Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment Bas Vriens^{1,2}, Adrian A. Ammann³, Harald Hagendorfer⁴, Markus Lenz^{5,6}, Michael Berg¹, Lenny H. E. Winkel^{1,2}* 1 Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland, 2 Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zürich, Switzerland, 3 Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland, 4 Department of Thin Films and Photovoltaics, Swiss Federal Institute for Material Science and Technology, Dübendorf, Switzerland, 5 Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland, 6 Department of Environmental Technology, Wageningen University, Wageningen, The Netherlands #### **Abstract** Biomethylation and volatilization of trace elements may contribute to their redistribution in the environment. However, quantification of volatile, methylated species in the environment is complicated by a lack of straightforward and field-deployable air sampling methods that preserve element speciation. This paper presents a robust and versatile gas trapping method for the simultaneous preconcentration of volatile selenium (Se), sulfur (S), and arsenic (As) species. Using HPLC-HR-ICP-MS and ESI-MS/MS analyses, we demonstrate that volatile Se and S species efficiently transform into specific non-volatile compounds during trapping, which enables the deduction of the original gaseous speciation. With minor adaptations, the presented HPLC-HR-ICP-MS method also allows for the quantification of 13 non-volatile methylated species and oxyanions of Se, S, and As in natural waters. Application of these methods in a peatland indicated that, at the selected sites, fluxes varied between 190–210 ng Se·m $^{-2}$ ·d $^{-1}$, 90–270 ng As·m $^{-2}$ ·d $^{-1}$, and 4–14 μ g S·m $^{-2}$ ·d $^{-1}$, and contained at least 70% methylated Se and S species. In the surface water, methylated species were particularly abundant for As (>50% of total As). Our results indicate that methylation plays a significant role in the biogeochemical cycles of these elements. Citation: Vriens B, Ammann AA, Hagendorfer H, Lenz M, Berg M, et al. (2014) Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment. PLoS ONE 9(7): e102906. doi:10.1371/journal.pone.0102906 Editor: Fanis Missirlis, CINVESTAV-IPN, Mexico Received April 28, 2014; Accepted June 25, 2014; Published July 21, 2014 **Copyright:** © 2014 Vriens et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. **Data Availability:** The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files. Funding: This work was funded by the Swiss National Science Foundation (http://www.snf.ch) (SNF PP00P2_133619 and 200020_138210). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 1 Competing Interests: The authors have declared that no competing interests exist. * Email: lenny.winkel@eawag.ch #### Introduction Selenium (Se) is essential for human health, but the range between beneficial quantities and toxic concentrations of Se is narrow [1]. The element is irregularly distributed over the Earth's surface [2], which leads to uneven Se levels in agronomic produce and consequently within the terrestrial food chain throughout different areas in the world. On a global scale, Se deficiency is more prevalent than dietary Se excess and is associated with a reduced health status in livestock and humans [3]. Insight into the mechanisms that determine the distribution and speciation of Se in surface environments, such as in agricultural soils, is therefore indispensable. The chemical properties of Se are similar to those of sulfur (S) [1], and these two elements often show similar biogeochemical behavior in the environment [4,5]. Emissions of volatile organic S species are so substantial (e.g., the flux of dimethyl sulfide [DMS] from oceans to the atmospheric is 38-40 Tg·yr⁻¹) [6] that they play an important role in the global S cycle. Analogously, emissions of volatile Se species (e.g., dimethyl selenide [DMSe], dimethyl diselenide [DMDSe], and dimethyl selenosulfide [DMSeS]) [4] have been identified in various environments, but global atmospheric Se flux estimates still contain large uncertainties [7]. Like Se, the trace element arsenic (As) can have a deleterious impact on human health, but in contrast to Se, it is not considered an essential element [8,9]. Similar to Se and S, biogenic methylation and volatilization are known to occur for As [10] (e.g., monomethyl arsine [MMA], dimethyl arsine [DMA], and trimethyl arsine [TMA] have been previously measured in emissions from soils) [11]. Because Se and As often not only occur in association with S, but are also linked to S biogeochemistry in many environments [4,12,13], it is essential to study the biogeochemical cycling and emissions of the trace elements Se and As in conjunction with S. Challenges in the quantification of biogenically formed alkylated molecules in the field derive both from the reactivity of these species (i.e., sorption, photoreactions, and [redox-] interconversions) and their typically low environmental concentrations [14–17]. Atmospheric concentrations of volatile Se and As species (in the ng·m $^{-3}$ range) [18,19] and S species (in the $\mu g \cdot m^{-3}$ range) [20] are generally so low that analyte preconcentration is required. The preconcentration of volatile species with conservation of speciation can be achieved via solid sorptives (e.g., cartridges [charcoal- and Tenax tubes], columns or solid-phase microextraction [SPME]) [21–23], via gas trapping in mineral acids **Figure 1. Overview of the experimental set-ups for gas trapping experiments in the laboratory and in the field.** (A) Schematic of the experimental set-up for the laboratory gas trapping experiments, with the separate in-situ production of volatile methylated As species in a gas-tight reaction vessel (left) and direct introduction of volatile methylated Se and S species (right), connected to (B), a set of glass impingers filled with concentrated nitric acid and **c**, schematic of the experimental set-up for the field gas trapping experiments, which consists of a flow-through box equipped with an air pump connected to the set of glass impingers (B). During field application, one impinger was connected to one flow-through box and the flow-through boxes were deployed in triplicate. doi:10.1371/journal.pone.0102906.g001 [24], or using cryotrapping (direct for gaseous samples and coupled with a purge-and-trap system for volatile species dissolved in water) [25,26]. Following preconcentration, the different species are separated (for instance, via gas- or liquid-chromatography) and detected in the laboratory. Extensive reviews of hyphenated preconcentration- and speciation-methods for the quantification of Se [27–30], As [28,29,31,32], and S [15,16] are available in the literature, and a short overview is given in Table S1 in Supporting Information File S1. Although available preconcentration techniques for the collection of Se, S, or As species are highly sensitive, they are usually laborious because an additional trap elution step in the laboratory is often necessary before speciation analysis can take place. Furthermore, many available techniques cannot be easily deployed in longer field campaigns in remote locations due to limited sample stability and transportation issues [e.g., involving pressurized (cryo-)gas bottles]. Although multi-element detection [e.g., inductively coupled plasma mass spectrometry (ICP-MS)] is increasingly used, few preconcentration methods have been developed for multi-elemental studies [33] (thus requiring the combination of different single-element techniques), and only a few speciation methods target multiple (trace) elements (e.g. As and Se and S) at the same time [33–36]. The majority of preconcentration and speciation methods for Se and As have focused on major oxyanions [17,30,31] while less attention has been given to combined S-As (thio-arsenates) [37] and Se-S (seleno-sulfides) species [33] or to naturally occurring (volatile) methylated Se and As species [23,24,33]. Here, we present a highly sensitive and field-deployable method for the simultaneous quantification of volatile Se and S species and total volatile As in air. The technique, based on the trapping of volatile species in nitric acid [24], targets multiple elements at the same time, and may be combined with a flow-through box system that can be deployed in various environments. Using HPLC-HR-ICP-MS, we show that information on the original gaseous speciation of Se and S can be deduced from the formation of stable and specific non-volatile oxidation products. In addition, we present a second HPLC-HR-ICP-MS method for the direct speciation analysis of non-volatile methylated species and oxyanions of Se, S, and As in ambient waters. The quantification of volatile organic Se and S species in air overlying a natural wetland, as well as the speciation analysis of non-volatile methylated species of Se, S, and As in wetland surface water, show that the preconcentration and speciation methods are sensitive and robust. #### **Materials and Methods** #### Reagents and chemicals Standards of volatile methylated Se compounds [dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe)] and S compounds [dimethyl sulfide (DMS) and dimethyl disulfide
