

tial crop information, the prediction of CSAs reduces to

a purely hydrological problem where hydrologically active

areas (Ambroise, 2004) and their connectivity to the stream

have to be identified. In this paper we focus on the prediction

of areas that can become saturated and produce saturation-

excess overland flow because of high groundwater levels.

Previous studies have demonstrated the relevance of this pro-

cess for herbicide transport under conditions prevailing in

the Swiss Plateau (Leu et al., 2004a). In contrast to areas

where infiltration-excess overland flow occurs, the locations

of saturation-excess overland flow areas on agricultural fields

are temporally more stable across rainfall events of simi-

lar magnitude. This is because saturation excess areas on

agricultural fields do not strongly depend on land manage-

ment and soil coverage. They are influenced more by topo-

graphic position and hydrological subsoil properties (Lyon

et al., 2006; Gerits et al., 1990; Doppler et al., 2012).

A main problem with the prediction of CSAs is the lack of

spatial data on hydrological state variables. Predicting hydro-

logical conditions that generate CSAs would require a physi-

cally based, fully distributed, integrated surface–subsurface

model of catchment hydrology. Such models – like SHE

(Abbott et al., 1986) and its derivatives or HydroGeoSphere

(Brunner and Simmons, 2012) – could theoretically be ap-

plied without calibration given full catchment information.

However, since it is not possible to get full spatial informa-

tion on catchment structure and status and because there are

still considerable knowledge gaps (Refsgaard et al., 2010),

spatially distributed models are often calibrated on aggre-

gate data (like discharge measurements at specific locations)

(Frey et al., 2011). However, the model parameters and even

the model structure are only poorly identifiable when no spa-

tial data are used for calibration (Grayson et al., 1992a, b).

For several versions of the semi-distributed TOPMODEL it

was shown that especially the transmissivity parameter can

be better identified if spatial data on groundwater levels or

saturated areas were included for calibration (Franks et al.,

1998; Lamb et al., 1998; Freer et al., 2004; Blazkova et al.,

2002; Gallart et al., 2007).

Soil maps are spatial databases that exist for many loca-

tions. Besides soil texture information, qualitative informa-

tion on soil types can be used too in the context of hydro-

logical models. Hrachowitz et al. (2013) state that hydro-

logically meaningful soil classification schemes are valuable

for hydrological modeling (see e.g. Lazzarotto et al., 2006;

Hahn et al., 2013). Boorman et al. (1995) developed the sys-

tem of Hydrology Of Soil Types (HOST) where soils in the

UK are classified according to a conceptual understanding

of the water movement in these soils. It was shown that the

HOST soil classes are related to the base flow index (the pro-

portion of base flow on total stream flow) and can be used

to support model parameterization (Dunn and Lilly, 2001).

This system was successfully implemented in a hydrologi-

cal model (Maréchal and Holman, 2005). The HOST system

has also proven to be useful for a hydrological soil classifi-

cation at European scale (Schneider et al., 2007). In addition

to the development of conceptual hydrological understand-

ing, as it was done in HOST, soil morphology information

was also used to critically evaluate spatial model predictions.

For example Güntner et al. (2004) used soil morphologi-

cal and geobotanical criteria to delineate saturated areas in

a mesoscale catchment to evaluate the predictions by differ-

ent terrain indices.

Despite these efforts to make use of available spatial in-

formation, the general lack of available spatial data sets to

calibrate and/or validate models that predict CSAs still per-

sists (Srinivasan and McDowell, 2009; Easton et al., 2008;

Frey et al., 2011). For the prediction of CSAs this is critical

since the goal is to predict locations where certain hydrolog-

ical processes occur. Meaningful model calibration and val-

idation is a prerequisite if management decisions are to be

based on the predicted CSAs .

We present an approach where we used two sources of spa-

tial information. First, we used piezometric measurements at

different locations in the study catchment for the joint cali-

bration to observed discharge resulting in a multi-variable,

multi-site objective function (Madsen, 2003). While such

multi-objective calibration offers benefits for achieving a
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better representation of the internal state variables – e.g.,

spatial patterns of water saturation or saturated areas – it

makes the calibration process more complex (Efstratiadis

and Koutsoyiannis, 2010). Because of structural model er-

rors, trade-offs among the different elements of the objec-

tive function emerge requiring subjective decisions about

how to weigh different variables for example (Reichert and

Schuwirth, 2012; Gupta et al., 1998). Here, we use a simple

aggregation function (Efstratiadis and Koutsoyiannis, 2010)

for combining the different state variables into a single ob-

jective function. These aspects will be further dealt with in

the discussion.

Subsequently, we profited from soil morphology informa-

tion from a traditional soil map to derive estimates of the av-

erage duration of soil saturation at a given depth. The result-

ing data set can then be used as model validation data. The

rationale behind this approach is the fact that groundwater

influences morphological features that are related to chang-

ing oxygen availability due to permanent water logging or

fluctuating groundwater levels. These hydromorphic features

are usually related to redox reactions and transport of iron

and manganese (see e.g. Terribile et al., 2011). Accordingly,

soil morphology as described in soil maps contains informa-

tion on the soil water regime. Several studies have shown

a relationship between soil morphology (especially soil ma-

trix color and the presence and type of iron mottles) and the

frequency of soil saturation (Simonson and Boersma, 1972;

Jacobs et al., 2002; Morgan and Stolt, 2006; Franzmeier

et al., 1983). To our knowledge, these morphological features

have only been interpreted as binary information (saturated

area or not saturated area) (Güntner et al., 2004) but not as

quantitative estimates (frequency of soil saturation) for mod-

eling purposes. To do so, one has to be aware of possible pit-

falls related to a quantitative interpretation of soil morphol-

ogy. These features depend on various factors like the com-

position of the parent material (Evans and Franzmeier, 1986;

Franzmeier et al., 1983), soil texture (Jacobs et al., 2002;

Morgan and Stolt, 2006) and soil chemistry (Terribile et al.,

2011; Vepraskas and Wilding, 1983). Also, artificial drainage

can influence soil morphology within decades (Montagne

et al., 2009; Hayes and Vepraskas, 2000). We have tried to

account for these uncertainties by the extensive field expe-

rience for soil mapping in this part of Switzerland by some

of us (P. Weisskopf and U. Zihlmann). The resulting map of

soil saturation durations itself could serve as proxy map for

the identification of areas where saturation excess runoff oc-

curs. However, in combination with a model, it could be used

for a more detailed prediction with respect to the time of the

year in which the saturation occurs or the amount of runoff

produced on a certain area. Even if the resulting map of soil

saturation frequencies remains uncertain to some degree, this

additional information can reduce the uncertainty of model

predictions (Franks et al., 1998).

