Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment

Nadine Czekalski¹, Stefanie Imminger¹, Elisabeth Salhi¹, Marjan Veljkovic¹, Karolin Kleffel¹, David Drissner⁴, Frederik Hammes¹, Helmut Bürgmann¹*, Urs von Gunten¹,⁵,⁶*

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf or Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
⁴Agroscope, Institute for Food Sciences, CH-8820 Wädenswil, Switzerland
⁵Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, CH-8092 Zurich, Switzerland
⁶School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland

*Corresponding authors:
Helmut Bürgmann, phone: +41 58 765 2165, fax: +41 58 765 2168, email: helmut.buergmann@eawag.ch
Urs von Gunten, phone: +41 58 765 5270, fax: +41 58 765 5802, email: urs.vongunten@eawag.ch

Submitted to Environmental Science & Technology
Abstract

Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of *E. coli* and its plasmid-encoded sulfonamide resistance gene *sul1* in different water matrixes. Effects in *E. coli* were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of *sul1* were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with *E. coli* and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during post-ozonation treatment partly compensated inactivation of MRB, and intracellular *sul1* seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.

Keywords: antibiotic resistance genes, ozonation, wastewater, inactivation, kinetics, exposure
1. Introduction

Two of the major current and future challenges in wastewater treatment are micropollutants and multiresistant bacteria (MRB). Micropollutants (substances, including pharmaceuticals (antibiotics), personal care products, food additives, hormones, etc. which occur at µg L⁻¹ levels or lower in aquatic environments) can cause adverse ecological effects¹,² and may have implications for human health. Multiresistant pathogens have been rated as a global health threat³ and their antibiotic resistance genes (ARG) as emerging environmental contaminants.⁴,⁵ Particularly MRB and their (mobile) ARG are of concern for wastewater reuse (e.g., for irrigation of food crops)⁶ and for the potential to invade and expand the natural resistance background of receiving waters, which may be directly or indirectly used for drinking water production or irrigation.⁷,⁸ Conventional wastewater treatment is capable of strongly reducing the MRB load, but may also select for highly resistant phenotypes during biological activated sludge processes.⁹,¹⁰ Moreover, only insufficient removal of many micropollutants can be achieved in these processes.¹¹ Tertiary treatment for abatement of the micropollutant load from wastewater effluents is currently discussed in many industrialized countries. Switzerland is among the first to implement such treatments in full-scale and plans to upgrade about 100 out of 700 wastewater treatment plants (WWTPs).¹²-¹⁴ Powdered activated carbon (PAC) or ozonation are currently the two economically feasible options to achieve an abatement of micropollutants by > 80%.¹⁵,¹⁶ Apart from its selective reaction with organic compounds, ozone is a strong disinfectant and already widely applied in drinking water treatment.¹⁷,¹⁸ Thus, abatement of MRB and (transferable) intracellular ARG under conditions optimized for micropollutant abatement could be an additional potential benefit to wastewater ozonation.
The primary cellular targets of ozone are nucleic acids, where damage can range from base lesions to single and double strand breaks. Lesions can lead to more or less compromising point mutations, whereas massive breakdown of DNA is lethal if not repaired. Many studies provide evidence that also the cell envelope is affected during ozonation, probably even before severe DNA damage occurs. Although not as pronounced as for micropollutant oxidation, the effectiveness of ozone as a disinfectant varies significantly between differing types of bacteria, even on the strain level (reviewed in) and depends on various factors, such as growth stage, cell envelope, efficiency of repair mechanisms, and the type of viability-indicator used (e.g., culture-based vs. alternative approaches). Matrix effects, e.g., concentration and type of dissolved organic material (DOM, measured as DOC) or the presence of flocs or particles, reduce the stability of ozone or can shield microorganisms from its effects, thereby decreasing the disinfection efficiency. Only very few kinetic inactivation studies using ozone exist for selected microbial species (and studies reviewed in) Moreover, so far a lag-phase for inactivation of the highly sensitive E. coli could not be resolved, although this feature would be expected based on E. coli’s repair mechanisms. Within a microbial wastewater community, ozonation may lead to full inactivation of viable MRB and their ARG, but could also select for strains or mutants less sensitive to ozone or other biocides including antibiotics, or it might promote horizontal transfer of ARG released from inactivated MRB to bacteria inhabiting the biological post-treatment and aquatic ecosystems.

To determine the behavior of MRB and their intracellular ARG during ozonation, we conducted bench-scale experiments, representing differing stages of complexity. For measuring the direct effects on bacterial cells and intracellular ARG, the first set of experiments was run in a synthetic water, using E. coli J53 and its sulfonamide resistance gene sul1 (co-located with the trimethoprim
resistance gene \textit{dfrB2} on the conjugative broad-host range plasmid R388) as a controllable, well-studied model system. \textit{sul1} was chosen as a surrogate for resistance against broad-spectrum antibiotics and because of its ubiquity in Swiss wastewaters and surface waters.7,8 The second set of ozonation experiments used the same model system, but took ozonation conditions relevant for micropollutant abatement and matrix effects (parametrized as DOC) into account by performing the experiments in 10-\textmu m-filtered natural secondary clarifier effluent (SE). In the third set of experiments we compared the results obtained with \textit{E. coli} to an autochthonous wastewater community, and in addition studied also the effect of the presence or absence of flocs as an additional matrix effect. Bacterial inactivation at different cellular levels (cultivability, membrane damage and ARG-disruption) was studied as a function of differing ozone doses and inactivation kinetics were determined as a function of the ozone exposure.18 To verify the predictive potential of the laboratory experiments, Switzerland’s first full-scale ozonation WWTP at Neugut near Zurich was sampled over the ozonation and biological post-treatment stages.
2. Materials and Methods

2.1 Chemicals, reagents and preparation of bacteria

Chemicals, reagents, corresponding commercial suppliers, the preparation of ozone stock solutions and of bacteria for experiments are specified in the supporting information (SI, I, II, III).