(DMDS)] were obtained from Sigma-Aldrich, Buchs, Switzerland. Ultrapure HPLC-grade methanol, sodium borohydride (NaBH₄) and sodium hydroxide (NaOH) were purchased from Alfa Aesar, Zürich, Switzerland. Ultrapure 70% nitric acid (HNO₃) was obtained from Carl Roth GmbH, Karlsruhe, Germany. The following solutions of non-volatile standards were used in the speciation methods: ICP-MS standards of selenite (Se[IV]), sulfate (S[VI]), and arsenate (As[V]) (J.T. Baker, Avantor, Griesheim, Germany), dissolved sodium selenate (Se[VI]), methane seleninic acid (MSeA), methane sulfonic acid (MSA), dimethylsulfoxide (DMSO), dimethyl sulfone (MSM), sodium (meta)arsenite (As[III]), dimethyl arsonic acid (DMAA) (Sigma-Aldrich, Buchs, Switzerland) and monomethyl arsenic acid sodium salt (MMAA) and trimethyl arsenoxide (TMAO) (Argus Chemicals, Vernio, Italy). Chromatography eluents were prepared with ultrapure ammonium, disodium carbonate (Na₂CO₃), and sodium bicarbonate (NaHCO₃) (Fluka, Sigma-Aldrich, Buchs, Switzerland), ultrapure HNO₃, and ultrapure methanol. All glassware, tubing, syringes, and vials used in experiments were acid-washed in 1% ultrapure HNO₃ and rinsed with ultrapure water (18.2M Ω , Thermo, NANOpure, Reinach, Switzerland) before use. All chemicals were analytical grade or higher. #### Gas trapping experiments The trapping efficiency of volatile Se, S, and As compounds (DMSe, DMDSe, DMS, DMDS, MMA, DMA, and TMA) was studied in the laboratory in a gas trapping set-up as shown in Figure 1A,B [24]. Three glass impingers (25 mL, Labo-Tech, Muttenz, Switzerland) were connected in series with Pt-cured Situbing (Tygon Masterflex, Thermo Fisher, Reinach, Switzerland). The primary trap and two carry-over traps contained 15 mL ultrapure 70% HNO₃. A gas stream of N₂, CO₂, or air (Air Liquide, Gümlingen, Switzerland) was regulated by a flowcontroller (10–100 mL·min⁻¹) and guided through the impingers. Between 0.1 and 1 mg of the Se and S target compounds were individually injected directly into the gas stream through a Teflon septum (Swagelok, Arbor AG, Brugg, Switzerland) either undiluted (in case of S) or in dilutions of 1:100 with ultrapure methanol (in case of Se) using 10 and 100 µL gas-tight micro syringes (Hamilton, Bonaduz, Switzerland). Volatile As compounds were produced in situ in a 50 mL gastight reaction vessel connected in front of the impingers (Figure 1A). The volatile species (MMA, DMA, and TMA) were individually produced by hydride formation from non-volatile reagents (MMAA, DMAA, and TMAO, respectively). For this, between 0.1 and 1 mg of educts were dissolved in 10 mL 1% HNO₃ in the reaction vessel. After dissolution, the pH was adjusted to 0>pH>3 with dilute NaOH, depending on the targeted volatile As species (the formation of volatile methylated As compounds via hydride generation is greatly pH dependent [38,39]). The solution was subsequently purged with N_2 for >20minutes. The hydride generation process was initiated by the addition of 20 mL 0.5 M borane (NaBH₄) solution. The strongly acidic conditions and high borane-to-substrate ratios (>1000 times stoichiometric excess of NaBH₄) result in the fast formation of fully hydrogenated volatile arsines [40], which were transported by the inert gas flow into the gas traps. After each experiment, an aliquot of the reagent mixture was analyzed for remaining As. Trapping efficiencies were calculated as the ratio between total elemental amounts of analyte in the gas traps and the total elemental amounts of introduced volatile analyte (either via direct injection of Se and S or calculated from the amount of remaining As in the reaction vessel). Before each trapping experiment, a blank from each of the three impingers was analyzed. The weights of the trapping liquids were recorded before and after trapping to account for potential evaporation of the acid. The trapping was continued for 120 minutes, after which the trapping liquids were immediately stored at 4°C in 20 mL acid-washed amber-glass vials with a PTFE cap (BGB Analytics, Boeckten, Switzerland). Subsequent analysis took place within one week after trapping. Potential losses of volatile compounds (e.g., due to diffusion into the tubing) were accounted for by acid-washing (24 h in 50 mL 0.1 M HNO₃) the tubing and T-piece after the experiments, and analyzing the wash for Se, S, and As. ### Elemental- and speciation analysis of trapped air and surface water The total elemental concentrations of Se and As in trapping liquids and surface waters were measured using ICP-MS (Agilent 7500cx, Basel, Switzerland) and ICP-OES (Spectro Arcos, Kleve, Germany); total elemental concentrations of S were analyzed by ICP-OES and HR-ICP-MS (Thermo Element 2, Reinach, Switzerland). Details of the total elemental analyses are given in the Supporting Methods and Table S2 in Supporting Information File S1. Volatile species that were trapped in the nitric acid trapping liquids were analyzed using a HPLC-procedure with gradient elution (henceforth referred to as 'air-method'). The method was developed specifically for acidic trapping liquid samples, and served to simultaneously separate 11 non-volatile methylated or oxyanionic Se, S, and As species (details can be found in Table S3 in Supporting Information File S1). Chromatographic separation was achieved using a PAX-500 Omnipac mixed-mode column (Dionex, Thermo, Reinach, Switzerland), after which elemental detection took place with HR-ICP-MS. The studied species were identified by retention-time matching as well as by Electrospray-Ionization Tandem Mass Spectrometry (ESI-MS/MS, details in the Supporting Methods in Supporting Information File S1) (Thermo LTQ Orbitrap XL ETD, Reinach, Switzerland) and quantified by peak integration using OriginPro 8 software (OriginLab, Northhampton, MA, USA). In addition, a second gradient HPLC procedure was developed for circumneutral water samples using the same mixed-mode column (henceforth referred to as 'water method'). Using this 'water method', 13 non-volatile methylated or oxyanionic Se, S, and As species were simultaneously separated. Detection, identification, and quantification were performed as described above (see Table S3 in Supporting Information File S1). Both chromatographic methods used ammonium nitrate (NH₄NO₃) as the primary eluent, which has advantages over other eluents [41]. The characteristics of both chromatographic methods are briefly discussed in in Supporting Information File S1. #### Field study The laboratory-tested chemotrapping method was combined with a flow-through box system and deployed for air collection in *Gola di Lago*, a minerotrophic peatland in southern Switzerland [42] (permission granted by the Department of Environment Ticino, Switzerland). The flow-through boxes (transparent polypropylene boxes, volume 17 L, covered surface area 0.2 m², Iris Ohyama Europe B.V., Tilburg, the Netherlands) were equipped with an air pump (60 Lh⁻¹, TetraTec GmbH, Melle, Germany) **Table 1.** Studied volatile species, including their structure and boiling points, calculated total trapping efficiencies, and observed reactions products and structures after trapping and transformation in concentrated nitric acid. | | | Boiling | Total trapping efficiency (%) ^b | | | |-------------|--------|-------------------------|--|----------------------------|---| | Studied spe | ecies | point (°C) ^a | efficiency (%) ^b | Identified reaction produc | ct(s) | | DMSe | ——Se | 57 | 96±2 | DMSeO | Se | | DMDSe | Se
 | 156 | 50±11 | MSeA | ——se
OH | | DMS | s\ | 37 | 101±5 | DMSO | s_^\omega_ | | DMDS | s
 | 109 | 74±8 | MSA | sон
sон | | ММА | —As H | 1 | 104±12 | As[V] | ОН

HO——As <u>—</u> О

ОН | | DMA | —As | 36 | 110±4 | As[V] | O H

 | | ТМА | As | 51 | 89±6 | As[V], MMAA | OH OH
 | ^aBoiling point at 1 atm ^befficiency using a 30 mL·min⁻¹ N₂ gas flow, summed over three impingers, standard deviation from triplicate experiments. Abbreviations: dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), dimethyl sulfide (DMS), monomethyl arsine (MMA), dimethyl arsine (DMA), trimethyl arsine (TMA), dimethyl selenoxide (DMSeO), methane seleninic acid (MSeA), dimethyl sulfoxide (DMSO), methane sulfonic acid (MSA), arsenate (As[V]), monomethyl arsonic acid (MMAA). doi:10.1371/journal.pone.0102906.t001 (see Figure 1C). In a 24 h period of air sampling, three liquid chemotrapping samples were simultaneously collected from different locations (5 meters apart) in the peatland, and three surface water samples were collected from the same locations. The chemotrapping liquid samples and surface water samples were analyzed for their total elemental Se, S, and As concentrations, as well as for the speciation of these elements using the methods described above. One set of the samples was spiked with standards to verify the reproducibility of the chemotrapping method and speciation methods. #### **Results and Discussion** #### Chemotrapping efficiencies The yield of volatile As species production by hydride generation (calculated from the As concentration remaining in the reaction vessel) was $72\pm3\%$ for MMA, $91\pm4\%$ for DMA, and $32\pm2\%$ for TMA. From these, the total trapping efficiencies were 104% (MMA), 110% (DMA), and 89% (TMA), respectively. An overview of the trapping efficiencies of all the investigated Se, S, Figure 2. Relationship between the efficiency of chemotrapping in nitric acid and boiling points of the studied volatile compounds. Error bars indicate the standard deviation of the measurements of triplicate samples. doi:10.1371/journal.pone.0102906.g002 Figure 3. Analysis of trapping liquid samples after gas trapping experiments with volatile, methylated Se, S and As compounds. Stacked chromatograms of solutions with non-volatile Se (top), S (middle), and As (bottom) standards (dashed lines), and