If predicted CSAs should serve as basis for site specific

pollution mitigation measures, they have to fulfill several

criteria. They have to be reliable and the uncertainties have

to be assessable. They should only be based on information

that is generally available and the prediction algorithm has

to be applicable to larger areas. At the same time the spatial

resolution of prediction should be in the order of 10 m×10 m

(or higher). Relevant transport processes for most pollutants

except nitrate happen on the timescale of single events un-

der the conditions prevailing in the study catchment. A tem-

poral resolution in the order of hours is therefore required

for a dynamic prediction model. These requirements cause

a high computational demand. Furthermore, the desired ac-

curacy for the prediction of the groundwater level is high. It

needs to distinguish between areas that are often saturated to

the surface and therefore produce surface runoff, and areas

where the maximum groundwater level remains little below

the surface.

In this paper we describe a case study where we applied

a spatially distributed hydrological model for delineating

CSAs that are caused by the generation of saturation-excess

overland flow due to high groundwater levels. Similar to Frey

et al. (2009) we chose to work with a process oriented model,

which has the advantage that it is better transferable to other

regions than models that rely on empirical relationships. The

model was optimized for computational speed and mainly

relies on generally available data so that it could be used for

practical applications. As study site we selected a 1.2 km2

catchment in the Swiss Plateau, with a high variability of

soil types and soil moisture regimes ranging from very wet to

rather dry soils. One question we try to answer in this paper is

if the spatial variability of depth to groundwater in this catch-

ment can be explained only by topography and the presence

of tile drains or if other factors like hydraulic soil properties

are important driving factors in determining the groundwa-

ter levels. The frequency of soil saturation resulting from the

quantitative interpretation of the soil map was not used for

the model setup but only to critically evaluate the model pre-

dictions.

This case study therefore has the following main objec-

tives:

1. We develop an approach to utilize more spatial infor-

mation on soil water regimes. Soil morphological infor-

mation was translated into spatially distributed data on

water saturation as a function of soil depth in the study

catchment. The result of this translation is a spatially

distributed data set on the soil water regime which is

based on generally available information.

2. We calibrate a parsimonious, distributed hydrological

model for predicting CSAs to observed spatially dis-

tributed water table levels and discharge.

3. To validate the model performance, water level predic-

tions are compared to the expected values derived from

the soil map.
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Figure 1. The experimental catchment with land use, soil types and the hydrological measurement locations. The small map in the top right

corner depicts the location of the study site within Switzerland. Sources: swisstopo (2008); FAL (1997).

2 Materials and methods

2.1 Site description

The study catchment (1.2 km2) is located in the northeast

of Switzerland (see Fig. 1). Topography is moderate with

altitudes ranging from 423 to 477 m a.s.l. and an average

slope of 4.3◦ (min = 0◦, max = 42◦, based on 2 m × 2 m dig-

ital elevation model (DEM), absolute accuracy: σ = 0.5 m,

resolution = 1 cm, swisstopo, 2003). The 20-year mean an-

nual precipitation at the closest permanent measurement sta-

tion (Schaffhausen, 11 km north of the catchment) is 883 mm

(MeteoSchweiz, 2009). The soils have developed on moraine

material with a thickness of around 10 meters; underneath the

moraine, we find fresh water molasse (Süsswassermolasse)

(swisstopo, 2007; Einsele, 2000). Soils in the center of the

catchment are poorly drained gleysols. In the higher parts of

the catchment well drained cambisols and eroded regosols

are found (FAL, 1997, see Fig. 1). Soil thickness (surface to

C horizon) varies between 30 cm at the eroded locations and

more than 2 m in the depressions and near the stream. The

catchment is heavily modified by human activities; it encom-

passes a road network with a total length of 11.5 km (approx-

imately 3 km are paved and drained, the rest is unpaved and

not drained). The dominant land use is crop production (75 %

of the area), around 13 % of the catchment is covered by for-

est, and a small settlement area is located in the southeast

of the catchment. Three farms lie at least partly within the

catchment (Fig. 1). 47 % of the agricultural land is drained

by tile drains with a total length of over 21 km (Gemeinde

Ossingen, 1995), the open stream has a length of 550 m. The

main part of the drainage system was built in the 1930s. The

stream system consists of two branches, an open ditch that

was partly built as recipient for the drainage water, and the

main branch of the stream that runs in a culvert (Fig. 1). The

stream also receives the runoff from two main roads and from

two farm yards (Gemeinde Ossingen, 2008). The paved area

that drains into the catchment is approximately 1.5 ha (1.2 %

of the area).

2.2 Field measurements

From 25 August 2008 to 14 October 2009, we monitored sev-

eral hydrological variables in the catchment. We measured

discharge at the outlet of the catchment (Fig. 1). Water level

and flow velocity were measured using a Doppler probe and

a pressure transducer (ISCO 750 area velocity flow module,

Teledyne Inc., Los Angeles). Discharge was calculated using

the exact cross section of the site. Discharge data were stored
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at 5-minute intervals by the data logger of an auto sampler

(ISCO 6700, ISCO 6712, Teledyne Inc., Los Angeles, USA).

At weather station A (Fig. 1), precipitation was mea-

sured at 15 min resolution with a tipping bucket rain gauge

(R102, Campbell Scientific, Inc., Loughborough, UK). This

rain gauge was out of order for 22 days (4 June 2009–

25 June 2009). During this time, rain data from weather sta-

tion B (Fig. 1) were used (a mobile HP 100 Station run by

Agroscope ART Reckenholz, CH with a tipping bucket rain

gauge: HP 100, Lufft GmbH, Fellbach, DE). At weather sta-

tion A we also recorded air temperature and relative humidity

(Hygromer MP 100A, rotronic AG, Bassersdorf, CH), wind

speed (A100R switching anemometer, Campbell Scientific,

Inc., Loughborough UK), net radiation (Q-7 net radiometer,

Campbell Scientific, Inc., Loughborough UK) and air pres-

sure (Keller DCX-22, KELLER AG für Druckmesstechnik,

Winterthur, CH) in 15 min intervals. Daily reference evapo-

transpiration was calculated from the meteorological data af-

ter the Penman–Monteith equation (Allen et al., 1998). This

results in the evapotranspiration of a reference grass surface

without water limitation.

We installed 11 piezometers (Fig. 1) to monitor groundwa-

ter levels in 15 min intervals (STS DL/N, STS Sensor Tech-

nik Sirnach AG, Sirnach, CH and Keller DCX-22, KELLER

AG für Druckmesstechnik, Winterthur, CH). The installation

depth varied between 1.5 and 2.7 m below the surface. At

four of the piezometer locations, we additionally dug a 1.2 m

deep soil pit (Fig. 1) to directly investigate hydromorphic fea-

tures.

2.3 GIS analysis

The catchment boundary was calculated in ArcGIS (ESRI,

ArcGIS Desktop, 9.3.1) based on the 2 m × 2 m DEM (swis-

stopo, 2003) and manually adapted according to field ob-

servations, the detailed tile drain map (Gemeinde Ossingen,

1995) and the rain sewer map (Gemeinde Ossingen, 2008).

The topographical catchment does not coincide completely

with the subsurface catchment. In some areas that belong to

the topographical catchment, the tile drains divert the wa-

ter outside of the catchment. These areas were excluded. In

contrast, the settlement area in the southeast was kept in the

catchment, even though the water from sealed areas in the

settlement leaves the catchment.