2.2 Batch experiments

Batch experiments were conducted in 40-mL glass vials, filled with 30 mL of bacterial suspensions according to set-ups and conditions summarized in Table 1. Ozone was transferred with a glass syringe (Hamilton, Switzerland) from the stock solution (see SI section II). Optimal mixing of ozone with bacteria was achieved by continuous stirring for 30 seconds. To determine the dose-dependent inactivation of bacteria and intracellular genes after complete ozone depletion and to preserve samples for downstream analyses, ozonated samples were stored in the fridge for > 30 minutes prior to analyses.

2.3 Inactivation kinetics determined by quench-flow experiments

The stability of ozone may vary significantly depending on the matrix, e.g., 1:10 diluted phosphate buffered saline (PBS, SI, I) vs. secondary clarifier effluent (SE), which influences the disinfection efficiency. Thus, applied ozone doses are not sufficient as a parameter for assessing the efficiency of inactivation of bacteria and intracellular ARG disruption. Instead we used the ozone exposure or \(CT \), which takes the matrix derived ozone decay into account. The ozone exposure is the time integral of an ozone decay curve:\(^{37}\)

\[
CT = \int [O_3] \delta t
\]
To study fast kinetics of bacterial inactivation and ARG disruption, a quench-flow system (SFM400/Q, Bio-Logic SAS, France) was used in continuous mode (see SI IV and V for details and Table 1 for experimental set-ups).

Table 1. Overview of set-ups and conditions applied in batch and quench-flow experiments (SE = secondary clarifier effluent from WWTP Neugut, n. c. = not conducted). All experiments were run at 22±2 °C, at pH 7.2 for 1:10 diluted phosphate buffered saline (PBS, see SI, I) or 7.8 for SE, respectively. 0.1 mM of tert-butanol was added to quench-flow experiments. SS: Suspended solids.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Matrix</th>
<th>DOC [mg L⁻¹]</th>
<th>SS [mg L⁻¹]</th>
<th>NO₂⁻ [mg L⁻¹]</th>
<th>range of ozone doses [g g DOC⁻¹]</th>
<th>replicates</th>
<th>contact times [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.1 × PBS</td>
<td></td>
<td></td>
<td>0-2</td>
<td>2</td>
<td>> 30</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>sterile 10-µm-filtered SE</td>
<td>4.27</td>
<td>0.008</td>
<td>0-7.35</td>
<td>0-1.72</td>
<td>2</td>
<td>> 30</td>
</tr>
<tr>
<td>SE bacteria</td>
<td>10-µm-filtered SE</td>
<td>5</td>
<td>0.005</td>
<td>0-3.31</td>
<td>0-0.66</td>
<td>2</td>
<td>> 30</td>
</tr>
<tr>
<td>SE bacteria</td>
<td>untreated SE</td>
<td>5</td>
<td>4.8</td>
<td>0.005</td>
<td>0-2.42</td>
<td>2</td>
<td>> 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Matrix</th>
<th>DOC [mg L⁻¹]</th>
<th>SS [mg L⁻¹]</th>
<th>NO₂⁻ [mg L⁻¹]</th>
<th>range of ozone doses [g g DOC⁻¹]</th>
<th>replicates</th>
<th>contact times [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.1 × PBS</td>
<td></td>
<td></td>
<td>0.2</td>
<td>2</td>
<td>0.104-5.050</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>sterile 10-µm-filtered SE</td>
<td>4.9</td>
<td>0.018</td>
<td>2.2</td>
<td>0.45</td>
<td>1</td>
<td>0.006-2.222</td>
</tr>
<tr>
<td>SE bacteria</td>
<td>10-µm-filtered SE</td>
<td>4.34</td>
<td>0.018</td>
<td>2.5</td>
<td>0.57</td>
<td>2</td>
<td>0.006-2.222</td>
</tr>
<tr>
<td>SE bacteria</td>
<td>untreated SE</td>
<td>n. c.</td>
<td>2.4</td>
<td>n. c.</td>
<td>n. c.</td>
<td>n. c.</td>
<td>n. c.</td>
</tr>
</tbody>
</table>

2.4 Sampling campaigns at a full-scale wastewater ozonation plant

Neugut (Dübendorf), Switzerland’s first WWTP equipped with full-scale ozonation (refer to SI VI for further information), is treating municipal wastewater of 105000 inhabitant equivalents (2-5)×10⁴ m³ d⁻¹). The applied ozone doses during sampling were 0.45-0.55 gO₃ g DOC⁻¹ (2.2-2.5 mg O₃ L⁻¹), which meets the Swiss guidelines for an abatement of the micropollutant load of 80 %.¹² Ozonated water is treated by sand filtration (SF, residence time = 20-30 min) for biological post-treatment (SI, Figure S1).³⁸ Three sampling campaigns were conducted, one in December 2014 and two in January 2015. Automated 24 h-integrated samples (4°C) were taken from SE and after SF. Grab samples were obtained from the 6th compartment of the ozone reactor (OR₁) and its effluent (OR₂) (SI, Figure S1), because 24 h-integrated samples were non-representative for bacterial
analyses due to regrowth on the formed assimilable organic carbon (AOC) during the sampling period (data not shown). Samples were kept at 4 °C and processed within 24 h.