chromatograms of diluted nitric acid trapping liquids (solid lines) produced in the gas trapping experiments with volatile organic Se, S and As compounds. The chromatograms are ten-point moving averages. doi:10.1371/journal.pone.0102906.g003 and As species is given in Table 1. The standard deviations of the trapping efficiencies were low (<12%), indicating that the total amounts of trapped elements can be reproducibly reconstructed. Carryover into the second and third impingers was minimal, with over 90% of the introduced species trapped in the first impinger (see Table S4 in Supporting Information File S1). Trapping efficiencies were dependent on the degree of volatility of the studied species (Figure 2). For the more volatile compounds (DMS, DMSe, MMA, DMA, and TMA; boiling points $\leq 57^{\circ}$ C), the trapping efficiencies were between 89% and 110%. Less volatile compounds (DMDS and DMDSe; boiling points ≥100°C) showed lower but reproducible trapping efficiencies (between 50% and 74%). Analysis of the acid wash of the T-piece and tubing showed that within a trapping time of 120 min, analytes with a higher boiling point (and lower vapor pressure) were not completely evaporated and transported into the traps, but instead remained partly adsorbed to the tubing. Repeated total elemental and speciation analysis of the undiluted trapping liquids (stored at 4°C for 30 d) yielded similar recoveries (within 95% agreement) and speciation, indicating that the formed species are stable and preserved. #### Deduction of the gaseous speciation The trapped volatile Se, S, and As compounds in the nitric acid trapping liquid were investigated with the 'air method'. In the trapping liquids of the Se and S trapping experiments, single nonvolatile transformation products were observed. The peak retention times of the analyzed trapping liquids matched with those of known standards and indicated the formation of DMSO from DMS, MSA from DMDS, DMSeO from DMS, and MSeA from DMDSe upon trapping in nitric acid (Figure 3, Table 1). The identities of these compounds were further confirmed by spiking the trapping liquids with the corresponding known standard, as well as by analyzing the trapping liquids with ESI-MS/MS (see Figure S1 and Table S5 in Supporting Information File S1). The trapping of volatile MMA and DMA both led to the formation of As[V], and TMA trapping resulted in the formation of both As[V] and MMAA (Figure 3), indicating that demethylation occurred during the acid-trapping of these As species. In summary, the trapping method not only enables quantification of the total concentrations of volatile Se, S, and As in air due to the reproducible trapping efficiencies, but also allows for a quantitative reconstruction of the original gaseous speciation of volatile S and Se (but not As) due to the formation of single and exclusive oxidized (non-volatile) trapping products. The limits of detection (LOD, $3 \times \sigma$) for the investigated species in the trapping liquids using the HPLC-HR-ICP-MS 'air method' were $0.17-0.23 \,\mu\text{g}\cdot\text{L}^{-1}$ for Se species, $0.27-1.1 \,\mu\text{g}\cdot\text{L}^{-1}$ for As species, and 2-10 µg·L⁻¹ for S species (see Table S3 in Supporting Information File S1). These values translate to lower LODs in the original gas phase due to the preconcentration and accumulation effect [43]. The gas phase LODs of the investigated species are ultimately determined by the instrumental detection limit (<22 pg Se, <65 pg As, and <780 pg S, based on the aqueous concentration and injection volume). Consequently, preconcentration using a 60 L·h⁻¹ gas flow for 24 h in 15 mL nitric acid (as applied during the collection of field samples [42]) results in gas-phase LODs of $<2.4 \text{ pg}\cdot\text{L}^{-1}$ for the Se species. Quantification limits may be further improved depending on the applied air flow and the duration of trapping, the purity of the trapping liquid, or instrumentally by using, for example, hydride generation or additional preconcentration techniques prior to ICP-MS [21,29,44]. #### Emissions from the peatland Analysis of the trapping liquids that were collected in the field allowed for the quantification of naturally emitted volatile Se and S species, as well as the quantification of total As emissions. In the trapping liquids collected at three different locations, the total concentrations ranged between 2.6–2.8 µg·L⁻¹ Se, 1.2– $3.7 \ \mu \text{g} \cdot \text{L}^{-1}$ As, and $53-200 \ \mu \text{g} \cdot \text{L}^{-1}$ S (Figure 4). Different methylated species of Se (MSeA, DMSeO), S (MSA, DMSO) and As (MMAA) were identified in the trapping liquids, as well as nonmethylated anionic Se, As, and S species (an example chromatogram from a field sample is shown in Figure 5A). Spiking of a trapping liquid with corresponding standards yielded >90% recovery at the retention times of the trapped species (see Table S6 in Supporting Information File S1), which indicated that the species were correctly identified and quantified. The high recovery of the spiked standards indicated that matrix effects (e.g., caused by the trapping of other emitted volatiles) were insignificant. Using the air collection rate and flow-through box surface [42], the total elemental emissions at the three locations in the peatland were calculated to vary between 190–210 ng Se·m⁻²·d⁻¹, 90–270 ng As·m⁻²·d⁻¹, and 4–14 µg S·m⁻²·d⁻¹. According to the conversion of trapped species as validated in the laboratory **Figure 4. Field study site and speciation analysis of field samples.** (A) Location of the studied minerotrophic peatland, Gola di Lago, in southern Switzerland, (B) Legend depicting the investigated species in both the trapping liquids and the surface waters (the fraction of other species was calculated as the total elemental concentration minus the elemental sum of the identified species), (C) Speciation of Se, As and S in the three trapping liquid samples (elemental basis), (D) Speciation of Se, As and S in the three surface water samples (elemental basis). Error bars indicate the standard deviation of triplicate analysis of the samples. doi:10.1371/journal.pone.0102906.g004 experiments (Table 1), the observed methylated species in the trapping liquids corresponded with the emission of 19–56 ng DMDSe·m $^{-2}\cdot d^{-1},~0-34$ ng DMSe·m $^{-2}\cdot d^{-1},~0.5-5.7$ µg DMDS·m $^{-2}\cdot d^{-1},~and~0.7-1.6$ µg DMS·m $^{-2}\cdot d^{-1}$ at the three locations in the peatland, which is comparable to fluxes observed in a larger field campaign in the same peatland [42]. The presence of a methylated As species in the trapping liquids (0–0.4 µg·L $^{-1}$ MMAA) indicated the volatilization of methyl-As compounds, even though the exact original gaseous speciation of As cannot be reconstructed. Comparing the sum of all identified species (elemental basis) with measured total elemental quantities in the trapping liquids, up to 85% of total Se, up to 76% of total As, and up to 94% of total S was identified in the three natural air samples (Figure 4, see also Table S6 in Supporting Information File S1). Unidentified species were present in all trapping liquids, which may have been caused by the emission of other volatile species that Figure 5. Chromatograms of trapping liquid- and surface water samples collected at Gola di Lago. (A) Stacked chromatogram of the gas trapping liquid sample 1 from Gola di Lago for Se (top), S (middle), and As (bottom) and (B) Stacked chromatogram of the surface water sample 1 from Gola di Lago for Se (top), S (middle), and As (bottom). Chromatograms for blanks are indicated by dashed lines. All chromatograms are five-point moving averages, and the identified compounds and their molar concentrations (on an elemental basis) are indicated at the corresponding peaks. Details of both methods are given in Table S3 in Supporting Information File S1. doi:10.1371/journal.pone.0102906.g005 were not specifically investigated in this study (e.g., hydrogen sulphide $[H_2S]$, carbonyl sulphide [COS], methane thiol $[CH_3-S-H]$ carbon disulphide $[CS_2]$ [14], and Se analogues [7]). The incorporation of these additional species in the presented trapping technique could be a next step in the further development of this method. #### Aqueous speciation of the peatland surface water The 'water method' allowed for the simultaneous separation of 13 non-volatile, methylated and oxyanionic Se, S and As compounds in natural waters (see Figure S2 in Supporting Information File S1). The 'water method' also included the species Se[IV] and As[III] because in ambient, slightly reducing waters (but not in the oxidative nitric acid trapping liquid) Se[IV] and Se[VI] or As[III] and As[V] may coexist [1,45]. The limits of detection for the species investigated in the 'water method' are $0.10-0.17~\mu g \cdot L^{-1}$ for Se species, $0.16-0.31~\mu g \cdot L^{-1}$ for As species, and $16-22~\mu g \cdot L^{-1}$ for S species (see Table S3 in Supporting Information File S1), which is comparable to the 'air method' and in the same order of magnitude as previously reported LODs of ICP-MS-based speciation methods (see Table S1 in Supporting Information File S1). The peatland surface water samples showed considerable variation in total elemental concentrations on a small spatial scale (Figure 4). Compared to the speciation of Se and S in the trapping liquids, the aqueous speciation of Se, S, and As at the three investigated locations was relatively uniform. All analyzed surface water samples contained only sulfate (between 546-2002 μg·L⁻¹) as an identified S species, while both anionic and methylated species of Se (0.1-1.5 µg·L⁻¹ Se[IV] and 0- $0.2 \ \mu \text{g} \cdot \text{L}^{-1} \ \text{MSeA})$ and As $(0-0.4 \ \mu \text{g} \cdot \text{L}^{-1} \ \text{As} [V], \ 0-0.8 \ \mu \text{g} \cdot \text{L}^{-1}$ As[III], $1.3-2.1 \,\mu\text{g}\cdot\text{L}^{-1}$ MMAA, and $0.5-1.5 \,\mu\text{g}\cdot\text{L}^{-1}$ DMAA) were
identified at the three locations (Figure 4 and Figure 5B). Aqueous methylated species were thus not so relevant for Se and S, but appeared to be major species for As. Even though methylated As species are typically not the most abundant species in natural surface waters [46], their presence has been previously reported [47]. Spiking of a surface water sample with known standard solutions yielded >90% recoveries for all compounds (see Table S6 in Supporting Information File S1), confirming the species identities and illustrating that matrix effects were insignificant. In surface water sample 2, the sum of the identified species equaled the total elemental concentrations, (Figure 4) while in the other two surface water samples, small amounts of other species could not be identified (up to $0.3 \ \mu g \cdot L^{-1}$ of Se, $1.7 \ \mu g \cdot L^{-1}$ of As, and 140 μg·L⁻¹ of S). Polysulfides and combined S-Se and S-As species have been previously identified as potentially relevant species in the environment (e.g., thio-arsenates [37]). However, no simultaneous As-S, Se-S, and As-Se peaks were observed, suggesting that combined species have already transformed during sampling, or were not major constituents of the collected surface water samples. Dissolved volatile species are known to yield higher responses in ICP-MS due to their more efficient vaporization and transport into the plasma compared to non-volatile calibration standards [48]. Subsequent overestimation of the total elemental concentration may be another explanation for its poor agreement with the elemental sum of the identified species. Indeed, dissolved volatile species of Se and S were identified in the surface water of Gola di Lago [SPME-GC-MS analysis of the surface water indicated around 10 and 100 ng·L⁻¹ DMSe and DMS, respectively (data not shown)]. #### **Conclusions** Laboratory validation experiments and field-testing demonstrate that the presented air trapping method for volatile species of Se, S, and As in nitric acid is a reliable preconcentration method for the determination of their total emissions in different contexts. The deduction of the original gaseous speciation for Se and S compounds is possible via the formation of specific transformation products and the gaseous As speciation may be qualified using existing techniques [23,39]. To circumvent potential hazards during handling (nitric acid), the used quantities of acid can be kept small (<15 mL). In addition, acid traps may be prepared in the laboratory and subsequently transported to the field for installation. Important advantages of gas trapping in nitric acid over other preconcentration methods [15-17] include the ease and cost of operation (e.g., no pressurized gas bottles are required and the direct, on-site preconcentration eliminates the need for additional sample preparation such as trap elution) and the storability of the samples (i.e., sample concentration and speciation are stable for at least one month). A considerable variation in the concentration and speciation of Se, S, and As was observed in the studied peatland, indicating that methylation and volatilization were highly variable on small spatial #### References - Fernandez-Martinez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Biotechnol. 