The original 2 m × 2 m DEM (swisstopo, 2003) was used

for the analysis of surface connectivity. Firstly, very small

or shallow depressions were removed, as these can either be

artifacts in the DEM or are too shallow to trap significant

amounts of overland flow. Depressions consisting of one or

two cells and those with a maximum depth of less than 5 cm

were filled. All other depressions were kept. Secondly, the

cells in the open stream were incised to the depth of the

average water level. Depression analysis and filling as well

as stream incision were performed in TAS (Terrain Analy-

sis System, geographical information system version 2.0.9,

John Lindsey 2005). Based on this corrected DEM, flow di-

rections and flow accumulation were calculated in ArcGIS.

The lowest stream channel cell was used as pour point for

the catchment calculation to determine the area connected

directly to the stream on the surface.

The corrected DEM was also used as surface topography

in the model. The topographic wetness index (Beven and

Kirkby, 1979) (Eq. 1) was calculated with the multiple-flow-

direction algorithm Dinf (Tarboton, 1997) implemented in

TAS, based on the corrected DEM.

λ = ln

(

A

tan(β)

)

(1)

λ is the topographic wetness index, A the upslope area and β

is the local slope.

2.4 Soil map translation

We worked with the 1 : 5000 soil map of Canton Zurich

(FAL, 1997). The soil map classifies agricultural soils af-

ter the Swiss soil classification system (FAL, 1997); forest

soils are not classified. The soils are characterized accord-

ing to their physical, chemical and morphological properties.

For the estimation of the duration of soil saturation, the soil

units (Fig. 1) were grouped into seven water regime classes,

according to their expected water regime. For each of these

classes we estimated how long it is saturated in six differ-

ent depths (5, 30, 50, 75, 105, 135 cm). We used the fol-

lowing morphological redox features to estimate the duration

of soil saturation within a soil horizon: (i) the presence and

abundance of manganese concretions in the horizon, (ii) the

presence and abundance of iron mottles, (iii) the presence

of iron mottles together with pale soil matrix, and (iv) fully

reduced horizons. These features of the horizons were inter-

preted within the context of the respective soil profile and the

expected water regime of the soil water regime class. Since

variations are expected within the classes and because the es-

timation itself is uncertain, we additionally estimated a range

of soil saturation in which we expect two thirds of the soils

that are classified in the respective class.

2.5 Model description

2.5.1 Model concept

The model we worked with has a conceptual representa-

tion of the unsaturated zone and a spatially distributed, more

process-based representation of the saturated zone. Under

wet temperate climate lateral flow in the saturated zone is an

important process to determine the shape of the groundwater

table in shallow groundwaters and therefore the prediction of

saturated areas. For the saturated zone we chose an approach

similar to HillVI (Weiler and McDonnell, 2004) where the

groundwater level gradients are calculated in each time step

and do not rely on surface topography. This should result in
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Rslow is assumed to be zero.

Rslow =

{

0 if Suns < Sfc

(Suns − Sfc)kuns if Suns ≥ Sfc

(10)

Sfc [L] is the unsaturated store at field capacity and kuns [T−1]

is the outflow rate.

A part of the precipitation bypasses the unsaturated zone

as preferential flow and directly enters the saturated zone.

This only occurs if the unsaturated zone is above field capac-

ity, and it exponentially depends on the water content in the

unsaturated zone.

Rpref =

{

0 if Suns < Sfc

kpref

(

Suns−Sfc

Suns_max−Sfc

)epref

· P if Suns ≥ Sfc

(11)

kpref [–] and epref [–] are empirical parameters.

Above field capacity the evapotranspiration from the un-

saturated module is at maximum, below field capacity it is

reduced. The reference evapotranspiration calculated from

meteorological data (ETref) refers to a reference grass sur-

face. A time dependent multiplier (muns) was introduced to

account for crops with different water requirements and the

time dependence of the leaf area index (LAI) due to crop de-

velopment.

ETuns = (12)






ETref · muns if Suns ≥ Sfc

ETref · muns

(

Suns
Sfc

Suns
Sfc

+ket

)

(1 + ket) if Suns < Sfc

with ket [–] and muns [–] being parameters. The change of

the LAI is coupled to air temperature and incorporated in the

time dependent parameter muns.

dmuns

dt
= (13)















muns · µ0(Tair − T0)
(

1 − muns

muns, max

)

if Tair ≥ T0

muns · kdecay(Tair − T0) if Tair < T0

0 if muns ≤ muns, min

,

where µ0 [T−1 Te−1] and kdecay [T−1 Te−1] are parameters,

Tair [Te] is air temperature, T0 [Te] is the minimum temper-

ature above which LAI starts increasing, muns, min [–] and

muns, max [–] are the minimum and maximum values for muns.

Saturated zone module

The saturated module is spatially distributed. The water bal-

ance within a grid-cell is calculated as follows:

dSsat

dt
= R−ETsat +SFlat − i ·Dlat − i ·Dpref −j ·Qsurf, (14)

where Ssat [L] is the storage in the cell and SFlat [L T−1] is

the lateral groundwater flow between cells.

i =

{

1 for drained cells

0 for undrained cells
(15)

j =



















1 for cells with surface connectivity to the

stream, see Sect. 2.3

0 for cells without surface connectivity

to the stream

(16)

The change of the groundwater level in the cell is therefore

calculated as follows

dh

dt
=

dSsat

dt

peff
, (17)

where h [L] is the groundwater level and peff [–] is the effec-

tive porosity.

If the unsaturated zone is below field capacity and evap-

otranspiration from the unsaturated zone is therefore re-

duced, evapotranspiration can occur directly from the satu-

rated zone.

ETsat =

{

0 if Suns ≥ Sfc

msat(ETref · muns − ETuns) if Suns < Sfc

(18)

At maximum, ETsat accounts for the evapotranspiration

deficit in the unsaturated zone, the multiplier msat [–] is be-

tween 0 and 1.

The lateral groundwater flow between cells is calculated

based on the Dupuit–Forchheimer assumption. We further-

more assume isotropy in Ksat:

qlat = Ksat · ∇h, (19)

where qlat [L T−1] is the flux density, Ksat [L T−1] is the sat-

urated hydraulic conductivity, and h [L] is the groundwater

head. The water flow between two neighboring cells can then

be calculated as follows:

Qlat = Ksat · Msat · Lcell
1h

Lcell
, (20)

where Qlat [L3 T−1] is the water flow between two cells, Msat

[L] is the thickness of the saturated layer, and Lcell [L] is the

cell length. If we sum up the water flows to and from all

neighboring cells and divide the sum by the cell area, we

receive SFlat.

In drained cells, the lateral groundwater flow into the

drain is calculated based on the Hooghoudt equation as de-

scribed by Beers (1976). We used an equation modified from

Wittmer (2010) because the distance to single tiles is not con-

sidered explicitly. The flow depends on the water level above

the drains.