2.5 Detection of membrane integrity (ICC) and DNA-stability (TCC) by flow cytometry

The loss of membrane integrity as a conservative indicator for cell death and DNA damage in the form of strand breaks and single-stranded DNA, were monitored using flow cytometry (BD Accuri C6 flow cytometer, BD Biosciences, Belgium). For membrane intact cell counts (ICC) samples were stained with SYBR Green I (SGI) and propidium iodide (PI), while total cell counts (TCC) for DNA stability were solely stained with SGI, based on established procedures. Flow cytometric density plots were gated to distinguish intact bacterial cells from background signal and damaged cells, using the BD Accuri C6 software. To determine if flow cytometry can provide more highly resolved information on DNA degradation that might be missed by gated cell counts (TCC), changes in mean fluorescence intensity of SGI stained cells were analysed (Figure S2).

2.6 Plate counts of E. coli and wastewater bacteria

Cultivability is a conventional indicator for viability. However, it depends on the ability of bacteria to grow on artificial media. Plate counts of E. coli were conducted on LB agar supplemented with sulfamethoxazole and trimethoprim (see SI, III). Cultivable heterotrophic wastewater bacteria were grown on AQ dry plates (HyServe, Germany) according to the manufacturer’s guidelines. Growth of fungi was suppressed by supplementing 25 µg mL⁻¹ of pimaricin. Multiresistant wastewater bacteria were isolated on AQ-pimaricin plates additionally supplemented with two combinations of medically relevant broad-spectrum antibiotics: sulfamethoxazole/trimethoprim/tetracycline (76/4/16 µg mL⁻¹) and norfloxcacin/cefazidime (16/32 µg mL⁻¹). The concentrations
used conform to CLSI guidelines.45 Refer to SI, III for sample treatment, growth conditions and SI, VII for identification of selected multiresistant wastewater isolates from SE, OR\textsubscript{1}, OR\textsubscript{2} and SF (Figure S1) by MALDI-TOF.

\textbf{2.7 Quantitative PCR}

To detect ozone-induced gene disruption of ARG \textit{sul1}, a new primer set (5’→3’ GAC GGT GTT CGG CAT TCT / GAT CTA ACC CTC GGT CTC TGG), covering 827 bp of the 840 bp-sized gene, was developed (SI, VIII). Previously published primers (Bact349F/Bact806R) and probe (Bac516F) were used to quantify a 457 bp fragment of the 16S rRNA gene.46 Refer to SI, VIII for detailed qPCR protocols, preparation of standards, data analysis and SI, IX for DNA-extraction.

\textbf{3. Results and Discussion}

\textbf{3.1 Inactivation kinetics of \textit{E. coli} and ARG \textit{sul1} in 1:10 diluted PBS}

In 1:10 diluted PBS, viability indicators (cultivability and ICC) of \textit{E. coli} diminished about 4 log-units, whereas no severe DNA-damage was detected within the tested range of ozone concentrations (0-0.2 mg L-1) by means of flow cytometric TCC, mean green fluorescence (measure of DNA stability) and gene copy numbers of \textit{sul1} and 16S rRNA (Figures 1A, S2A). Our kinetic experiments confirmed these observations (Figure 1 B). Thus, even though heavy membrane damage and inactivation of \textit{E. coli} occurred at low ozone doses and exposures (Tables 1 and S2), more than 0.2 mg L-1 seem to be required for disruption or leakage of intracellular DNA and ARG. The latter supports the suggestion by Dodd,23 that intracellular ARG are only affected after viability is lost.

Although extremely sensitive towards ozone, \textit{E. coli} is able to tolerate and repair ozone-induced damage at very low exposures.34, 47 However, previous studies could not provide kinetic evidence for
an initial lag-phase \((CT_{lag})\) neither for \textit{E. coli}25, 48, nor for, presumably slightly more resistant, bacterial communities inhabiting drinking water.44

Figure 1. Inactivation of \textit{E. coli} J53 (R388) and its intracellular ARG sul\textit{l} and 16S rRNA gene in 1:10 diluted PBS as a function of (A) varying ozone doses (ozone fully depleted) and (B) ozone exposures (kinetics) at an ozone dose of 0.2 mg\textsubscript{O\textsubscript{3}} L-1, pH 7.2, 22±2°C. 0.1 mM tert-butanol was added in experiment B for OH radical scavenging. ◆ Cultivability (C), ● membrane integrity (ICC), ○ DNA stability (TCC), ▽ sul\textit{l}, △ 16S rRNA. Black curves represent fitted inactivation models (GInaFiT, see SI, X). Vertical dotted lines in plot B indicate the \(CT_{lag}\) and beginning of log-linear decrease determined for C (light grey) and ICC (mid grey). Determined parameters for dose- and exposure-dependent inactivation kinetics are given in Tables 2 and S2, respectively.