8: 81–110. - Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, et al. (2011) Environmental Selenium Research: From Microscopic Processes to Global Understanding. Environ. Sci. Technol. 46: 571–579. - 3. Combs GF (2001) Selenium in global food systems. Brit. J. Nutr. 85: 517-547. - Amouroux D, Liss PS, Tessier E, Hamren-Larsson M, Donard OFX (2001) Role of oceans as biogenic sources of selenium. Earth Planet. Sc. Lett. 189: 277–283. - Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 103: 1–25. - Lomans BP, van der Drift C, Pol A, Op den Camp HJM (2002) Microbial cycling of volatile organic sulfur compounds. Cell. Mol. Life Sci. 59: 575–588. - Wen H, Carignan J (2007) Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 41: 7151–7165. - Winkel LHE, Berg M, Amini M, Hug SJ, Johnson CA (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geosci. 1: 536–542. - Winkel LHE, Trang PTK, Lan VM, Stengel C, Amini M, et al. (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. P. Natl. Acad. Sci. 108: 1246–1251. scales (within meters). Quantification of species in the aqueous and gaseous phase indicated that emissions of methylated species differ significantly per element and that the underlying chemical pathways may be more complex than is often assumed. For instance, DMSe is usually referred to as the main volatilized Se species [7], but up to 40% of all trapped Se species in this study did not appear to originate from the latter. Our speciation measurements were conducted using HPLC coupled to HR-ICP-MS, but the two presented speciation methods may also be coupled to other (or multiple parallel) detection techniques (e.g., atomic emission spectrometry for S or atomic fluorescence/adsorption spectroscopy for As and Se). Complemented by the presented chemotrapping method, these techniques can help to better understand the mechanisms of methylation and volatilization of Se, S, and As in various natural environments. The combination of the gas trapping method with species separation and with sensitive multi-element detection opens up possibilities for studying the emissions of other trace elements that undergo alkylation and volatilization in natural systems (e.g., the halogens Cl, Br, and I, and the trace elements Sb, Te, and Bi) [49]. Additional potential applications include research on natural emissions from the marine environment (e.g., methyl-halogen emissions), as well as monitoring of industrial emissions (e.g., emissions (of alkylated species) from industrial sites and from wastewater treatment plants). #### **Supporting Information** **File S1** File containing Figures S1–S2, Tables S1–S6, Supporting Discussion, Supporting Methods, and Supporting References. (DOCX) #### **Acknowledgments** We thank C. Stengel for various technical and analytical assistance, N. Homazava for assistance with ICP-OES analyses, H. Singer and B. Beck for assistance with ESI-MS/MS analyses and T. Blazina for help in the field campaigns. P. Poggiati and M. Sulmoni from the Department of Environment (Ticino, Switzerland) are acknowledged for permission to conduct the field experiments in Gola di Lago. #### **Author Contributions** Conceived and designed the experiments: BV MB LW. Performed the experiments: BV AA HH. Analyzed the data; BV AA HH ML MB LW. Contributed reagents/materials/analysis tools: AA HH ML. Contributed to the writing of the manuscript: BV AA HH ML MB LW. - Bentley R, Chasteen TG (2002) Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth. Microbiol. Mol. Biol. Rev. 66: 250–271. - Mestrot A, Feldmann J, Krupp EM, Hossain MS, Roman-Ross G, et al. (2011) Field Fluxes and Speciation of Arsines Emanating from Soils. Environ. Sci. Technol. 45: 1798–1804. - Langner P, Mikutta C, Kretzschmar R (2012) Arsenic sequestration by organic sulphur in peat. Nature Geosci. 5: 66–73. - Plant JA, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck BA (2003) Arsenic and Selenium. In: Heinrich DH, Karl KT, editors. Treatise on Geochemistry: Pergamon Oxford. pp. 17–66. - Bentley R, Chasteen TG (2004) Environmental VOSGs—formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 55: 291–317. - Wardencki W (1998) Problems with the determination of environmental sulphur compounds by gas chromatography. J. Chromatogr. A. 793: 1–19. - Pandey SK, Kim KH (2009) A Review of Methods for the Determination of Reduced Sulfur Compounds (RSCs) in Air. Environ. Sci. Technol. 43: 3020– 3029. - 17. Pyrzynska K (2002) Determination of selenium species in environmental samples. Mikrochim. Acta. 140: 55–62. - Jiang S, Robberecht H, Adams F (1983) Identification and determination of alkylselenide compounds in environmental air. Atmos. Environ. 17: 111–114. - Yang G, Ma L, Xu D, Li J, He T, et al. (2012) Levels and speciation of arsenic in the atmosphere in Beijing, China. Chemosphere. 87: 845–850. - Mészáros E (1978) Concentration of sulfur compounds in remote continental and oceanic areas. Atmos. Environ. 12: 699–705. - Lenz M, Floor GH, Winkel LHE, Román-Ross G, Corvini PFX (2012) Online Preconcentration-IC-ICP-MS for Selenium Quantification and Speciation at Ultratraces. Environ. Sci. Technol. 46: 11988–11994. - Li KC, Shooter D (2004) Analysis of sulfur-containing compounds in ambient air using solid-phase microextraction and gas chromatography with pulsed flame photometric detection. Int. J. Environ. An. Ch. 84: 749–760. - Mestrot A, Uroic MK, Plantevin T, Islam MR, Krupp EM, et al. (2009) Quantitative and Qualitative Trapping of Arsines Deployed to Assess Loss of Volatile Arsenic from Paddy Soil. Environ. Sci. Technol. 43: 8270–8275. - Winkel LHE, Feldmann J, Meharg AA (2010) Quantitative and Qualitative Trapping of Volatile Methylated Selenium Species Entrained through Nitric Acid. Environ. Sci. Technol. 44: 382–387. - Amouroux D, Tessier E, Pecheyran C, Donard OFX (1998) Sampling and probing volatile metal(loid) species in natural waters by in-situ purge and cryogenic trapping followed by gas chromatography and inductively coupled plasma mass spectrometry (P-CT-GC-ICP/MS). Anal. Chim. Acta. 377: 241– 254. - Pecheyran C, Quetel CR, Lecuyer FMM, Donard OFX (1998) Simultaneous determination of volatile metal (Pb, No, Sn, In, Ga) and nonmetal species (Se, P, As) in different atmospheres by cryofocusing and detection by ICPMS. Anal. Chem. 70: 2639–2645. - B'Hymer C, Caruso JA (2006) Selenium
speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A. 1114: 1–20. - Cai Y (2000) Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. Trac-Trend Anal. Chem. 19: 62–66. - Chen Y-W, Belzile N (2010) High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: A critical review. Anal. Chim. Acta. 671: 9–26. - Herrero Latorre C, Barciela García J, García Martín S, Peña Crecente RM (2013) Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: A review. Anal. Chim. Acta. 804: 37–49. - Ammann AA (2011) Arsenic Speciation Analysis by Ion Chromatography A Critical Review of Principles and Applications. Am. J. Anal. Chem. 2: 27–45. - Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34: 4304–4312. - 33. Meija J, Montes-Bayón M, Le Duc DL, Terry N, Caruso JA (2002) Simultaneous Monitoring of Volatile Selenium and Sulfur Species from Se Accumulating Plants (Wild Type and Genetically Modified) by GC/MS and GC/ICPMS Using Solid-Phase Microextraction for Sample Introduction. Anal. Chem. 74: 5837–5844. - Martínez-Bravo Y, Roig-Navarro AF, López FJ, Hernández F (2001) Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A. 926: 265–274. - Tonietto G, Godoy J, Oliveira A, Souza M (2010) Simultaneous speciation of arsenic (As(III), MMA, DMA, and As(V)) and selenium (Se(IV), Se(VI), and SeCN-) in petroleum refinery aqueous streams. Anal. Bioanal. Chem. 397: 1755-1761. - 36. Niedzielski P (2005) The new concept of hyphenated analytical system: Simultaneous determination of inorganic arsenic(III), arsenic(V), selenium(IV) and selenium(VI) by high performance liquid chromatography-hydride generation-(fast sequential) atomic absorption spectrometry during single analysis. Anal. Chim. Acta 551: 199–206. - Planer-Friedrich B, London J, McCleskey RB, Nordstrom DK, Wallschläger D (2007) Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environ. Sci. Technol. 41: 5245–5251. - Pantsar-Kallio M, Korpela A (2000) Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry. Anal. Chim. Acta. 410: 65–70. - Planer-Friedrich B, Matschullat J, Merkel B, Roewer G, Volke P (2002) Development of a robust technique for sampling volatile metal(loid)s in wetlands. Anal. Bioanal. Chem. 374: 1191–1198. - D'Ulivo A, Mester Z, Meija J, Sturgeon RE (2007) Mechanism of generation of volatile hydrides of trace elements by aqueous tetrahydroborate(III). Mass spectrometric studies on reaction products and intermediates. Anal. Chem. 79: 3008–3015 - Ammann AA (2010) Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection. J. Chromatogr. A. 1217: 2111–2116. - Vriens B, Lenz M, Charlet L, Berg M, Winkel LHE (2014) Natural wetland emissions of methylated trace elements. Nat. Commun. 