Dlat = 4rdr · Ksat

(

mdr · Hdr

Spdr

)2

(21)
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Dlat [L T−1] is the drain flow, rdr [–] is a parameter that de-

termines the entrance resistance to the tile drains, mdr [–] is

a multiplier to obtain the water level in the middle between

two drains from the modeled water level in the cell, Hdr [L]

is the water table height above the drain, and Spdr [L] is the

drain spacing.

If the groundwater level reaches the surface in a cell, three

cases are distinguished:

1. The cell is directly connected to the stream on the sur-

face (see Sect. 2.3). In this case all water above the sur-

face is directly added to discharge (Qsurf).

2. The cell is not connected but it is drained. In this case,

all water above the surface is added to drain flow as pref-

erential flow (Dpref).

3. The cell is neither connected to the stream nor drained.

The water remains in the cell.

The coupling between the saturated zone module and the un-

saturated zone module is unidirectional from the unsaturated

zone to the saturated zone. The fact that a cell is saturated to

the surface does not influence the unsaturated zone module

above it. It is possible that the unsaturated zone above a satu-

rated cell is not completely full. This concept was chosen to

achieve a high computational efficiency.

The stream channel cells are incised to a mean water level

in the stream. The surface topography in the stream cells is

therefore represented by the mean water level and all the wa-

ter above this level in the cell is directly converted to dis-

charge. Lateral groundwater flow to stream cells is therefore

also converted to Qsurf.

2.5.2 Model setup

We ran the model with homogeneous hydraulic properties

in the saturated zone; only topography and the presence of

tile drains were spatially distributed. The unsaturated zone

was divided into several classes according to land use (for-

est, settlement, agriculture) and, within agricultural land use,

according to the seven soil categories (see Sect. 2.4). We

therefore ended up with nine unsaturated zone classes (for-

est, settlement and the seven soil categories). The reason for

this setup was the assumption that the groundwater level in

the catchment is mainly influenced by topography and artifi-

cial drainage and not by hydraulic soil properties (soil texture

is rather homogeneous within the catchment, FAL, 1997).

However, to account for the spatial distribution of the unsatu-

rated zone thickness (which also influences the other param-

eters of the unsaturated zone module), we divided the unsat-

urated zone into classes according to their soil water regime.

The classification of soil water regimes was only used for the

spatial division of the unsaturated zone (but not its parame-

terization).

The saturated zone was represented by a 16 m×16 m grid;

the cells were 10 m thick. We assume that the soil and the

moraine are the conducting layers while the Fresh water mo-

lasse is assumed to be impermeable (see Sect. 2.1). The cal-

culations were run with hourly input time series; the model

output was also in hourly steps.

2.5.3 Implementation

The model equations were implemented in a C++ program

to achieve fast model simulations. The ordinary differential

equations of the conceptual unsaturated zone modules and

the paved area module were numerically integrated with the

LSODA solver package (Livermore Solver for Ordinary Dif-

ferential Equations, Hindmarsh, 1983; Petzold, 1983). The

partial differential equations of the saturated zone module

were integrated with an explicit Euler solution scheme with

a computational time step (20 min) that guaranteed numer-

ical stability during the simulation period. The integration

of the saturated zone module was sped up by paralleliz-

ing the explicit solution scheme with OpenMP threads (for

the specification see http://openmp.org). Despite all these ef-

forts the simulation of the 2-D groundwater surface remained

rather time consuming requiring 28 s of computation time for

1 yr of forward simulation on an Intel Core i7–3960X CPU

(3.3 GHz).

Model implementation and model setup (e.g., spatial and

temporal resolution) were chosen in a way that guaranteed

simulations fast enough to allow a possible use for practical

applications.

2.5.4 Calibration

The model was simultaneously calibrated to the discharge

time series and the groundwater level time series in the

eleven piezometers. A maximum likelihood approach was

used. Discharge was Box–Cox transformed before calibra-

tion with λ = 1/3 (Box and Cox, 1964, 1982). The transfor-

mation equation was as follows:

g(x) =
xλ − 1

λ
(22)

This was done to reduce heteroscedasticity of discharge er-

rors. We assumed independent and normally distributed er-

rors for the transformed discharge and the (untransformed)

groundwater levels; the individual standard deviations for

these were also calibrated. The likelihood function therefore

looked as follows:

L(θ ,σ ) ∝
11
∏

i=1

m
∏

j=1

1

σi

√
2π

exp



−
1

2

(

O
j
i − M

j
i (θ)

σi

)2




(23)

×
m
∏

j=1

1

σd

√
2π

exp



−
1

2

(

g(O
j

d ) − g(M
j

d (θ))

σd

)2


,

where L is the likelihood, θ is the vector of model param-

eters, σ is the vector of the standard deviations, i are the

Hydrol. Earth Syst. Sci., 18, 3481–3498, 2014 www.hydrol-earth-syst-sci.net/18/3481/2014/



T. Doppler et al.: Model validation with soil data 3489

11 piezometer locations, j are the time points, σi is the stan-

dard deviation at piezometer i, O
j
i is the observed ground-

water level at piezometer i and time j , M
j
i (θ) is the mod-

eled groundwater level at piezometer i and time j , σd is the

standard deviation of the transformed discharge, g(x) is the

Box–Cox transformation (Eq. 22), and O
j

d is the observed

discharge at time j and M
j

d (θ) is the modeled discharge at

time j .

When calibrating a grid cell model to piezometer mea-

surements, one has to be aware of the difference in spatial

support. The model cell represents an area of 16 m × 16 m

while the piezometers are point measurements. The spatial

variability of groundwater levels within each model cell can

therefore be considerable (see e.g., Freer et al., 2004) and

this variability cannot be resolved by the model. This is es-

pecially true for drained areas, where the tile drains increase

the spatial variability of groundwater levels.

In the context of multi-objective calibration our approach

corresponds to a simple aggregation function (Efstratiadis

and Koutsoyiannis, 2010) for combining the different state

variables into a single objective function where the trade-

offs between the different objectives are not made explicit.

The weighting of the different state variables in the objec-

tive function was done by using individual error variances

for each state variable (Reichert and Schuwirth, 2012). These

error variances were also calibrated as parameters within the

optimization. Hence, the optimization algorithm was allowed

to choose the weighting that has the maximum likelihood.

Implications of this approach will be discussed in the discus-

sion section.

During calibration the likelihood function was opti-

mized with a coupled global–local algorithm. Optimization

started with the Particle Swarm algorithm (Kennedy and

Eberhart, 1995) and after reaching the stop criterion Nelder–

Mead Simplex optimization (Nelder and Mead, 1965) was

launched from the best parameter combination.

We chose a period in spring and summer 2009 as cali-

bration period. It starts very wet in the beginning of spring,

includes a long dry period, several rain events with varying

magnitudes and intensities and it also contains the largest dis-

charge event in the measurement period. We do not have con-

tinuous measurement time series from all the piezometers.

For each piezometer we chose the calibration period so, that

all the calibration time series (discharge and the 11 piezome-

ters) contained the same number of observations. With this,

the weighting of the different state variables within the ob-

jective function only depends on their error variance and not

implicitly on the number of observations used for calibration.

