Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits

Marco Moretti¹⁺, André T.C. Dias², Francesco de Bello¹³, Florian Altermatt⁵⁶, Steven L. Chown⁷, Francisco M. Azcárate⁸, James R. Bell⁹, Bertrand Fournier¹⁰, Michael Hedde¹¹, Joaquin Hortal¹²¹³, Sébastien Ibanez¹⁴, Erik Öckinger¹⁵, José Paulo Sousa¹⁶, Jacintha Ellers¹⁷ and Matty P. Berg¹⁷¹⁸⁺

¹ Swiss Federal Research Institute WSL, Biodiversity and Conservation Biology, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
² Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Maracanã, Rio de Janeiro, RJ, Brazil.
³ Institute of Botany, Czech Academy of Sciences, Dukelska 135, 379 82 Třeboň, Czech Republic
⁴ Faculty of Sciences, University of South Bohemia, Na Zlate Stoce 1, 370 05 České Budějovice, Czech Republic
⁵ Swiss Federal Institute of Aquatic Science and Technology EAWAG, 8600 Dübendorf, Switzerland
⁶ Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
⁷ School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
⁸ Terrestrial Ecology Group (TEG), Department of Ecology, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
⁹ Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
¹⁰ Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
¹¹ INRA, UMR 1402 EcoSys, RD 10, 78026 Versailles, EU, France
¹² Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/Jose Gutierrez Abascal 2, 28006 Madrid, Spain
¹³ Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculdade de Ciências da Universidade de Lisboa (FCUL), Ed. C2, Campo Grande, 1749-06 Lisboa, Portugal
¹⁴ Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Université de Savoie, Bâtiment Belledonne Ouest, 73376 Le Bourget-du-Lac, France
¹⁵ Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, 750 07 Uppsala, Sweden
¹⁶ Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
¹⁷ Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
¹十八 Conservation Ecology group, Groningen Institute for Evolutionary life sciences, University of Groningen, Postbox 1103, 9700 CC Groningen, The Netherlands

⁺ These two authors share the senior authorship; * Corresponding author (marco.moretti@wsl.ch)

This document is the accepted manuscript version of the following article:
Summary

1. Trait-based approaches are increasingly being used to test mechanisms underlying species assemblages and biotic interactions across a wide range of organisms including terrestrial arthropods and to investigate resulting ecosystem processes. However, such an approach relies on the standardized measurement of functional traits that can be applied across taxa and regions. Currently, unified methods of trait measurements are lacking for terrestrial arthropods.

2. Here, we present a comprehensive review and detailed protocol for a set of 28 traits known to be sensitive to global stressors and/or affecting ecosystem processes and services. We give recommendations how to measure these traits under standardized conditions across various terrestrial invertebrate taxonomic groups.

3. We provide considerations and approaches that apply to almost all traits described, such as the selection of species and individuals needed for the measurements, the importance of intraspecific trait variability, how many populations or communities to sample and over which spatial scales.

4. The approaches outlined here provide a means to improve the reliability and predictive power of functional traits to explain community assembly, species diversity patterns, and ecosystem processes and services within and across taxa and trophic levels, allowing comparison of studies and running meta-analyses across regions and ecosystems.

5. This handbook is only a first step towards standardizing trait methodology across the most studied terrestrial invertebrate groups, and the protocols are aimed to balance general applicability and requirements for special cases or particular taxa. Therefore, we envision this handbook as a common platform to which everyone is kindly invited to provide methodological input for additional special cases.

Key-words: species features, species characteristics, physiology, morphology, feeding, behaviour, life-history, functional diversity.
Introduction

Over the last decade strong calls have been made to shift the research focus of community ecology from species-based to trait-based ecology (among others Lavorel & Garnier 2002; McGill et al. 2006; Diaz et al. 2007b; Suding et al. 2008; Webb et al. 2010; Chown 2012; Mouillot et al. 2013). This call is driven by an increasing awareness that trait-based approaches can significantly enhance our mechanistic understanding and predictive capabilities of the processes that play a major role in community ecology. Moving from a taxonomical approach to a functional trait approach reduces context dependency and therefore enables generalization across communities and ecosystems that is needed to address macro-ecological questions (McGill et al. 2006; Suding et al. 2008; Kunstler et al. 2016). For example, traits can help explain the effects of environmental gradients and stressors on the distribution of species and community (dis)assembly (e.g., Dias et al. 2013; Astor et al. 2014; Woodcock et al. 2014), as well as the effect of community composition on ecosystem processes and the provision of ecosystem services across ecological scales (Naeem & Wright 2003; Messier, McGill & Lechowicz 2010; Luck et al. 2012;Brittain et al. 2013; Deraison et al. 2015). Trait-based approaches have recently also been advocated as promising tools also in ecotoxicology and environmental risk assessment of chemical substances (Rubach et al. 2011; Van den Brink et al. 2013).