5, 3035. - Pecheyran C, Amouroux D, Donard OFX (1998) Field determination of volatile selenium species at ultra trace levels in environmental waters by on-line purging, cryofocusing and detection by atomic fluorescence spectroscopy. J. Anal. Atom. Spectrom. 13: 615–621. - Chen B, Hu B, He M, Huang Q, Zhang Y, et al. (2013) Speciation of selenium in cells by HPLC-ICP-MS after (on-chip) magnetic solid phase extraction. J. Anal. Atom. Spectrom. 28: 334–343. - Francesconi KA, Kuehnelt D (2002) Arsenic compounds in the environment. In: Frankenberger Jr WT, editor. Environmental Chemistry of Arsenic, Marcel Dekker Inc New York. pp. 51–94. - Bednar AJ, Garbarino JR, Burkhardt MR, Ranville JF, Wildeman TR (2004) Field and laboratory arsenic speciation methods and their application to naturalwater analysis. Water Res. 38: 355–364. - Anderson LCD, Bruland KW (1991) Biogeochemistry of Arsenic in Natural Waters: The Importance of Methylated Species. Environ. Sci. Technol. 25: 420– 427. - Juresa D, Kuehnelt D, Francesconi KA (2006) Consequences of Vapor Enhancement on Selenium Speciation Analysis by HPLC/ICPMS. Anal. Chem. 78: 8569–8574. - Thayer JS (2002) Review: Biological methylation of less-studied elements. Appl. Organomet. Chem. 16: 677–691. # Quantification of methylated selenium, sulfur, and arsenic in the environment Bas Vriens, Adrian A. Ammann, Harald Hagendorfer, Markus Lenz, Michael Berg, and Lenny H.E. Winkel ## Supporting Information File S1 Figures S1–S2 Tables S1–S6 Supporting Discussion Supporting Methods Supporting References Figure S1. Comparison of theoretical mass spectra with measured mass spectra of DMSeO, DMSO, MSeA, and MSA in trapping liquid samples using ESI-MS/MS. Relative MS intensities (y-axis) are shown for the characteristic masses (x-axis) of each of the investigated species (legend in MSA-frame). Numbers in italics indicate the absolute deviation from the characteristic mass Δ m/z (ppm). Experimental details are provided in the Supporting Methods in Supporting Information File S1. Figure S2. Chromatograms of non-volatile, aqueous Se, S and As species using the 'water method'. The stacked chromatograms illustrate the simultaneous elution of non-volatile Se (top), S (middle), and As (bottom) species (dashed lines) and the potential ³⁵Cl⁴⁰Ar interference (solid line) using the 'water method'. The chromatograms are ten-point moving averages. Experimental details are provided in Table S3 in Supporting Information File S1. **Table S1.** Selected analytical techniques for the (preconcentration and) quantification of various (non-)volatile Se, S, As species (or combinations thereof) in the gaseous or aqueous phase and their corresponding detection limits (deviating units are indicated if applicable). | Reference | Method | Target species | Phase | LOD (µg·L ⁻¹) | |-----------|---|------------------------------|---------|--| | Selenium | | | | | | [1] | PT ^a -cryo-AFS | Volatile Se | Gaseous | 4.4 pg·L ⁻¹ | | [2] | MSPE ^b -HPLC-ICP-MS | Inorganic Se & Se-aminoacids | Aqueous | 0.025 - 0.149 | | [3] | GC-MIP ^c -AES | Volatile Se | Gaseous | 0.003 – 0.4 | | [4] | SPME-GC-AES | (In)organic Se | Gaseous | 0.005 - 0.01 | | [5] | FISM ^d -ETAAS | Inorganic Se | Aqueous | 0.005 | | [6] | GC-MIP-AES | Inorganic Se | Aqueous | 0.008 | | [7] | SPE-ICP-MS | Se-amino acids | Aqueous | 0.021 - 0.024 | | [8] | HPLC-UV-HG-AFS | Inorganic Se & Se-aminoacids | Aqueous | 0.02 – 0.05 | | [9] | SPE-ICP-MS | Inorganic Se & Se-aminoacids | Aqueous | 0.045 - 0.21 | | [10] | HPLC-ICP-MS | Inorganic Se & Se-aminoacids | Aqueous | 0.1 – 1.5 | | [11] | HLPC-ICP-MS | Volatile Se | Aqueous | 0.6 – 1.3 | | [12] | HPLC-ICP-MS | Inorganic Se & Se-aminoacids | Aqueous | 0.6 –1.5 | | [13] | HPLC-UV-HG-AFS | Inorganic Se & Se-aminoacids | Aqueous | 1 – 3 | | [14] | HPLC-MW ^e -HG-ICP-MS | Inorganic Se & Se-aminoacids | Aqueous | 1.0 – 5.3 | | [15] | HPLC-ICP-AES | Se-amino acids | Aqueous | 2 – 10 | | [16] | HG-AFS | Total Se | Aqueous | 1 – 5 | | Sulfur | I. | | l | I | | [17] | SPME-GC-PFD ^f | Volatile organic S | Gaseous | 0.01 – 0.36 | | [18] | PT-cryo-GC-FPD ^g | Volatile organic S | Gaseous | $0.2 - 1 \text{ ng} \cdot \text{L}^{-1}$ | | [19] | PT-GC-MW-AES | Volatile organic S | Gaseous | $0.4 - 0.9 \text{ ng} \cdot \text{L}^{-1}$ | | [20] | IC-UV-VIS | Inorganic S | Aqueous | 0.34 | | [21] | CSSWV ^h -HPLC-ICP-MS | Inorganic S, Organic S | Aqueous | 1.7 – 0.17 | | [22] | GC-FID ⁱ , MIMS ^j | Volatile organic S | Aqueous | 0.1 – 20 | | [23] | IC-DRC ^k -ICP-MS | Inorganic S | Aqueous | 3.6 – 4.6 | | [24] | IC-ICP-MS | Inorganic S | Aqueous | 35 – 270 | | [25] | SPME-GC-PFD | Volatile organic S | Gaseous | 0.002 - 0.03 | | | | | 1 | | #### Table S1, continued | Reference | Method | Target species | Phase | LOD (μg·L ⁻¹) | |------------|-----------------------------|---|---------|---| | Arsenic | | | | | | [26] | HPLC-ICP-MS | Inorganic As, Methylated As | Aqueous | 0.005 - 0.01 | | [27] | HPLC-ICP-MS | Inorganic As, Methylated As Aqueou | | 0.1 - 0.3 | | [28] | HPLC-UV-VIS | Inorganic As | Aqueous | 400 – 1000 | | [29] | IC-ICP-MS | Inorganic As, Organic As | Aqueous | 0.008 - 0.024 | | [30] | IC-ICP-MS | Inorganic As, Methylated As | Aqueous | 0.1 - 0.75 | | [31] | IC-ICP-MS | Inorganic As, Methylated As | Aqueous | 0.1 - 0.3 | | [32] | HPLC-ICP-MS | Inorganic As, Methylated As | Aqueous | 0.044 | | [33] | ICP-MS | Inorganic As | Aqueous | 0.021 | | [34] | SPME-GC-MS | Methylated As | Gaseous | 0.1 μg/m ³ | | [35] | GC-ICP-MS | Methylated As | Gaseous | 20-100 pg | | Combined S | Se-S-As | | | | | This study | HPLC-HR-ICP-MS | Inorganic and organic Se, S and As | Aqueous | 0.13 – 0.23 (Se)
0.16 – 1.1 (As)
2 – 32 (S) | | Combined S | Se-As | | | | | [36] | HPLC-ICP-MS | Inorganic Se and As,
Methylated As | Aqueous | 0.006 – 0.4 (As) and 1 (Se) | | [37] | HPLC-HG-AAS | Inorganic Se and As | Aqueous | 2 – 20 | | [38] | HPLC-ICP-MS | Inorganic Se and As, Seaminoacids and methylated As | Aqueous | 0.080 - 0.180 | | [39] | IPRP ¹ -ICP-MS | Inorganic Se and As, Seaminoacids and methylated As | Aqueous | 20 – 30 (As)
300 – 400 (Se) | | [40] | GC-ICP-MS | Methylated As and Se | Gaseous | 21-26 pg/m ³ | | [41] | GC-ICP/EII ^m -MS | Methylated As and Se | Gaseous | - | | Combined S | e-S | | • | • | | [42] | SPME-GC-AES | Volatile S and Se | Aqueous | 0.008 | | [43] | SPME-GC-(ICP)-MS | Volatile S and Se | Gaseous | 1-10 ppt (Se)
30- 300 ppt (S) | ^a Purge and Trap, ^b
Magnetic Solid Phase Extraction, ^c Microwave Induced Plasma, ^d Flow Injection Microcolumn Separation, ^e Microwave, ^f Pulsed Flame Photometric Detection, ^g Flame Photometric Detection, ^h Cathodic Stripping Square Wave Voltammetry, ⁱ Flame Ionization Detector, ^j Membrane Introduction Mass Spectrometry, ^k Dynamic Reaction Cell, ^l Ion Pairing Reversed Phase, ^m Electron Impact Ionization **Table S2.** Settings and analytical characteristics for the total Se and As measurements with ICP-MS, ICP-OES, and HR-ICP-MS. | ICP-MS (Agilent 7500c) | κ) | | | | |----------------------------------|--|--|--|--| | Collision-reaction cell | Quadrupole, with He or H ₂ | | | | | Tubing | PEEK and Tygon | | | | | Tuning | Daily. 10 ppb Li, Co, Y, Ce, and Te in HCl-HNO ₃ | | | | | Nebulizer | AR 35-1 MicroMist | | | | | Spray chamber & torch | Scott type, quartz | | | | | Cones | Ni/Cu | | | | | Plasma power | 1500 W | | | | | Internal standard | 1 ppm Sc and 0.1 ppm In and Lu in 1% HNO ₃ | | | | | Wash solution | 2% HNO ₃ | | | | | Target masses | ⁷⁶ Se, ⁷⁷ Se, ⁷⁸ Se, ⁸⁰ Se, ⁷⁵ As | | | | | Limits of detection ^a | 2.1 ng Se·L ⁻¹ , 3.6 ng As·L ⁻¹ | | | | | ICP-OES (Spectro Arcos | s) | | | | | Tubing | Tygon | | | | | Tuning | Daily. Spectro I-CAL solution and 2ppm As, Mn, and Pb in 1% HNO ₃ | | | | | Plasma power | 1300 W | | | | | Nebulizer | 510-20-Modified Lichte MSDN | | | | | Spray chamber & torch | Cyclonic, Scott type, quartz | | | | | Cones | Ni/Cu | | | | | Internal standard | Rh 343.489 nm | | | | | Wash solution | 1% HNO ₃ | | | | | Analytical lines | Se: 196.090 and 204.050 nm | | | | | | S: 166.668, 180.731 and 182.034 nm | | | | | | As: 189.042 and 193.758 nm | | | | | Limits of detection ^a | 5.4 μg Se·L ⁻¹ , 10 μg S·L ⁻¹ , 7.1 μg As·L ⁻¹ | | | | | HR-ICP-MS (Thermo El | lement 2) | | | | | Resolution | Medium | | | | | Tubing | PEEK | | | | | Nebulizer | PFA MicroFlow, (Elemental Scientific Instrumentation, Omaha, US) | | | | | Spray chamber | Scott type, quartz, and Peltier-cooled (4°C) | | | | | Cones | Ni/Cu | | | | | Tuning | Daily. 1 ppb Sc, Rh, In, U, Y and Lu, and 5 ppb Li and Ba in 1% HNO ₃ | | | | | Mass calibration | Daily. 103Rh | | | | | Plasma power | 1250 W | | | | | Wash solution | 1% HNO ₃ | | | | | Target masses | ³² S (31.9715 amu), ³⁴ S (33.9673 amu), | | | | | | ⁷⁷ Se (76.9194 amu), ⁷⁸ Se (77.9168 amu), | | | | | Mass window | 100%, >10 scans per peak | | | | | Limits of detection ^a | $0.1 \ \mu g \ Se \cdot L^{-1}, 1 \ \mu g \ S \cdot L^{-1}, 70 \ ng \ As \cdot L^{-1}$ | | | | ^aThree times standard deviation σ **Table S3.** Settings and characteristics of the 'air method' (left) and the 'water method' (right) with corresponding analyte retention factors and figures of merit for the investigated analytes. | | | | | | | (XV-4 | | | | | | | |-----------|--|---|------------------------------------|------------------------------|--|-------|--|------------------------------|--|------------------------------|----------------------------------|--| | | 'Air method' ^a | | | | | | 'Water method' ^b | | | | | | | Flow rate | 500 μL· | min ⁻¹ | | | | | 1000 µl | .min | 1 | | | | | Columns | Pax-500 OmniPac Guard (50 × 4mm)
Pax-500 OmniPac mixed-mode (250 × 4mm) | | | | | | Pax-500 OmniPac Guard (50 × 4mm)
Dionex Gradient-Mixer 4 (50 × 2mm)
Pax-500 OmniPac mixed-mode (250 × 4mm) | | | | | | | Gradients | Time (min) | Eluent A 30mM NO ₃ NH ₄ , 1% methanol, pH 7.5 Eluent B 50mM Na ₂ CO ₃ /NaHCO ₃ 25% methanol, pH 8.5 | | | Time (min) Eluent A 30mM NO ₃ NH ₄ , 1% methanol, pH 7.5 | | | Eluent C
water,