For piezometers 10 and 11 no data were available in the later

period, so their calibration period is partially within the warm

up phase of the model. Even though this might be problem-

atic because we calibrate the model in a state where it is not

yet completely adapted to the parameter set, we kept these

two piezometers in the calibration. The main reason for this

was that they are the two piezometers with the lowest ground-

water levels and are therefore important for a complete spa-

tial picture of the groundwater surface in the catchment. This

more complete spatial picture was of greater importance to

us than the potentially problematic calibration in the model

warm up period.

Most of the model parameters were calibrated to achieve

the best possible model output with the given model struc-

ture. (The Tables S1 to S4 in the Supplement indicate which

of the parameters were calibrated and which were kept fixed

during calibration. The tables also indicate the minimum and

maximum values that were allowed in the calibration.) The

initial state of the unsaturated zone was calibrated as well.

The initial condition for the groundwater level is difficult to

calibrate because the shape of the surface depends on the

model parameters. The model run was started 5 months be-

fore the calibration period to adapt the groundwater surface

to the model parameters. Additionally, we added a param-

eter that allows a homogeneous shifting up or down of the

groundwater initial state and chose an adaptive procedure.

After a first calibration, we used a groundwater level map

from the optimum parameter set as initial condition for a sec-

ond calibration. In a first step we calibrated a model version

with a homogeneous unsaturated zone. From the resulting

optimum parameter set, we launched the calibration of the

model version with the spatially distributed unsaturated zone.

With this setup, one full optimization (global and local) took

about 1 week, depending on the speed of convergence.

3 Results

3.1 Saturation estimates

Figure 3a shows the map of the seven water regime classes

from the reclassification of the soil map. Class 1 is the driest,

class 7 the wettest water regime class. In Fig. 4 the estimated

saturation durations in the water regime classes are shown.

To evaluate the map-based estimates of the water regime we

can compare the estimates with the measured groundwater

levels from the piezometers (Fig. 4). In general, the estimated

durations of soil saturation are in good agreement with the

piezometers. There are some deviations at specific locations

like the very wet piezometer in the driest soil class (piezome-

ter 1 in Fig. 1 indicated by an arrow in Fig. 4). For a fur-

ther evaluation of the spatial distribution of the water regime

classes, we compared the water regime class map (Fig. 3a)

with the topographic wetness index (Fig. 3b). The compar-

ison reveals a generally good match between the two maps

(high topoindex means wet soil). Even small scale features in

the topoindex map are reflected in the soil map (e.g., in the

NE of the catchment). For a quantitative comparison of the

two maps, we classified the wettest two water regime classes

(classes 6 and 7) as potential CSAs. This resulted in 20 % of

the area classified as CSA. For the topoindex map we also
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Figure 3. (a) The reclassified soil map with the seven soil water

regime classes (class 1 is the driest, class 7 the wettest), (b) map of

the topographic wetness index, (c) map of the drained areas in the

catchment. Sources: Gemeinde Ossingen (1995); swisstopo (2008).

classified the wettest 20 % as CSA. The areal overlap of the

CSAs from the two methods is 52 %. Despite this reasonable

agreement between the two maps there are some areas with

rather high topoindices where the soils are classified in dry

soil classes (e.g., in the west of the catchment).

The location of tile drains also contains information on

the soil water regime. The tile drain map can therefore be

used as additional comparison to verify the soil map esti-

mates. Tile drains are only present at locations with excess

groundwater that has to be diverted. Drained areas are there-

fore good indicators of originally higher groundwater levels.

Because the drains are installed between 1 and 1.5 m below
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Figure 4. The estimated depth dependent saturation durations in the

seven water regime classes with the expected variation within each

class (blue) together with the measured saturation duration in the

piezometers (black).

the surface in the study catchment, groundwater levels are

still expected to be rather high in drained areas. We there-

fore used the drainage map (Fig. 3c) as a further evalua-

tion of the map of soil water regime classes. The compari-

son reveals that drained areas are characterized by high topo-

graphic indices and that the drained soils are usually classi-

fied into a wet water regime class. However, the western part

of the catchment is intensely drained and has rather high to-

pographic wetness indices, but large areas are classified in

the driest water regime class. Also the wet piezometer in

water regime class 1 (Fig. 4, indicated by an arrow) is lo-

cated in this area. The local assessment in the soil pit besides

piezometer 1 (Fig. 1) supports the map-based estimate. Only

few small iron mottles were found below 1 m. The piezomet-

ric measurement therefore contradicts the local morphologi-

cal interpretation in the soil pit and the map-based estimate.

This is the only soil pit location where this is the case, in the
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Figure 5. The modeled and measured discharge time series.

other three soil pits (Fig. 1) the piezometric measurement,

the local morphological interpretation in the soil pit and the

map-based estimate corresponded well.

3.2 Calibration results and model validation

After calibration (the optimum parameter set can be found

in Tables S1 to S4 in the Supplement), the model performed

satisfactory with respect to discharge and absolute ground-

water levels. Figure 5 shows the predicted and measured dis-

charge time series. The bad fit in the beginning stems from

the difficulty to calibrate the initial groundwater level (see

Sect. 2.5.4). After this initial phase, the discharge prediction

is good with a Nash–Sutcliffe coefficient (Nash and Sutcliffe,

1970) of 0.91 for the calibration period. Also the predicted

average groundwater levels at the piezometer locations are

in good agreement with the measurements (Table 1). After

the initial phase, the root mean square error (RMSE) of the

groundwater level prediction ranged between 22 cm and 1 m

with a median of 41 cm (Table 1). The model was there-

fore able to reproduce the general hydrological behavior of

the catchment. The modeled composition of the discharge,

with most of the discharge originating from the drainage sys-

tem, was also in satisfactory agreement with the measure-

ments: the model attributed 82 % of total discharge to dis-

charge from tile drains, while we estimate 62 % based on the

measurements.

However, if the time series of the groundwater levels are

plotted as depth below the soil surface (Fig. 6) it becomes ob-

vious that there is a lack of groundwater level dynamics in the

model. The observed groundwater levels are much more dy-

namic than the modeled ones. Additionally, Fig. 6 shows that

the depth to groundwater in the model prediction is rather ho-

mogeneous throughout the area. The modeled average depth

to groundwater does not vary much between the piezometer

locations. In contrast, the measured depth to groundwater is

more variable.

To further investigate the model performance with respect

to the spatial distribution of groundwater levels we used the

estimated saturation durations from the soil map (Fig. 7).
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Figure 6. The modeled and measured groundwater levels at the

piezometer locations as depth from the surface. The individual cal-

ibration periods are indicated (see Sect. 2.5.4). The circled number

is the piezometer location (Fig. 1), the number in the colored box

shows the water regime class, D indicates a drained model cell.