In Figure 1B kinetic evidence for an initial disinfection delay during the treatment of \textit{E. coli} with ozone is presented. The fitted model (SI, X)49 predicted a \(CT_{lag}\) of 0.03 (±0.03) mg s L-1 for cultivability (contact time = 210 ms) and a \(CT_{lag}\) of 0.11 (±0.02) mg s L-1 for membrane integrity (contact time = 620 ms) for an ozone dose of 0.2 mg L-1 (Figure 1B). Thereafter, cultivability decreased faster \((k_C = 58 (±12) \text{ L mg}^{-1} \text{ s}^{-1})\) than membrane integrity \((k_{ICC} = 29 (±5) \text{ L mg}^{-1} \text{ s}^{-1})\). The determined \(k_C\) is about 2.3 times lower and the required \(CT\) for 2-log inactivation \((0.12 \text{ mg s L}^{-1})\) is 3.3 times higher than previously reported25, 48 (Table 2). The observed differences are reasonable for kinetic measurements considering the differing \textit{E. coli} strains, cell densities, or vegetative stages.26, 50

A delayed decrease in ICC compared to cultivability (Figure 1) supports the hypothesis that other cellular constituents, such as proteins or DNA are affected20-22, 28, 54-56 before severe membrane
damage occurs. However, we cannot rule out that cultivation overestimated the lethal effect of ozone, as cells may switch to a viable but non-culturable state.51 Hence, the actual cause of ozone-induced cell death may still be destruction of the cell envelope, as suggested previously, 24, 25, 30, 51-53 but cannot clearly be determined in our study.

3.2 Inactivation kinetics of \textit{E. coli} and ARG sul1 in sterile wastewater

Exposing \textit{E. coli} J53 to increasing ozone doses in sterile 10\textmu m-filtered SE lead to a simultaneous decrease of cultivability and membrane integrity, when exceeding a specific ozone dose of 0.16 gO\textsubscript{3} gDOC-1 (0.67 mgO\textsubscript{3} L-1, Figure 2A, Tables S2 and S3). This finding contrasts the experiments in PBS described above and results of a similar study in SE using wild-type (WT) \textit{E. coli} K-12 MG1655.52 The presence of membrane-destabilizing agents (e.g., surfactants) in the SE sample could have contributed to the observed effect. The threshold ozone dose to affect flow cytometric TCC (1.31 mgO\textsubscript{3} L-1 or 0.31 gO\textsubscript{3} gDOC-1) and mean green fluorescence (Figure S2B) was more than a factor of 2 higher than for viability indicators. At the TCC-specific threshold ozone dose, inactivation of \textit{E. coli} cells was already nearly completed. Gene copy numbers of sul1 and 16S rRNA genes had yet slightly higher threshold ozone doses than TCC (1.46 and 1.63 mgO\textsubscript{3} L-1, respectively or 0.34 and 0.38 gO\textsubscript{3} g DOC-1). 2-log abatement of TCC and sul1 gene copies was achieved at 1.6-1.7 mgO\textsubscript{3} L-1 or 0.38-0.40 gO\textsubscript{3} gDOC-1. As specific ozone doses of \textasciitilde0.55 gO\textsubscript{3} gDOC-1 are applied at WWTP Neugut for micropollutant abatement, our data from this set of experiments predict that intracellular ARG should be destroyed at the full-scale.
Figure 2. Inactivation of *E. coli* J53 (R388) and its intracellular ARG *sul1* and 16S rRNA gene in sterile SE as a function of (A) differing ozone doses (ozone fully depleted) and (B) ozone exposures (kinetics), pH 7.8-8.0, 22±2°C. ● Cultivability (C), ● membrane integrity (ICC), ○ DNA stability (TCC), ◇ *sul1*, △ 16S rRNA. Black curves represent fitted inactivation models (GInaFiT, see SI X). Straight dashed lines indicate typical ozonation conditions for wastewaters (A) and the CT lag and beginning of log-linear decrease (B) determined for ICC (light grey) and *sul1* (mid grey). Determined parameters for dose- and exposure-dependent inactivation are given in Tables 2, S2 and S3, respectively.

Figure 2B shows that the inactivation of *E. coli* as a function of the ozone exposure in sterile SE resulted in a delayed decrease of ICC compared to cultivability, thus confirming the results from experiments in 1:10 diluted PBS and previous studies with *E. coli* WT in SE. Already the lowest contact time (6 ms, (specific) ozone dose = 0.45 gO₃ gDOC⁻¹ or 2.2 mgO₃ L⁻¹) resulted in an ozone exposure (0.13 mg s L⁻¹), which affected cultivability of *E. coli*. However, for ICC a CT lag of 0.22 mg s L⁻¹ was determined (contact time = 20 ms), which is twice as high as the CT lag determined in 1:10 diluted PBS (Table 2). Moreover, inactivation rate constants for cultivability (*k_*c = 32 L mg⁻¹ s⁻¹) and membrane integrity (*k_*ICC = 12 L mg⁻¹ s⁻¹) in SE were a factor of 2 and 3 lower than in 1:10 diluted PBS, respectively. Hence, our data indicate that the same ozone exposure in SE is less effective for reducing cultivability and ICC than in 1:10 diluted PBS.
Table 2. Summary of kinetic parameters determined during ozonation experiments with *E. coli* J53 (R388) in differing water matrices and in natural wastewater bacteria for various measurements of cellular damage. pH(PBS) = 7.4, pH(SE) = 7.8-8.0