pH 8.4 | | | | | | | 0 | | 100% | | 0% | | 0 | | 0% | | 100% | | | | 1 | | 100% | | 0% | | 1.5 | | 0% | | 100% | | | | 10 | | 0% | | 00% | | 10 | | 80% | | 20% | | | | 15 | | 0% | | 00% | | 11 | | 100% | | 0% | | | | 16 | | 100% | | 0%
0% | | 12 | | 0% | | 100% | | | | 25 | | 100% | | 0% | | 25 | 0% | | | 100% | | | Species | Retenti
factor (
(%RSD | k) ^c | Linear range (µg·L ⁻¹) | R ² of linear fit | $\begin{bmatrix} LOD^d \\ (\mu g \cdot L^{-1}) \end{bmatrix}$ | | Retentifactor (| (k) ^c | Linear
range
(µg·L ⁻¹) | R ² of linear fit | LOD^{d} $(\mu g \cdot L^{-1})$ | | | Se[VI] | 1.00 (±3 | .0%) | 1-100 | 0.976 | 0.18 | | 2.16 (±3 | 3.6%) | 5-650 | 0.997 | 0.17 | | | Se[IV] | N.D. | | | | | | 1.19 (±3 | 3.6%) | 1-250 | 0.978 | 0.10 | | | MSeA | 0.13 (±3 | .3%) | 1-500 | 0.999 | 0.17 | | 0.55 (±2 | 2.6%) | 1-150 | 0.948 | 0.15 | | | DMSeO | 0.39 (±3 | .0%) | 1-150 | 0.995 | 0.23 | | 0.02 (±3 | 3.7%) | 5-300 | 0.996 | 0.13 | | | As[V] | 0.2 (±5. | .2%) | 2-200 | 0.965 | 0.36 | | 1.72 (±3 | 3.8%) | 1-300 | 0.999 | 0.31 | | | As[III] | N.D. | | | | | | 0.27 (± | 3.8%) | 5-1200 | 0.999 | 0.20 | | | MMAA | 0.54 (±5 | 5.1%) | 1-100 | 0.983 | 0.27 | | 0.99 (±3 | 3.6%) | 1-350 | 0.999 | 0.22 | | | DMAA | 1.37 (±2.7%) 2-200 | | 2-200 | 0.926 | 1.1 | | 0.50 (±2 | 2.7%) | 5-450 | 0.999 | 0.17 | | | TMAO | 1.55 (±3.7%) 2-200 | | 2-200 | 0.921 | 1.1 | | 0.12 (±4 | 1.5%) | 2-250 | 0.995 | 0.16 | | | S[VI] | 0.86 (±2 | 2.0%) | 20-2000 | 0.980 | 10 | | 2.08 (±3 | 3.0%) | 100-10000 | 0.971 | 22 | | | MSA | 0.26 (±2 | 7%) | 50-1000 | 0.977 | 2 | | 0.66 (±2 | 2.5%) | 100-10000 | 0.998 | 17 | | | DMSO | 1.12 (±2 | 2.5%) | 50-7500 | 0.998 | 8 | | 0.38 (±4 | 1.5%) | 30-3000 | 0.996 | 16 | | | MSM | 1.55 (±3 | .3%) | 50-500 | 0.956 | 13 | | 0.99 (±4 | 1.6%) | 50-500 | 0.995 | 32 | | ^a 2% HNO₃ sample matrix of the trapping liquids, ^b circumneutral sample matrix of natural waters, ^c $k = (t-t_0)/t_0$, with corresponding relative standard deviation σ , ^d Limit of detection (LOD, 3 × standard deviation σ). Abbreviations: not determined (N.D.), selenate (Se[VI]), selenite (Se[IV]), methane seleninic acid (MSeA), dimethyl selenoxide (DMSeO), arsenate (As[V]), arsenite (As[III]), monomethyl arsonic acid (MMAA), dimethyl arsonic acid (DMAA), trimethyl arsine oxide (TMAO), sulfate (S[VI]), methane sulfonic acid (MSA), dimethyl sulfoxide (DMSO), dimethylsulfone (MSM). **Table S4.** Trapping efficiencies of volatile, methylated Se, S, and As compounds in concentrated nitric acid. | | Trapping efficiency (%) ^a | | | | | | | |---------|--------------------------------------|-----------------|----------------|------------------|--|--|--| | Species | First
impinger | Second impinger | Third impinger | Sum | | | | | DMSe | 95.5 ± 1.4 | 0.2 ± 0.2 | 0.0 ± 0.0 | 95.7 ± 1.6 | | | | | DMDSe | 48.9 ± 10.6 | 0.8 ± 0.1 | 0.7 ± 0.0 | 50.4 ± 10.7 | | | | | DMS | 96.7 ± 4.7 | 3.4 ± 0.3 | 0.6 ± 0.1 | 100.7 ± 5.1 | | | | | DMDS | 72.8 ± 7.6 | 0.6 ± 0.5 | 0.6 ± 0.1 | 74.0 ± 8.2 | | | | | MMA | 103.3 ± 11.9 | 0.1 ± 0.0 | 0.3 ± 0.2 | 103.7 ± 12.1 | | | | | DMA | 109.0 ± 3.6 | 0.7 ± 0.2 | 0.1 ±0.6 | 109.8 ± 4.4 | | | | | TMA | 88.4 ± 5.2 | 0.9 ± 0.4 | 0.0 ± 0.1 | 89.3 ± 5.7 | | | | ^a Standard deviations from triplicate experiments. The trapping experiments were conducted using a $30 \text{ mL} \cdot \text{min}^{-1} \text{ N}_2$ gas flow and 15 mL concentrated nitric acid as the trapping liquid. Abbreviations: dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), monomethyl arsine (MMA), dimethyl arsine (DMA), trimethyl arsine (TMA). **Table S5.** Identification of trapping products using tandem mass spectrometry. Listed are the observed mass fragments, their relative intensities and the composition of the fragments. Mass fragments of DMSO were not determined (N.D.). | | DMSeO | | DMSO | | | |---------------------|------------------------|---------------------|---------------------|------------------------|-------------| | Mass fraction (amu) | Relative Intensity (%) | Composition | Mass fraction (amu) | Relative Intensity (%) | Composition | | 96.9179 | 100 | HOSe | | | | | 94.9386 | 69.7 | CH ₃ Se | | N.D. | | | 111.9414 | 61.43 | CH ₄ OSe | | | | | 93.9308 | 51.73 | CH ₂ Se | | | | | | MSeA | | | MSA | | |---------------------|------------------------|-----------------------------------|---------------------|------------------------|----------------------------------| | Mass fraction (amu) | Relative Intensity (%) | Composition | Mass fraction (amu) | Relative Intensity (%) | Composition | | 110.9336 | 100 | CH ₃ OSe | 94.9811 | 100 | CH ₃ O ₃ S | | 95.91 | 24.53 | OSe | 79.9579 | 56.27 | O_3S | | 113.9206 | 13.94 | H_2O_2Se | 94.9814 | 37.15 | CH_3O_3S | | 128.9443 | 3.36 | CH ₅ O ₂ Se | 73.3652 | 12.88 | ? | **Table S6.** Measured concentrations, added spikes, and the spike recoveries of the investigated non-volatile Se, S, and As species in trapping liquid sample 1 (left) and in natural water sample 1 (right). | | Trapping liqui | d 1 | | Surface water 1 | | | |----------------------------|--|--|----------------------|--|--|----------------------| | Species | Measured concentration (μg·L ⁻¹) | Added
spike ^a
(µg·L ⁻¹) | Spike recovery b (%) | Measured concentration (μg·L ⁻¹) | Added spike ^a (µg·L ⁻¹) | Spike recovery b (%) | | Selenate | 0.31 ± 0.07 | 3.75 | 100 | <lod< td=""><td>100</td><td>106</td></lod<> | 100 | 106 | | Selenite | N.D. | |
| 0.14 ± 0.10 | 2.75 | 102 | | Sulfate | 47 ± 9 | 75 | 93 | 546 ± 7 | 100 | 93 | | Arsenate | 1.9 ± 0.2 | 10 | 101 | 0.35 ± 0.69 | 5 | 103 | | Arsenite | N.D. | | | <lod< td=""><td>20</td><td>92</td></lod<> | 20 | 92 | | MSeA | 1.5 ± 0.2 | 22.5 | 101 | 0.15 ± 0.03 | 5 | 107 | | DMSeO | 0.4 ± 0.2 | 3.75 | 99 | <lod< td=""><td>15</td><td>104</td></lod<> | 15 | 104 | | MSA | 109.0 ± 6.3 | 50 | 102 | <lod< td=""><td>27.5</td><td>104</td></lod<> | 27.5 | 104 | | DMSO | 23.6 ± 8.7 | 100 | 93 | <lod< td=""><td>50</td><td>95</td></lod<> | 50 | 95 | | MMAA | 0.4 ± 0.1 | 10 | 90 | 1.26 ± 0.06 | 5 | 108 | | DMAA | <lod< td=""><td>5</td><td>103</td><td>0.64 ± 0.34</td><td>5</td><td>101</td></lod<> | 5 | 103 | 0.64 ± 0.34 | 5 | 101 | | TMAO | <lod< td=""><td>5</td><td>101</td><td><lod< td=""><td>50</td><td>96</td></lod<></td></lod<> | 5 | 101 | <lod< td=""><td>50</td><td>96</td></lod<> | 50 | 96 | | Total Se * | 2.6 | ± 0.1 | | 0 | 0.60 ± 0.05 | | | Total S * | 197 | ± 3 | | 702 ± 49 | | | | Total As * | 3.7 | ± 0.1 | 2.62 ± 0.11 | | | | | Identified S | | % ± 26% | 48% ± 23% | | | | | Identified S ** 92% ± 19% | | | | 78% ± 9% | | | | Identified As ** 62% ± 19% | | | | 86% ± 38% | | | ^a amount of standard added to the original sample (on an elemental basis), ^b percentage of added element measured after subtraction of the unspiked concentration. Standard deviations were calculated from triplicate analysis of samples. The comparison of the total elemental Se, S and As concentrations in the samples (*) with the elemental sum of the identified species yields the percentage of identified species (**). Abbreviations: not determined (N.D.), below detection limit (<LOD), methane seleninic acid (MSeA), dimethyl selenoxide (DMSeO), methane sulfonic acid (MSA), dimethyl sulfoxide (DMSO), monomethyl arsonic acid (MMAA), dimethyl arsonic acid (DMAA), trimethyl arsine oxide (TMAO). #### SUPPORTING DISCUSSION #### Formation of trapping products In order to explain the formation of their reaction products in the trapping experiments (Table 1), we consider average bond dissociation energies in the volatile trapped Se, S, and As molecules. It should be noted that illustrative molecular bond dissociation energies were considered, even though the exact molecular bond strengths will depend on the overall molecular structure [44]. Upon reaction with nitric acid, Se–Se and S–S bonds in DMDSe and DMDS are broken, but the C–Se and C–S bonds are maintained. This may be explained by the fact that both C–Se (234 kJ·mol⁻¹) and C–S (272 kJ·mol⁻¹) bonds in mono- and di-alkylated species are stronger than Se–Se (172 kJ·mol⁻¹) and S–S bonds (225–251 kJ·mol⁻¹) [45]. The intact methyl-groups on the Se and S atoms, both in mono- (DMDSe and DMDS) and dimethylated (DMSe and DMS) species, thus allow for deduction of the original gaseous speciation. In the investigated volatile As species, the C–As bonds (250 – 263 kJ·mol⁻¹) are probably weaker than the H–As bonds in MMA and DMA (299 – 302 kJ·mol⁻¹) [46]. Since non-methylated As species were found to be products of all investigated oxidation reactions, methyl groups are partially lost from MMA, DMA, and TMA in the trapping reaction, thus preventing deduction of the original gaseous speciation. Upon cleavage of the Se–Se and S–S bond in DMDSe and DMDS, methyl-radicals may be formed analogously to observed gas phase reactions of reduced methylated S compounds with nitrate radicals [47]. Subsequently, the central Se and S atoms are oxidized and oxygen is added to the central atoms to form a thermodynamically stable compound. In the case of S, lower oxoacids [methane sulfenic acid (S[0]) and methane sulfinic acid (S[II])] are unstable in the oxidative nitric acid medium [48,49], and MSA (S[IV]) is formed. However, MSA has also been reported as a major reaction product of the gas-phase oxidation reactions of other reduced S compounds [50]. In addition, other products have been reported from the gas-phase oxidation reaction of DMDS (e.g., sulfur dioxide, SO₂) [51]. Although it remains unclear to what extent gas phase reactions are directly comparable with our gas trapping reactions, SO₂ could be expected to form from complete oxidation of the central S atom. Such formation of gaseous SO₂ could potentially explain the observed incomplete recoveries as SO₂ would escape from the traps [47,52,53]. Finally, it should be noted that the species MSeA and MSA could be formed from the oxidation of DMSeS (a previously observed natural species) [54] [S–Se bond strength ~200 kJ·mol⁻¹ (weaker than S–S bond, stronger than Se–Se bond)]. In order to guarantee the correct deduction of the original gaseous speciation from transformed oxidation products, a better understanding of the exact mechanisms of oxidation of other, naturally relevant volatile compounds in nitric acid is required. #### **Chromatographic methods** In mixed-mode chromatography, the retention of analytes on the