This allowed a model evaluation at locations without mea-

surements and at locations where the model was not cali-

brated to. The number of evaluation cells in each soil type

was chosen according to the area covered by the correspond-

ing soil type. The evaluation cells were selected in the center

of the soil types to avoid influence from the boundaries. Fig-

ure 7 shows that the model does not differentiate between the

water regime classes. In all the classes, there are dry and wet

model cells. The underestimation of variability is a general

behavior, dry locations (water regime class 1) are too wet,

and wet locations (water regime classes 6 and 7) are too dry

in the model. However, the model was able to predict the ar-

eas with the lowest groundwater levels. Model cells where

the modeled groundwater level is deeper than 3 meters be-

low the surface are only located in water regime class one

(Fig. 7). Hence, the model was not able to reproduce the spa-

tial variability in saturation durations, except for the locations

with the lowest groundwater levels, even though it was cali-

brated on measured groundwater levels distributed through-

out the catchment.

For a more complete picture of the modeled spatial distri-

bution of the depth to groundwater in the catchment Fig. 8

shows a map of the model output from 27 July 2009. This is

a situation with high groundwater levels after the largest rain

event in the modeled period. Figure 8 reveals a clear dom-

inance of the drainage system in the determination of the

modeled groundwater level (compare Fig. 8 with Fig. 3c).

This is also visible in Fig. 7. Most of the drained cells

show a very similar behavior with stable groundwater lev-

els around 1.5 m below the surface (the installation depth of

the tile drains). A comparison of Fig. 8 with Fig. 3a reveals

that the spatial pattern of the model output does not resemble
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Table 1. Deviations between observed and simulated water table levels in the 11 piezometers.

Piezometer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

RMSE (mm) 792 310 218 281 832 857 1001 328 441 411 1003
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Figure 7. Comparison of the depth distribution of the saturation du-

ration in selected model cells with the estimate from soil morphol-

ogy. The model results are grouped into the respective water regime

class and into drained and not drained cells.

the pattern observed in soil morphology. The spatial over-

lap between wet areas as estimated from the soil map (water

regime classes 6 and 7) and the wettest 20 % of the cells in

the modeled output is only 12 %. Model and soil map would

therefore predict completely different locations as CSAs. The

model predicts high water tables in areas where it should be

dry. In the center of the catchment, where the area is drained

but still wet in reality, the model predicts too low water levels

(compare Fig. 8 with Fig. 3c). It seems that the drainage sys-

tem in the model is too efficient in lowering the groundwater

table.

4 Discussion

4.1 Soil map translation

A meaningful validation of the saturation duration estimates

from the soil map is not straightforward due to several
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Figure 8. Map of the modeled depth to groundwater on

27 July 2009.

difficulties. First, the spatial coverage of the estimates corre-

sponds to the soil map unit while piezometers are point mea-

surements. Hence, deviations between soil map estimates

and piezometer data may simply reflect local heterogeneities.

Furthermore, the soil map divides the area into units with

sharp boundaries. Some of these boundaries are in reality

gradual changes. The vicinity of a piezometer to a soil unit

boundary (especially boundaries between very wet and very

dry soils) can therefore complicate a meaningful evaluation.

A second difficulty is that the estimates do not differ heav-

ily; the saturation estimates change gradually from one class

to the next. The piezometer measurements could therefore

fit well in more than one class. Third, there are temporal as-

pects of the validation. Soil morphology does not necessarily

reflect the current water regime, especially when the water

regime has recently changed because of artificial drainage.

According to Hayes and Vepraskas (2000), soil drainage can

alter morphology within decades. Finally, it is possible that

the morphological signs of wetness do not evolve in a cer-

tain soil, even though the same water regime has persisted

a longer time. A possibility for this is soil saturation without

oxygen depletion (e.g., frequent but short periods of satura-

tion), which does not lead to morphological changes (Evans

and Franzmeier, 1986; Pickering and Veneman, 1984).

The main part of the drainage system in our study catch-

ment was installed in the 1930s, the soil map was produced

between 1988 and 1997. It can therefore be expected that soil

morphology reflects the current situation. However, the inter-

pretation of drained soils will, in general, remain difficult.
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The mismatch between the measured groundwater level

and soil morphology at piezometer 1 shows the limitations

of the approach. Soil morphology does not reflect the cur-

rent water regime everywhere. As stated above, it is possi-

ble that the morphological signs of wetness did not evolve

in this soil, even though the same water regime has persisted

a longer time. On the other hand, the current water regime as

measured in the piezometer could have developed only few

years ago for several reasons, possibly because of a poorly

maintained and clogged part of the drainage system, for ex-

ample.

Despite these difficulties and limitations, the comparison

of the estimates with the piezometric measurements shows

a generally good agreement (Fig. 4). We are therefore con-

fident that soil morphology in this region reflects the cur-

rent water regime in most soils. The good agreement between

the topographic wetness index and the map of the soil water

regime classes indicates that the soil distribution with respect

to soil saturation and soil water regime is strongly driven

by topography in this catchment. In addition, this correspon-

dence shows that the estimation of soil saturation from soil

map information resulted in a reasonable spatial pattern of

soil saturation in this catchment.

The quantitative interpretation of soil morphology will al-

ways remain uncertain to some degree. However, if the un-

certainties can be quantified, such information can still be

very valuable for model calibration and evaluation (Franks

et al., 1998).

4.2 Model predictions

4.2.1 Calibration

We chose a model setup with a homogeneous saturated zone

because the geological map does not indicate any spatial dif-

ferentiation (swisstopo, 2007). Also soil texture in the study

catchment is rather homogeneous. In addition, the soil tex-

ture classes in the Swiss classification system (FAL, 1997)

are rather wide. Therefore, a spatial distribution based on

geological information or texture information obtained from

the soil map would not have resulted in much variability. The

only spatially variable attributes in the saturated zone mod-

ule were surface topography, surface connectivity and the ex-

istence of tile drainage. However, the unsaturated zone was

spatially differentiated based on the water regime classes be-

cause we expect different thicknesses of the unsaturated zone

in the water regime classes. This setup resulted in 83 pa-

rameters to be calibrated. Parameter optimization was there-

fore a rather complex problem with the simultaneous cali-

bration to discharge and groundwater levels at 11 locations.

We started the calibration at the optimum parameter set of

a model setup with a homogeneous unsaturated zone. Some

of the parameters did not differentiate into the nine unsatu-

rated zones but remained at the starting parameter value for

all or some of the soil types. The likelihood function was

therefore insensitive to a spatial distribution of these param-

eters (these parameters are indicated in Tables S1 to S4 in the

Supplement).

It could be argued that the poor model performance re-

garding water table levels is caused by a wrong subjective at-

tribution of weights to the water table data in the aggregating

likelihood function (Efstratiadis and Koutsoyiannis, 2010)

(Sect. 2.5.4). Because we used such a single function we

did not explicitly quantify the trade-offs between discharge

and water table simulations. An imbalance in the weighting

could be caused (i) by an unbalanced number of data points

for the different variables or (ii) a disparity between the stan-

dard deviations attributed to the variables in the likelihood

function (Eq. 23). The first possibility is excluded because

the actual number of piezometric data exceed the discharge

data by a factor of 11 (Sect. 2.5.4). The second possibility

was avoided by the joint calibration of the standard devia-

tions. We chose wide priors for all the error variances, so we

did not force the model into a solution where only discharge

was reproduced well. Hence, if there was a parameter set that

performed well on some of the water table levels – causing

the standard deviation to be small – it had outperformed data

sets that performed only well on discharge.