<table>
<thead>
<tr>
<th>Measured feature</th>
<th>Medium/bacteria</th>
<th>Reference</th>
<th>CT_{lag} [mg s L$^{-1}$]</th>
<th>k^a [L mg$^{-1}$ s$^{-1}$]</th>
<th>2-log</th>
<th>4-log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivability</td>
<td>PBS / E. coli</td>
<td>this study</td>
<td>0.03 (± 0.03)</td>
<td>58 (±12)</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PBS / E. coli</td>
<td></td>
<td></td>
<td>n.d.</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>SE / E. coli</td>
<td>this study</td>
<td>n.d.</td>
<td>32 (±2)</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>SE / SE bacteria</td>
<td>this study</td>
<td>n.d.</td>
<td>$k_1 = 9$ (±2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_2 = 0$ (±1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SE / fecal coliforms/enterococci</td>
<td>this study</td>
<td>n.d.</td>
<td>$k_1 = 133$</td>
<td>0.22c</td>
<td>0.53c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_2 = 15 / 3^b$</td>
<td>1.07c</td>
<td>2.46c</td>
</tr>
<tr>
<td>Membrane integrity (ICC)</td>
<td>PBS / E. coli</td>
<td>this study</td>
<td>0.11 (± 0.02)</td>
<td>29 (±5)</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SE / E. coli</td>
<td>this study</td>
<td>0.22 (±0.08)</td>
<td>12 (±2)</td>
<td>0.61</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>SE/ SE bacteria</td>
<td>this study</td>
<td>n.d.</td>
<td>$k_1 = 21$ (±3)</td>
<td>3.52</td>
<td>11.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_2 = 1$ (±0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA damage (TCC)</td>
<td>PBS / E. coli</td>
<td>this study</td>
<td>> 0.78</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>SE / E. coli</td>
<td>this study</td>
<td>> 3.19</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>SE / SE bacteria</td>
<td>this study</td>
<td>> 2.70</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Gene damage (qPCR sulF)</td>
<td>PBS / E. coli</td>
<td>this study</td>
<td>> 0.78</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>SE / E. coli</td>
<td>this study</td>
<td>0.76 (±0.49)</td>
<td>2 (±0)</td>
<td>2.98</td>
<td>5.15</td>
</tr>
<tr>
<td></td>
<td>SE / SE bacteria</td>
<td>this study</td>
<td>1.03 (±0.10)</td>
<td>6 (±1)</td>
<td>1.74</td>
<td>2.50</td>
</tr>
<tr>
<td>Gene damage (qPCR 16S)</td>
<td>PBS / E. coli</td>
<td>this study</td>
<td>> 0.78</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>SE / E. coli</td>
<td>this study</td>
<td>1.43 (±1.05)</td>
<td>1 (±0.6)</td>
<td>5.50</td>
<td>9.35</td>
</tr>
<tr>
<td></td>
<td>SE / SE bacteria</td>
<td>this study</td>
<td>1.14 (±0.19)d</td>
<td>5 (±2)d</td>
<td>2.09d</td>
<td>3.12d</td>
</tr>
</tbody>
</table>

n.d. = not detected, - = not predicted by model

a In case of SE-bacteria biphasic inactivation kinetics were determined with inactivation rate constant k_1 in the first fast inactivation phase and k_2 in the second slow inactivation phase.

b In reference 33 the first value of k_2 refers to fecal coliforms / the second value of k_2 refers to enterococci

c Estimated inactivation by GlnaFit (SI X) using k- and p-values given in53.

d Given parameters are uncertain, although selected by the model, from the data itself, the end of the lag-phase is not quite obvious.
The reasons for the lower k-values in SE compared to the buffered solution remain open. We can only speculate that interactions of the matrix with *E. coli* may be involved, e.g. effects on membrane stability or activation of oxidative stress response systems. The higher pH of SE (7.8) compared to PBS (7.2) can be excluded as the main driver for this effect because the ozone inactivation rate constants for bacteria or bacterial spores are independent of the pH. Nevertheless, these results caution against the transfer of kinetic information on bacteria derived in buffered solutions to real wastewater effluents, a practice that is applicable for micropollutants.

In contrast to 4-log inactivation of cell viability at 0.28 mg s L$^{-1}$ (cultivability) and 1.01 mg s L$^{-1}$ (ICC), TCC did not decrease over the applied exposure range. Intracellular *sul*1 copy numbers started to decrease at much higher ozone exposures ($CT_{lag} = 0.76$ mg s L$^{-1}$) and the rate of abatement was lower than for viability indicators, with second order rate constants of 2 L mg$^{-1}$ s$^{-1}$ (Table 2). The fitted model for abatement of 16S rRNA gene copy numbers predicted values for CT_{lag} and k (Table 2). However, from the data the beginning of the log-linear decrease is not quite obvious. 2-log inactivation of *sul*1 was only achieved for an ozone exposure of 2.98 mg s L$^{-1}$. The corresponding contact time of 2.0 s and specific ozone dose of 0.27 gO$_3$ gDOC$^{-1}$ is lower than typical ozonation conditions applied in WWTPs for micropollutant abatement. Thus, based on these laboratory experiments, 2-log abatement of intracellular ARG *sul*1 of *E. coli* in SE seems feasible under full-scale conditions.