stationary phase of the column mainly stems from ion-exchange interaction and/or reversed-phase interaction. In the 'air method', the mono-methylated species [MSeA (pKa unknown), MSA (pKa –1.9 [55]), and MMAA (pKa₁ 3.6, pKa₂ 8.7 [56])] elute before the di- or tri-methylated species [DMSeO (pKa unknown), DMSO (pKa ~35), MSM (pKa ~31), DMAA (pKa 6.2 [56]) and TMAO (pKa unknown)]. This order of elution [negatively (or more negatively) charged compounds elute before neutral (or less negatively charged) species, see Table S3 in Supporting Information File S1] may be explained by the fact that injection of the strongly acidic trapping samples generates acidic conditions on the mixed-mode column, which protonates analyte anions and increases the neutral properties of the analytes. This reduces the analyte retention based on an ion-exchange mechanism. Although the exact contributions of the retention mechanisms in the mixed-mode separation remain unknown, the dominant retention mechanism in the 'air method' thus most likely stems from the reversed phase exchange sites (higher logK_{ow} values increase retention). Compared to the 'air method,' the order of the elution of species in the 'water method' is almost reversed (compare Figure 3 and Figure S2 in Supporting Information File S1). Due to the prevailing slightly basic conditions of the 'water method,' an anion exchange separation mechanism probably dominates in this method, which is reflected by the elution of neutral species before the elution of negatively charged species (e.g., oxyanions elute last). The slight variation in calculated LODs between individual species and between the 'air method' and 'water method' (see Table S3 in Supporting Information File S1) is likely caused by eluent-related variations in background signal, peak separation, and deviations in plasma properties at the time of elution (e.g., organic versus inorganic analytes and carbon loading of the eluent, as well as variable vapor pressure of eluting species). A minor increase in background signal (~10 min onwards, Figure S2 in Supporting Information File S1) corresponds with the increased mixing of the NH₄NO₃-methanol eluent and consequential nitrogen-oxygen interferences. Considering that the presented speciation methods are intended for analyzing natural samples with corresponding low environmental concentrations, the low detection limits enable reliable, simultaneous quantification of multiple species simultaneously. #### SUPPORTING METHODS #### Total elemental analysis Analysis of the trapping liquids and aqueous samples for the total elemental concentrations of Se and As was conducted with ICP-MS, HR-ICP-MS, and ICP-OES. The total S concentrations were analyzed by ICP-OES and HR-ICP-MS. The instrumental details and detection limits for these total elemental analyses are given in Table S2 in Supporting Information File S1. For total elemental analysis, the trapping liquids were measured in a 1% HNO₃ matrix and the aqueous samples were diluted 1:10 with ultrapure water. In both the diluted trapping liquid and the aqueous samples, 1% HPLC-grade methanol was added to enhance the signal for Se and As [57]. Inorganic Se, As, and S standards (J.T. Baker, Avantor, Griesheim, Germany) were used for calibration in all total elemental analyses. All samples and calibration standards were measured in triplicate, accompanied by in-house- (ARS-29, ARS-30, ARS-31 and ARS-32) and commercial (Merck 1631, Merck X and PRIMUS multi-anion) external standards. #### **Speciation analysis** For speciation analysis, a HPLC Dionex GP40 gradient pump (Thermo Fisher, Reinach, Switzerland) equipped with PEEK pump heads was coupled to the HR-ICP-MS. All tubing (PEEK polymer, Sigma-Aldrich, Buchs, Switzerland) was as short as reasonably possible. The injection loop volume was 20 μ L. In addition to the daily instrument tuning, the HPLC-HR-ICP-MS set-up was tuned on a weekly basis with a 10 ppb Se–S solution in 2% HNO₃ at the pump flow rate. In addition to measuring target masses of S, Se, and As, the gradient elution and inmixing of methanol was monitored on an indicator mass for carbon (12 C⁴⁰Ar, 51.9618 amu) in medium resolution mode at 0.8–1.25 Hz. Due to the potential interference of 40 Ar and 35 Cl on 75 As in the medium resolution mode of HR-ICP-MS [58], care was taken that chloride did not co-elute with an As species, that the threshold concentration (>3 mg Cl·L⁻¹) at which chloride yields a significant (potentially overlapping) peak was not surpassed, and that sufficient amounts of organic modifier were used to suppress the chloride interference [26]. Details of the HPLC gradients used in both the 'air method' and the 'water method' are given in Table S3 in Supporting Information File S1. Eluents were composed as follows: eluent A: 30mM NO₃NH₄, 1% methanol, pH 7.5, eluent B: 50mM Na₂CO₃-NaHCO₃, 25% methanol, pH 8.5, and eluent C: water, pH 8.4. The eluents were prepared using ultrapure water,
ultrapure HNO₃, ultrapure ammonia, sodium bicarbonate and disodium carbonate salts, and HPLC-grade methanol. The pH was adjusted with diluted HNO₃ or ammonia. All eluents were degassed with Ar and pre-cleaned with an Ionpac ATC 2mm ion trap column (Dionex, Thermo Fisher, Reinach, Switzerland). Speciation analysis with the 'air method' was conducted on diluted (1:50 with ultrapure water) trapping liquid samples and standards in 2% HNO₃. Eleven target analytes were investigated with the 'air method', including both non-volatile methylated and oxyanionic Se, S, and As species. Speciation analysis with the 'water method' was performed on undiluted (circumneutral) aqueous samples. Because the samples were not acidified, changes in (redox)speciation induced by acidification were prevented. In addition to the species investigated with the 'air method', the 'water method' also included Se[IV] and As[III] as target analytes. Neutral and acidified (2% HNO₃) standards and sample dilutions were freshly prepared. Calibrations were based on a 3-point plus blank linear fit over at least a two orders of magnitude concentration range in the µg·L⁻¹ range, and each of the investigated species was individually calibrated in each of the presented speciation methods. Therefore, any changes in instrumental response due to inmixing of organic eluent are accounted for by the calibration of each species at the same retention time (and thus MeOH content). An overview of the analyte retention factors, calibration ranges, correlation coefficients of the calibration curves, and limits of detection $(3 \times \sigma)$ is given in Table S3 in Supporting Information File S1. #### **Electrospray Ionization Tandem Mass Spectrometry** The Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) measurements were conducted on a Thermo LTQ Orbitrap XL ETD. The sample was introduced via a T-split with 50 $\mu L \cdot s^{-1}$ ultrapure methanol:water mixture (70:30) and 10 $\mu L \cdot s^{-1}$ sample. The trapping solutions were diluted to <0.1% HNO₃ in order to lower the ion loading. Mass spectra were recorded in full scan mode, both in the positive and negative mode, with a mass resolution of 60,000 and a mass accuracy of <10ppm. Tandem mass spectrometry was conducted with an isolation width of 3m/z, HCD settings of 50 to 80, a mass resolution of 60,000 to 100,000 and a mass accuracy of <10ppm. In order to confirm the trapping product identities as implied from peak matching with HPLC-HR-ICP-MS, the measured spectra from experimental trapping liquids were compared with database spectra and with spectra from standard solutions of DMSO, MSA, DMSeO, and MSeA. The isotopic patterns of the measured samples and the theoretical patterns were compared in terms of accuracy as well as intensity (see Figure S1 in Supporting Information File S1). A second identification of the structure of the targeted compounds in the trapping liquids was obtained by scanning tandem mass spectrometry fragments (see Table S5 in Supporting Information File S1). However, the fragmentation of DMSO was obstructed by its low molecular mass. #### SUPPORTING REFERENCES - Pecheyran C, Amouroux D, Donard OFX (1998) Field determination of volatile selenium species at ultra trace levels in environmental waters by on-line purging, cryofocusing and detection by atomic fluorescence spectroscopy. Journal of Analytical Atomic Spectrometry 13: 615-621. - Chen B, Hu B, He M, Huang Q, Zhang Y, et al. (2013) Speciation of selenium in cells by HPLC-ICP-MS after (on-chip) magnetic solid phase extraction. Journal of Analytical Atomic Spectrometry 28: 334-343. - 3. De La Calle Guntinas MB, Lobinski R, Adams FC (1995) Interference-free determination of selenium(IV) by capillary gas chromatography-microwave-induced plasma atomic emission spectrometry after volatilization with sodium tetraethylborate. Journal of Analytical Atomic Spectrometry 10: 111-115. - 4. Campillo N, Penalver R, Hernandez-Cordoba M, Perez-Sirvent C, Martinez-Sanchez MJ (2007) Comparison of two derivatizing agents for the simultaneous determination of selenite and organoselenium species by gas chromatography and atomic emission detection after preconcentration using solid-phase microextraction. Journal of Chromatography A 1165: 191-199. - 5. Yan X-P, Sperling M, Welz B (1999) On-Line Coupling of Flow Injection Microcolumn Separation and Preconcentration to Electrothermal Atomic Absorption Spectrometry for Determination of (Ultra)trace Selenite and Selenate in Water. Analytical Chemistry 71: 4353-4360. - 6. Calle Guntiñas M, Ceulemans M, Witte C, Łobiński R, Adams F (1995) Evaluation of a purge-and-trap injection system for capillary gas chromatography-microwave induced plasma-atomic emission spectrometry for the determination of volatile selenium compounds in water. Microchimica Acta 120: 73-82. - 7. Duan J, Hu B (2009) Speciation of selenomethionine and selenocystine using online micro-column containing Cu(II) loaded nanometer-sized Al2O3 coupled with ICP-MS detection. Talanta 79: 734-738. - 8. Vilano M, Rubio R (2000) Liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectrometry for selenium speciation. Journal of Analytical Atomic Spectrometry 15: 177-180. - Huang C, Hu B, He M, Duan J (2008) Organic and inorganic selenium speciation in environmental and