Based on the arguments above we do not believe that the

rather poor model performance with respect to groundwater

level dynamics can be attributed to problems related to the

chosen calibration procedure. We rather think that the prob-

lems arise from the model structure.

The analysis of residuals of the maximum likelihood solu-

tion during the calibration period revealed that the statistical

assumptions behind our error models could be only partially

fulfilled. Residuals of discharge showed a strong relation-

ship with discharge itself in non-transformed space and no

relationship in the transformed space (Supplement, Fig. S1).

This suggests that the applied Box–Cox transformation was

indeed useful and acted towards more homoscedastic dis-

charge errors. The assumption of normality was mostly met

for discharge in transformed space except for the slightly

heavy tails in the residual distribution (outside the central

80 % probability domain) (Supplement, Fig. S2). No trans-

formation was applied for piezometer data, which was justi-

fied by the posterior lack of dependence between the magni-

tude of residuals and piezometer levels. The residuals of sites

showing a poor fit in terms of mean groundwater level were

certainly heavily biased, which violated the hypothesis that

the expected value of errors was 0 (Supplement, Fig. S3). The

distribution of residuals was quite far from normal for most

sites. In accordance with the models ability to match mean

piezometer levels much better than temporary peaks, resid-

ual distributions were all skewed to a varying degree (Sup-

plement, Fig. S2). The assumption on the independence of

residuals was neither fulfilled for discharge nor the piezome-

ter data, especially some of the water level residuals were

heavily autocorrelated (Supplement, Fig. S4). This suggests

that autoregressive error models would have been statistically
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better choices than the independence assumption. However,

in contrast to the width of predictive uncertainty interval and

parameter values, the maximum likelihood fit for discharge

series was often proven to be robust against neglecting the

autocorrelation in residuals (Honti et al., 2013; Del Giudice

et al., 2013). The large variability in the shape of the resid-

ual distributions and in the extent of autocorrelation suggests

that – in a next calibration exercise – individual distributions

and individual autoregressive errors should be assumed for

the piezometers.

4.2.2 Model performance

The model is able to reproduce the general hydrological be-

havior of the catchment (Fig. 5 and Table 1). The satisfactory

match between observed and modeled groundwater levels

with a model that assumes homogeneous soil properties in-

dicates that groundwater levels in this catchment are mainly

driven by topography and are not strongly influenced by the

variability of hydraulic soil properties. However, if we focus

on the top two meters below soil surface there are deficien-

cies in the groundwater level predictions.

The comparison with the estimates of soil saturation re-

veals a lack of differentiation between wet and dry areas

(Fig. 6) and wrong spatial patterns of soil saturation (Fig. 8).

The main problems are (i) the missing dynamics in the

groundwater levels, (ii) the dominance of the drainage sys-

tem with respect to groundwater levels which leads to wrong

spatial patterns of soil saturation and (iii) the homogeneity

within the drained part of the catchment. These deficiencies

are problematic if one wants to use such a model to predict

critical source areas. Saturation-excess overland flow only

occurs in situations with high groundwater levels. A pre-

diction model therefore needs to be able to adequately re-

produce groundwater dynamics especially in situations with

high groundwater levels. Furthermore, large parts of the in-

tensively cultivated cropping areas in Switzerland are artifi-

cially drained; the model should therefore be able to predict

groundwater levels and their dynamics in drained areas. The

prediction of saturation excess areas requires a very high ac-

curacy in groundwater level prediction. A difference of 50 cm

or less in the depth to groundwater is already crucial, because

it decides whether an area often produces saturation-excess

overland flow. Even though the model captured the general

hydrological behavior of the catchment with respect to dis-

charge and absolute groundwater levels, it was far from be-

ing useful as a prediction tool for saturated areas. It did not

achieve the accuracy that is needed for practical applications.

Some of the deficiencies in water level dynamics were

possibly caused by the chosen model structure. The current

model only considers the effects of different antecedent soil

moisture contents within the unsaturated zone. This influ-

ences the recharge to the saturated zone. However, within the

saturated zone, antecedent soil moisture is neglected (con-

stant effective porosity) and therefore has no influence on the

increase of the water table during different events. Further-

more, effective porosity is the same during rising and falling

water tables in the model. In reality however, the amount of

water needed to increase the water level by a given level de-

pends on the degree of saturation before the event. Addition-

ally, the degree of saturation above a rising water table does

not need to be the same than the degree of saturation above

a falling water table. This can only be achieved by coupling

the soil moisture dynamics in the unsaturated zone and the

groundwater level dynamics in the saturated zone.

Because crops may differ strongly in their water require-

ments at any given moment, accounting for antecedent soil

moisture may require the inclusion of crop specific water ab-

straction from the unsaturated zone. This may be actually a

reason why the relative responses of the water table in differ-

ent piezometers differed between events.

A further problem is the representation of the drainage sys-

tem, which is a dominant feature in the hydrology of the

catchment. Because most of the area has no direct connec-

tion to stream, i.e., surface runoff cannot directly reach the

stream (Doppler et al., 2012), we know that most of the dis-

charge reaches the water course through tile drains. At the

same time, we know that the water table is often quite close

to the soil surface despite the efficient drainage of the water

through the soil. The current model version drains the soils

too efficiently. In order to get as much water as possible dur-

ing rain events through the soil while keeping the water table

at a higher water level it is obvious that the water flux has

to increase more strongly (in nonlinear fashion) with the wa-

ter table than described by Eq. (21). Conceptually, this could

be achieved by adding an additional preferential flow com-

ponent that depends (in a nonlinear manner) on the current

water level (see Frey et al., 2011, for a similar solution).

Especially in drained areas it is important to be aware of

the difference in spatial support between piezometer readings

and model predictions. Piezometers are point measurements

while the model predictions are made on a 16 m×16 m grid.

The tile drain spacing is around 15 m. So the model does

not resolve the difference between locations directly above

tile drains and locations in the middle between tile drains. In

reality however, this difference is important with regard to

groundwater levels. If a piezometer is directly above a tile

drain, the model would overestimate its groundwater level.

But it would underestimate groundwater levels in between

tile drains.

In the model, tile drains are represented as areas (all cells

in an area with tile drains are treated as drained cells) while

in reality the tile drains are linear features. The areal repre-

sentation in the model prevents the buildup of high ground-

water levels between drainage tubes and the correspond-

ing high gradients between drainage tube and the undrained

space between drainage tubes. If the tile drains should be

implemented as linear features in a model, this would re-

quire a much higher spatial resolution. The rather low spatial

resolution of our model setup (16 m) generally prevents the
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reproduction of very steep gradients on short distances which

also influences the groundwater level dynamics.