3.3 Inactivation of native bacteria and intracellular ARG *sul*1 from secondary effluent

Dose-dependent inactivation

A major goal of our experiments was to investigate whether disruption of intracellular ARG present in an autochthonous microbial consortium of SE can be achieved under realistic conditions for
micropollutant abatement. Compared to *E. coli*, we expected the majority of these bacteria to be more ozone-tolerant and thus likely to require higher (specific) ozone doses and exposures to cause intracellular ARG damage.53 Indeed, ozone doses twice as high as for *E. coli* were necessary to affect cultivability, ICC and TCC of wastewater bacteria (compare Tables S2 and S3). The lack of cultivability of most wastewater bacteria is illustrated in Figure 3A by plotting56, 57 plate count, ICC and TCC results as log (N) instead of log (N/N\textsubscript{0}). Following similar trends, total cultivable heterotrophs were close to zero at the highest specific ozone dose of 0.66 gO\textsubscript{3} gDOC-1, whereas more than 104 bacteria survived according to ICC. 2-log abatement of both viability indicators occurred at specific ozone doses similar to those applied at WWTP Neugut (0.5 gO\textsubscript{3} gDOC-1) and bacteria with multiple resistance against norfloxacin/ceftazidime (N/C) and sulfamethoxazole/trimethoprim/tetracycline (S/T/T) were not detectable at specific ozone doses > 0.33 gO\textsubscript{3} gDOC-1. Hence, though inactivation of autochthonous wastewater bacteria in SE requires higher specific ozone doses than *E. coli*, a considerable reduction may still be achieved during ozonation as implemented at WWTP Neugut.

Based on TCC, intracellular DNA damage occurred only when specific ozone doses exceeded 0.56 gO\textsubscript{3} gDOC-1, with a 2-log decrease predicted at 0.74 gO\textsubscript{3} gDOC-1. However, intracellular copy numbers of the 16S rRNA gene started to decrease already at 0.38 gO\textsubscript{3} gDOC-1 and were abated by 2-log units at 0.53 gO\textsubscript{3} gDOC-1. Mean green fluorescence data suggest beginning DNA damage at even lower O\textsubscript{3} doses (Figure S2C). The behavior of *sul1* was difficult to model for wastewater bacteria, as qPCR results beyond 0.4 gO\textsubscript{3} gDOC-1 were below the LOD. Based on the obtained Crossing point (Cp)-values we may estimate that copy numbers of this ARG start to decrease at 0.43 gO\textsubscript{3} gDOC-1 and are abated by 2-log units at 0.49 gO\textsubscript{3} gDOC-1. Thus, in contrast to experiments with *E. coli* where TCC, mean fluorescence data and qPCR measurements showed congruent trends, we
obtained somewhat more divergent results for these parameters with the complex wastewater bacterial community. We may speculate that small-scale damage affecting the availability of primer-binding and in case of the 16S rRNA fragment also TaqMan probe-binding sites or strand breaks, occurred more frequently prior to extensive DNA damage observed by TCC in the experiment with wastewater bacteria.

Effect of flocs on inactivation

Wastewater flocs, particles or zooplankton as well as formation of microbial biofilms might have a protective effect on bacteria. Simulations on the diffusion of ozone into various particles in differing wastewater matrixes indicated that ozone can only penetrate 12 µm into particles for ozone doses < 3 mg L\(^{-1}\), if the ozone demand is not exceeded. As indicated by shaded symbols in Figure 3A, the total heterotrophic plate counts did not decrease as pronounced in presence of flocs compared to when flocs were absent (10µm filtered SE). Moreover, viable total and MRB were detected, albeit at low levels, even at the highest specific ozone dose (0.85 gO\(_3\) gDOC\(^{-1}\)). Flow cytometric data (ICC and TCC) did not show this effect as only suspended bacteria can be measured as single cells, excluding cells associated with flocs (if not dispersed prior to measurement, which was not the case). qPCR analysis of \(sul\) and 16S rRNA genes in the presence of flocs do not clearly indicate a linear relationship between ozone dose and intracellular gene disruption. A maximum decrease of 0.8- (16S rRNA) and 1.4-log units (\(sul\)) was detected at specific ozone doses of 0.6 and 0.5 gO\(_3\) gDOC\(^{-1}\), respectively. The observed differences in qPCR and plate count data suggest that flocs greater than 10 µm can shield wastewater bacteria and their ARG from inactivation, even for specific ozone doses > 0.8 gO\(_3\) gDOC\(^{-1}\). A recent study by Pak et al. also reported decreased
disinfection efficiency of ozone on *E. coli* K-12 and its plasmid pB10 with increasing concentrations of suspended solids. Thus, these observations likely have implications for full-scale ozonation.