biological samples by nanometer-sized materials packed dual-column separation/preconcentration on-line coupled with ICP-MS. Journal of Mass Spectrometry 43: 336-345. - 10.Hongwei Y, Chen C, Gao Y, Li B, Chai Z (2006) Chemical Speciation Analysis of Selenium in Biological Samples by a Hyphenated Technique of High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry 34: 749-753. - 11. Lunoe K, Skov S, Gabel-Jensen C, Sturup S, Gammelgaard B (2010) A method for analysis of dimethyl selenide and dimethyl diselenide by LC-ICP-DRC-MS. Analytical and Bioanalytical Chemistry 398: 3081-3086. - 12. Zheng J, Ohata M, Furuta N (2002) Reversed-phase liquid chromatography with mixed ion-pair reagents coupled with ICP-MS for the direct speciation analysis of selenium compounds in human urine. Journal of Analytical Atomic Spectrometry 17: 730-735. - 13. Muñiz-Naveiro Ó, Domínguez-González R, Bermejo-Barrera A, Bermejo-Barrera P, Cocho JA, et al. (2007) Selenium speciation in cow milk obtained after supplementation with different selenium forms to the cow feed using liquid chromatography coupled with hydride generation-atomic fluorescence spectrometry. Talanta 71: 1587-1593. - 14. Gonzalez Lafuente JM, Dlaska M, Fernandez Sanchez LM, Sanz-medel A (1998) Organic and inorganic selenium speciation in urine by on-line vesicle mediated high-performance - liquid chromotography-focused microwave digestion-hydride generation-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 13: 423-429. - 15. Abbas-Ghaleb K, Gilon N, Crétier G, Mermet JM (2003) Preconcentration of selenium compounds on a porous graphitic carbon column in view of HPLC-ICP-AES speciation analysis. Analytical and Bioanalytical Chemistry 377: 1026-1031. - 16. Sabe R, Rubio R, Garcia-Beltran L (2001) Selenium determination in urine with atomic fluorescence detection. Analytica Chimica Acta 436: 215-221. - 17. Li KC, Shooter D (2004) Analysis of sulfur-containing compounds in ambient air using solid-phase microextraction and gas chromatography with pulsed flame photometric detection. International Journal of Environmental Analytical Chemistry 84: 749-760. - 18. Leck C, Baagander LE (1988) Determination of reduced sulfur compounds in aqueous solutions using gas chromatography-flame photometric detection. Analytical Chemistry 60: 1680-1683. - 19. Gerbersmann C, Lobinski R, Adams FC (1995) Determination of volatile sulfur compounds in water samples, beer and coffee with purge-and-trap gas-chromatography microwave-induced plasma atomic emission spectrometry. Analytica Chimica Acta 316: 93-104. - 20. Kaasalainen H, Stefánsson A (2011) Chemical analysis of sulfur species in geothermal waters. Talanta 85: 1897-1903. - 21. Luther III GW, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Research Part A Oceanographic Research Papers 38, Supplement 2: S1121-S1137. - 22. Ojala M, Ketola R, Mansikka T, Kotiaho T, Kostiainen R (1997) Detection of volatile organic sulfur compounds in water by headspace gas chromatography and membrane inlet mass spectrometry. HRC-Journal of High Resolution Chromatography 20: 165-169. - 23. Lin L-Y, Jiang S-J (2009) Determination of Sulfur Compounds in Water Samples by Ion Chromatography Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry. Journal of the Chinese Chemical Society 56: 967-973. - 24. Divjak B, Goessler W (1999) Ion chromatographic separation of sulfur-containing inorganic anions with an ICP-MS as element-specific detector. Journal of Chromatography A 844: 161-169. - 25. Lestremau F, Desauziers V, Roux JC, Fanlo JL (2003) Development of a quantification method for the analysis of malodorous sulphur compounds in gaseous industrial effluents by solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Journal of Chromatography A 999: 71-80. - 26. Ammann AA (2010) Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection. Journal of Chromatography A 1217: 2111-2116. - 27. Bednar AJ, Garbarino JR, Burkhardt MR, Ranville JF, Wildeman TR (2004) Field and laboratory arsenic speciation methods and their application to natural-water analysis. Water Research 38: 355-364. - 28. Ali I, Aboul-Enein HY (2002) Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48: 275-278. - 29. Chu Y-L, Jiang S-J (2011) Speciation analysis of
arsenic compounds in edible oil by ion chromatography–inductively coupled plasma mass spectrometry. Journal of Chromatography A 1218: 5175-5179. - 30. Xie R, Johnson W, Spayd S, Hall GS, Buckley B (2006) Arsenic speciation analysis of human urine using ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. Analytica Chimica Acta 578: 186-194. - 31. Chen Z, Akter KF, Rahman MM, Naidu R (2008) The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases. Microchemical Journal 89: 20-28. - 32. Wrobel K, Wrobel K, Parker B, Kannamkumarath SS, Caruso JA (2002) Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC–ICP–MS: analysis of reference materials, fish tissues and urine. Talanta 58: 899-907. - 33. Yan X-P, Kerrich R, Hendry MJ (1998) Determination of (Ultra)trace Amounts of Arsenic(III) and Arsenic(V) in Water by Inductively Coupled Plasma Mass Spectrometry Coupled with Flow Injection On-Line Sorption Preconcentration and Separation in a Knotted Reactor. Analytical Chemistry 70: 4736-4742. - 34. Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW (2006) Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochimica et Cosmochimica Acta 70: 2480-2491. - 35. Wickenheiser EB, Michalke K, Drescher C, Hirner AV, Hensel R (1998) Development and application of liquid and gas-chromatographic speciation techniques with element specific (ICP-MS) detection to the study of anearobic arsenic metabolism. Fresenius Journal of Analytical Chemistry 362: 498-501. - 36. Martínez-Bravo Y, Roig-Navarro AF, López FJ, Hernández F (2001) Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A 926: 265-274. - 37. Niedzielski P (2005) The new concept of hyphenated analytical system: Simultaneous determination of inorganic arsenic(III), arsenic(V), selenium(IV) and selenium(VI) by high performance liquid chromatography–hydride generation–(fast sequential) atomic absorption spectrometry during single analysis. Analytica Chimica Acta 551: 199-206. - 38. Peachey E, Cook K, Castles A, Hopley C, Goenaga-Infante H (2009) Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium. Journal of Chromatography A 1216: 7001-7006. - 39. Afton S, Kubachka K, Catron B, Caruso JA (2008) Simultaneous characterization of selenium and arsenic analytes via ion-pairing reversed phase chromatography with inductively coupled plasma and electrospray ionization ion trap mass spectrometry for detection: Applications to river water, plant extract and urine matrices. Journal of Chromatography A 1208: 156-163. - 40. Feldmann J (1997) Summary of a calibration method for the determination of volatile metal(loid) compounds in environmental gas samples by using gas chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 12: 1069-1076. - 41. Diaz-Bone RA, Hollmann M, Wuerfel O, Pieper D (2009) Analysis of volatile arsenic compounds formed by intestinal microorganisms: rapid identification of new metabolic products by use of simultaneous EI-MS and ICP-MS detection after gas chromatographic separation. Journal of Analytical Atomic Spectrometry 24: 808-814. - 42. Campillo N, Peñalver R, López-García I, Hernández-Córdoba M (2009) Headspace solid-phase microextraction for the determination of volatile organic sulphur and selenium compounds in beers, wines and spirits using gas chromatography and atomic emission detection. Journal of Chromatography A 1216: 6735-6740. - 43. Meija J, Montes-Bayón M, Le Duc DL, Terry N, Caruso JA (2002) Simultaneous monitoring of volatile selenium and sulfur species from se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. Analytical Chemistry 74: 5837-5844. - 44. Solomons GTW, Fryhle CB (2007) Organic Chemistry: Wiley. - 45. Cottrell TL (1958) The Strengths of Chemical Bonds. London: Butterworths. - 46. Mestrot A, Merle JK, Broglia A, Feldmann J, Krupp EM (2011) Atmospheric Stability of Arsine and Methylarsines. Environmental Science & Technology 45: 4010-4015. - 47. Jensen NR, Hjorth J, Lohse C, Skov H, Restelll G (1992) Products and mechanisms of the gas phase reactions of NO3 with CH3SCH3, CD3SCD3, CH3SH and CH3SSCH3. Journal of Atmospheric Chemistry 14: 95-108. - 48. Carvalho NF, Silva SP, Resende SM (2011) Theoretical determination of the properties of Methanesulfinic and Methanesulfonic acids. Journal of the Brazilian Chemical Society 22: 950-954. - 49. Paula Silva S, Maris Resende S (2011) Thermochemical Study of the Reactions of Methanesulfinic acid with NO, NO3 and O2. Simposio Brasileiro de Quimica Teorica. Ouro Preto, MG, Brasil. - 50. Yin FD, Grosjean D, Seinfeld JH (1986) Analysis of atmospheric photooxidation mechanisms for organosulfur compounds. Journal of Geophysical Research-Atmospheres 91: 14417-14438. - 51. Yin FD, Grosjean D, Flagan RC, Seinfeld JH (1990) Photooxidation of dimethylsulfide and dimethyldisulfide 2. Mechanism evaluation. Journal of Atmospheric Chemistry 11: 365-399. - 52. Atkinson R, Aschmann SM, Hasegawa D, Thompsoneagle ET, Frankenberger WT (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environmental Science & Technology 24: 1326-1332. - 53. Atkinson R, Pitts JN, Aschmann SM (1984) Tropospheric reactions of dimethyl sulfide with nitrogen oxide (NO3) and hydroxyl radicals. The Journal of Physical Chemistry 88: 1584-1587. - 54. Amouroux D, Pecheyran C, Donard OFX (2000) Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Applied Organometallic Chemistry 14: 236-244. - 55. Guthrie JP (1978) Hydrolysis of esters of oxyacids: pKa values for strong acids. Canadian Journal of Chemistry 56: 2342-2354. - 56. Francesconi KA, Kuehnelt, D. (2002) Arsenic compounds in the environment. In: Frankenberger Jr. WT, editor. Environmental Chemistry of Arsenic. New York: Marcel Dekker Inc. pp. 51-94. - 57. Larsen EH, Sturup S (1994) Carbon-enhanced inductively-coupled plasma-mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. Journal of Analytical Atomic Spectrometry 9: 1099-1105. - 58. Ammann A (2011) Arsenic Speciation Analysis by Ion Chromatography A Critical Review of Principles and Applications. American Journal of Analytical Chemistry 2: 27-45.