Based on the available information on geology (swisstopo,

2007) and soil texture (FAL, 1997) there was no indication to

spatially distribute the parameters of the saturated zone (see

Sect. 4.2.1). If there was a parameter set within our model

structure that would perform well on some of the piezome-

ters (because the saturated zone parameters fit well for this

soil type), this parameter set would have outperformed other

solutions. But the maximum likelihood parameter set does

not well reproduce groundwater level dynamics (especially

in the peaks) of any piezometer. We do therefore believe that

this rather poor model performance has to be attributed to the

model structure and not to the calibration procedure or lack

of spatial heterogeneity in the model.

A closer look at the piezometer data in Fig. 6 reveals that

the level fluctuations of the shallow groundwater are rather

complex even in the rather simple and homogeneous study

catchment. Every piezometer reacts individually to the dif-

ferent rain events. Moreover, the dynamics of piezometers

within the same water regime class differ substantially. Even

if we consider whether a piezometer location is drained or

not, it is impossible to explain the differences and similarities

of the groundwater dynamics. It would have been possible

that the model can explain the spatial variability of ground-

water level dynamics if these dynamics are determined by

a combination of topographic position, the soil water regime

class and the drained areas. However, the discrepancy be-

tween modeled and measured groundwater levels indicates

that other processes influence the groundwater levels to a de-

gree that cannot be neglected. From a scientific point of view

it would be interesting to dig deeper into these processes, try-

ing to understand the influencing factors of the groundwater

level dynamics. To do so, we suggest using a model with a

more detailed representation of the processes at the bound-

ary between the saturated and the unsaturated zone and a

more realistic description of the drainage system. The for-

mer could possibly be achieved within a conceptual model

as it was done by Seibert et al. (2003). The latter however,

would require a spatially explicit drainage system represen-

tation with high spatial resolution. Such a model would need

detailed information on the drainage system and its mainte-

nance status, which is often not available.

In the light of the above discussion about a model that in-

cludes additional processes, it seems surprising that the spa-

tial pattern of wet areas as predicted by the topographic wet-

ness index is in better agreement with the soil map than the

predictions of the more complex model (Figs. 3 and 8). A

comparison to TOPMODEL predictions could therefore be

interesting. According to TOPMODEL, the spatial ground-

water level distribution is simply dependent on the distribu-

tion of the wetness index and the average moisture level in

the catchment. At each location there is a constant offset to

the mean depth of the water table in the catchment that de-

pends on the deviation between the local wetness index and
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Figure 9. Average groundwater depth in the piezometers as a func-

tion of the local wetness index. Numbers refer to the piezometer

number, colors to the corresponding soil water regime class.

its average value (Blazkova et al., 2002). Accordingly, one

would expect the depth of the water table to be correlated

with the local wetness index. Figure 9 depicts the average

water level as a function of the wetness index. It is obvi-

ous that for low index values there is a large scatter of the

data and for high index values the water table hardly depends

on the index. We used a topographic wetness index that ne-

glects local transmissivity. However, using a wetness index

including transmissivity estimated from soil map informa-

tion (as introduced by Beven, 1986) would not significantly

change the spatial pattern because of the homogeneous soil

texture and geology in the catchment (see above). Hence, a

simple wetness index based approach does not outperform

our model approach.

This conclusion is supported by the comparison of the dy-

namics of the different piezometers. According to the TOP-

MODEL approach, the water table dynamics at different to-

pographical positions should simply be shifted in height of

the water table (if one assumes a constant drainable poros-

ity with depth). Figure 6 however, reveals that the dynamic

varies substantially between the piezometers. Our approach

mostly failed to reproduce these differences; conceptually

TOPMODEL will do so as well.

So far we discussed identification of CSAs caused by

saturation-excess overland flow. However, it was shown that

areas that produce infiltration-excess overland flow can be

CSA on arable land (Doppler et al., 2012). These areas de-

pend strongly on the actual land management and they can

change with crop rotation or when the management prac-

tices are changing. Therefore, their identification requires

knowledge on the current local site conditions. As an exam-

ple, Srinivasan and McDowell (2009) found that small tram-

pled areas beside fences were relevant in the occurrence of

infiltration-excess overland flow and the transport of phos-

phorus to the stream. Such features cannot be captured by
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models based on generally available information and – from

a practical perspective – once they are identified in the field

there is no need to implement them into a prediction model.

The focus of this study was to use a model that would be

applicable for practical purposes. Besides model-based pre-

dictions, critical source areas can also be directly identified

in the field by experts. This requires interviews with the local

farmers and detailed site inspections. If a prediction model

for CSAs should serve as basis for pollution mitigation mea-

sures, it must have advantages as compared to field visits by

experts. An advantage of model predictions would be that

predictions can be based on existing knowledge, so that field

visits would not be necessary. However, the need for very de-

tailed knowledge (e.g., on the drainage system and on the ac-

tual land management) cancels this advantage. Additionally,

the demanding setup of a very detailed model, its calibration,

and tests in every small catchment (not to mention uncer-

tainty analysis), would not lead to a time gain compared to

field visits by experts to directly identify CSAs in the field.

5 Conclusions and outlook

Our case study has shown that the estimation of saturation

durations from morphological soil map information is possi-

ble and these estimates have proven to be useful for model

validation even though the resulting map of duration of soil

saturation remains uncertain to some degree because the esti-

mates do not always represent the current water regime. The

additional data source provides quantitative spatial informa-

tion on the soil water regime that can be used as validation

data for the predicted spatial patterns. In a further step such

estimates could also be used to calibrate spatially distributed

hydrological models, so that no groundwater level measure-

ments are needed for model calibration.

The model was able to reproduce the general hydrological

behavior of the catchment. However, the desired accuracy

of the groundwater level predictions – which is needed for

the identification of CSAs – could not be achieved. The pro-

cesses that determine the groundwater level dynamics in this

catchment seem to be more complex than the used model.

It seems that a high spatial resolution and detailed process

representations are needed for a groundwater level predic-

tion that is accurate enough for the identification of CSAs

in practical situations. Drained areas are especially challeng-

ing for the following reasons: limited data availability on tile

drain locations and maintenance status, difficult integration

in catchment models (concept and spatial resolution), and fi-

nally the estimation of soil saturation duration is much more

difficult in drained areas.

Our results indicate that dynamic, spatially distributed hy-

drological models to predict CSAs are still far from being

useful for management decisions. If a model should be accu-

rate enough and should also include infiltration excess areas,

it would require information that is not generally available.

Furthermore, the setup and test of such a complex model

would need more resources than direct observations of CSAs

in the field by experts and the local farmers. If site specific

management of CSAs should be achieved, we recommend

identifying these areas in the field and not solely by model

predictions. However, predictions by simple models like the

topographic wetness index can be helpful for the identifica-

tion of CSAs in the field. It would also be interesting to test

the predictive capabilities of different modeling concepts un-

der real world conditions.

The Supplement related to this article is available online

at doi:10.5194/hess-18-3481-2014-supplement.
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