Figure 3. Inactivation of autochthonous wastewater bacteria and intracellular genes for (A + B) differing ozone doses (ozone fully depleted) and (C) exposures in 10 µm filtered SE (solid or empty symbols) or in presence of flocs (unfiltered wastewater, shaded symbols). • Cultivability (C) of total (black), norfloxacin/ceftazidime (violet) and sulfamethoxazole/trimethoprim/tetracycline (turquoise)-resistant heterotrophs, ● membrane integrity (ICC), ○ DNA stability (TCC), ◇ sul1, △ 16S rRNA. Black curves represent fitted inactivation models (GlnaFitT, see SI X). Dotted vertical straight lines indicate typical WWTP effluent ozonation conditions (panels A + B) and in (C) mark the end of the initial fast inactivation phase for ICC and C. pH 7.8-8.0

Inactivation kinetics of wastewater bacteria and intracellular genes

The kinetics of the inactivation of the heterogeneous wastewater community and intracellular ARG were measured in 10 µm filtered SE for a specific ozone dose of 0.57 gO₃ gDOC⁻¹ (2.47 mgO₃ L⁻¹), which is representative for micropollutant abatement. The resulting inactivation curves for cultivability and ICC (Figure 3C) suggest an incomplete or multiphasic inactivation scenario.
Initially (up to $CT = 0.14$ (ICC) or 0.31 mg s L$^{-1}$ (cultivability)), the most sensitive bacteria (~1-log unit) are rapidly inactivated with an inactivation rate constant k_1 (21 ± 2.8) and 9 ± 2.4 L mg$^{-1}$ s$^{-1}$ for ICC and cultivability, respectively). The majority of the wastewater bacteria is more resistant and inactivated much slower (ICC with $k_2 = 0.6 \pm 0.1$ L mg$^{-1}$ s$^{-1}$) or even reached a plateau (cultivability) where no further inactivation was observed under the experimental conditions of this study. The determined k-values of the mixed wastewater community are considerably smaller than those determined previously in a wastewater ozonation pilot-plant for fecal indicators ($k_1 = 133$ L s$^{-1}$ mg$^{-1}$ and $k_2 = 15$ or 3 L s$^{-1}$ mg$^{-1}$ for fecal coliforms or enterococci). This confirms that most wastewater bacteria are more ozone tolerant than fecal indicators, which has also recently been stressed by a study of Alexander et al., who identified enterococci as the most ozone-sensitive and pseudomonads among the most ozone-resistant wastewater species. According to the model fitted to ICC data, an ozone exposure of 3.52 mg s L$^{-1}$ would yield a 2-log reduction of the initial wastewater community, which is about 6 times the exposure needed for the same ICC reduction with *E. coli*. Nevertheless, the corresponding specific ozone dose (0.25 gO$_3$ gDOC$^{-1}$) and contact time (< 3s) suggest that a considerable abatement of MRB in full-scale is feasible. Based on TCC, no severe DNA-damage was observed up to the highest ozone exposure (2.7 mg s L$^{-1}$). The kinetics of intracellular ARG sul1 and 16S rRNA gene disruption in SE bacteria are difficult to estimate (Figure 3C). Particularly due to a fluctuation of the last two data points (1.4-log units reduction, followed by 0.7-log units increase for sul1) it is not clear, whether or not the initial lag-phase for intracellular gene disruption is exceeded at an ozone exposure of 1.0 mg s L$^{-1}$. The maximum measured abatements of sul1 and 16S rRNA genes were 1.4- and 0.9-log units, respectively, at an ozone exposure of 1.5 mg s L$^{-1}$.
3.4 Abatement of MRB and ARG during full-scale ozonation and post-treatment

Effect of full-scale ozonation of secondary effluent on abatement of MRB and ARG

Ozonation of SE at WWTP Neugut with a specific ozone dose of 0.55 gO₃ gDOC⁻¹ resulted in 1.4-1.6-log abatement of the total and multiresistant cultivable bacteria (Figure 4A (total, S/T/T, N/C)) and membrane integrity (ICC, Figure 4B) in the effluent of the ozone reactor (OR₂) (SI, Figure S1). An overview on identified MRB surviving ozonation is given in SI, XI. The results for plate counts are in good agreement with the laboratory experiments, for which total and MRB were abated by 1.4-1.8-log units for the same specific ozone dose in presence of flocs (Figure 3A). Similar levels of abatement (1.0-1.1-log units) were reported previously for (antibiotic resistant) E. coli and enterococci in pilot studies with specific ozone doses of 0.73 and 0.9 gO₃ gDOC⁻¹. However, these studies also reported selection for antibiotic resistant species and ARG after ozonation. No selective effects were observed during our campaigns (SI, XII). The abatement of ICC at the WWTP was 0.5-log units lower compared to observations in laboratory experiments (Figure 3A and Table S2 and S3). In contrast to viability indicators, intracellular DNA and ARG were not effectively reduced during full-scale ozonation. Figures 4B and 4C show that TCC and 16S rRNA gene copies only decreased by 0.5-log units, which is again in agreement with laboratory experiments in presence of flocs (Figures 3A and B). In addition, sul₁ gene copies remained nearly unchanged compared to SE (- 0.1-log units, Figure 4C), suggesting negligible disruption or leakage (SI, XIII). Comparably low levels of reduction were reported previously for intracellular imipenem resistance gene blaVIM in a pilot-study, even with 10-µm filtered SE at a specific ozone dose of 0.9 gO₃ gDOC⁻¹. However other ARG (vanA, ampC, ermB) were abated more efficiently (0.3-2 log units), highlighting that different ARG are affected to various extents. In laboratory experiments, the observed relationship between increasing specific ozone doses and the disruption of intracellular genes in the presence of
flocs was not conclusive. Moreover, increasing concentrations of suspended solids were recently reported to decrease the effect of ozone on a transferable ARG-plasmid.32 Hence, even though a decrease of $sul1$ gene copies of up to 1.4-log units had been measured in presence of flocs (Figure 3B), the low abatement of intracellular $sul1$ in full-scale is not completely unexpected. However, our flow cytometric and PCR based methods may underestimate DNA damage, as ozone is a potent mutagen,18, 19, 24, 59 and we did not assess sequence changes or transferability32 of the genes. It should be kept in mind, that the biocidal conditions exerted by ozonation of wastewater, may contribute to mutagenesis60 and selection of antibiotic resistant and more ozone-tolerant bacterial species in the long term.32, 35, 36

In summary our results indicate that typical conditions for full-scale ozonation are suitable to inactivate 1-2 log units of viable resistant bacteria without a measurable effect on the abundance of intracellular ARG.

Effect of biological post-treatment by sand filtration on MRB and ARG in ozonated effluent

During ozonation, potentially toxic oxidation by-products such as N,N-nitrosodimethylamine (NDMA) or bromate37, 38 and considerable concentrations of biodegradable or assimilable organic carbon (BDOC / AOC) may be formed. BDOC/AOC and in part NDMA are typically removed in a biological post-treatment following ozonation.38 At WWTP Neugut, ozonated effluent is treated by a biological sand filter (SF). This allows bacterial populations to regrow in the partially disinfected water.38 The analyses of the SF effluent show that not only intact cell counts (ICC) and total heterotrophic cultivable bacteria recover by 1.2-log units, but that also MRB increase significantly (0.8-log units, p<0.05 for N/C- and 1-log unit, p<0.001 for S/T/T-resistant bacteria, Figures 4A and 4B). Thus, the abatement of resistant SE-bacteria achieved during the ozonation step seems to be
partly neutralized by the biological post-treatment, resulting in only 0.8- (N/C) and 0.5- (S/T/T) log units abatement (p<0.001 for both types). TCC, which were only slightly reduced during ozonation remained unchanged after SF. However, ARG sul1 and 16S rRNA genes increased by 0.4- and 0.7-log units, thus their concentration is even slightly (but not significantly) elevated compared to SE. Recent pilot-studies, comparing the effect of differing post-treatments (including SF, granular activated carbon and expanded clay) on viable resistant bacteria or bacterial and antibiotic resistance gene markers did not report such an effect. However, in agreement with our observations on the isolates we obtained and identified (SI, XII), these studies also report that differing species are affected to various extents by ozonation and biological post-treatment.35, 36 It should be noted that the SF at WWTP Neugut treated conventionally purified SE for 18 years before the ozonation step was implemented. Hence, the observed increase in MRB and ARG following SF may potentially be related to the previously established microbial community, which was selected during biological treatment (see SI XII) and experienced elevated micropollutant exposure, potentially including selective effects of sub-lethal antibiotic concentrations.61-66

Practical implications

As indicated by ozonation experiments, implementing a removal step for flocs >10µm from SE prior to ozonation could lead to more efficient MRB abatement and intracellular ARG disruption. The latter may also be achieved by applying higher specific ozone doses (>0.55 gO3 gDOC-1). As some ARG seem more resistant to ozonation than others,35 they could be considered as target genes for monitoring in ozonation practice. The related benefits of applying higher ozone doses on ARG may be offset by elevated formation of toxic ozonation by-products, such as bromate or nitrosamines. Such trade-offs should be evaluated individually for WWTPs, which plan to implement an ozonation
Finally, an ultrafiltration following SF could be implemented to prevent discharge of regrown MRB and their ARG to the aquatic environment. Perhaps, other filter types such as granulated activated carbon (c.f.35, 36), or exchanging the filter material with sand not previously exposed to micropollutants or wastewater bacteria, thus eliminating a resident microbial community with already high prevalence of resistance, may be considered.

Before additional costly measures at WWTPs as those discussed above can be justified in front of policy makers and stakeholders, more profound research on the environmental effects of the continuous discharge of MRB and ARG from WWTPs is needed and risk assessment addressing the human health impacts needs to be developed.68
Figure 4. Effects of the full-scale ozonation at WWTP Neugut on various bacterial parameters. SE: secondary clarifier effluent; OR1, OR2: Sampling in and after the ozone reactor (SI, Figure S1), respectively; SF: after biological sand filtration. (A): Inactivation of total viable («Total») bacteria and bacteria multiresistant to sulfamethoxazole/trimethoprim/tetracycline (S/T/T) or norfloxacin/ceftazidime (N/C), (B) membrane integrity (ICC) and DNA stability (TCC) and (C) sul1 and 16S rRNA gene fragments. pH 7.8-8.0.
Supporting Information Available

For additional material and data 23 pages including 5 Tables and 4 Figures are available. This information is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgements

This study was supported by the Swiss Federal Offices for the Environment FOEN L361-1927. We would like to thank Hansruedi Siegrist, Marc Böhler, Julian Fleiner and Anita Widmer from the engineering department of Eawag and Max Schachtler from WWTP Neugut for involving us in evaluating the performance of the WWTP, substantial help during sampling campaigns and helpful advice. We thank Karin Beck and Jan Siegentaler for help with molecular analyses, Pascal Gisler for assistance in MALDI-TOF analyses, Franziska Rölli and Romina Sigrist for DOC measurements.
5. References

61. Substanzen zur Überprüfung des Reinigungseffekts weitergehender Abwasserbehandlungsverfahren, Fachbericht im Auftrag des Bundesamts für Umwelt BAFU; Eawag: Dübendorf, 2014;