Recent developments in trait-based ecology have been led by plant ecologists, as plant traits have become effective predictors of community assemblages (de Bello et al. 2012; HilleRisLambers et al. 2012) and ecosystem processes (Lavorel 2013), and are now widely used. The prime utilization of plant functional traits is to identify abiotic and biotic mechanisms that determine species composition, ecosystem processes and service delivery (Lavorel & Garnier 2002; Diaz et al. 2007a; Luck et al. 2009; de Bello et al. 2010; Lavorel et al. 2013). Plant ecologists have been able to successfully scale up from individual plant physiological traits to vegetation processes such as competition and community assembly, as well as ecosystem processes such as decomposition, across a wide range of plant communities (Diaz et al. 2004; Cornwell et al. 2008; Kunstler et al. 2016), and link trait variability to global carbon cycle and climate models (Atkin et al. 2015). The early success of the plant trait approach has fuelled the discussion on which traits need to be measured and how they...
should be quantified in a standardized way. The development of large online trait databases in plant
ecology, such as LEDA (Kleyer et al. 2008) and TRY (Kattge et al. 2011), now provide quick access to
plant trait values, allowing comparisons even between ecosystems and biomes. Following this success
in plant ecology, interest has been growing among ecologists to adopt a similar trait-based approach in
other taxonomic groups (e.g., Vandewalle et al. 2010; Aubin et al. 2013; Pakeman & Stockan 2014;
Pey, Laporte & Hedde 2014; Fournier et al. 2015). Particularly for terrestrial invertebrates, attempts to
develop trait frameworks for specific taxa, e.g., Fountain-Jones, Baker & Jordan (2015) for beetles, or
to construct trait databases have been published, e.g., Falkner et al. (2001) for snails, Bouget, Brustel
and Zagatti (2008) for saproxylic beetles, Speight and Castella (2010) for hoverflies, Bertelsmeier et
al. (2013) for ants, Homburg et al. (2014) for carabid beetles, and Pey, Laporte and Hedde (2014) for
soil invertebrates.

Invertebrates have crucial roles as consumers of primary producers (e.g., herbivores, fungivores,
granivores etc.) and the products of animals and plants (i.e., leaf-litter, dead wood, dung and carrion),
they provide a staple food for higher trophic levels (e.g., for predators, parasites and parasitoids) and
are recognised as both facilitators of primary production (i.e. pollinators and detritivores) and as
ecosystem engineers (e.g., soil bioturbators) (see Gagic et al. 2015 for an overview). Hence,
knowledge of invertebrate traits are key to understanding multi-trophic processes and ecosystem
functioning (e.g., Lavorel et al. 2013; Schmitz et al. 2015). Current invertebrate trait databases are
often built, around a set of basic traits from a mixture of studies and observations, that are obtained
without uniform methodology and with little consistence in which traits were chosen for
measurements. In addition, functional trait values, such as species temperature tolerance and drought
resistance, are often missing or inferred from the abiotic conditions at the (micro)habitats where they
have been observed. However, (micro)habitat selection of species and realized niche in general might
result from interactions between species rather than physiological and phenological characteristics of
single individuals and populations (Colwell & Fuentes 1975; Ellers, Dias & Berg 2010; Araujo et al.
such inferred traits as predictors of community and ecosystem processes has been strongly
discouraged (Violle et al. 2007). The arguments above raise the urgent need for reliable and unified
methods to measure functional traits that are directly linked to species performance. A coherent, unified and standardized trait approach for various types of terrestrial invertebrates requires consensus on 1) what the appropriated functional traits are and, particularly, on 2) how they should be measured. A key element in this process has been the provision of a handbook of standardized plant functional traits that detail the methods and definitions of key traits worldwide (Cornelissen et al. 2003), and its recent update with additional traits and measuring techniques (Pérez-Harguindeguy et al. 2013).

The present work aims to provide a similar incentive to the trait-based approach for terrestrial invertebrates by describing a set of standardized trait measurements in easy to use protocols to improve the reliability and predictive power of functional traits to explain community and ecosystem processes within and across taxa and trophic levels, allowing comparison of studies and running meta-analyses across regions and ecosystems.

Overall approach to the handbook

This handbook aims to provide a set of protocols for trait measurements that can be used across a wide range of terrestrial invertebrate species, including the major taxonomic groups of Insecta, Aranea, Crustacea, Myriapoda, Gastropoda and Oligochaeta. We recognise that the wide variety of life forms encompassed by the present handbook makes it a challenging undertaking. In general, invertebrate traits are harder to determine and calibrate compared to plant traits, since animals can respond to environmental changes by movement and behaviour. Therefore, the trait protocols contain recommendations for adjustments to accommodate the biology of particular taxonomic groups, while maintaining comparability and standardization across taxa. The handbook does not include specific methods for measuring traits of nematodes, parasites and aquatic invertebrates, although some of the protocols may be used for these groups as well.

The handbook is meant as a first step to advance the trait-based approach to trophic groups other than plants, and to stimulate discussion about additional traits that should be included in the handbook. We foresee that this set of traits might be expanded in the future as the use of the functional approach becomes increasingly used among animal ecologists. Moreover, the trait protocols are designed for easy and standardized measurement of traits to facilitate widespread use by any research group, and to
allow high-throughput phenotyping to enable measurements on large numbers of species. For this reason, some of the most advanced technological methods that are currently used by specialized research groups for specific taxonomic groups are not part of the standardized methods, but included as special cases in the protocols. We would like to emphasize that the handbook’s main purpose is to maximize comparability of measurements across a wide range of taxa.

Below, we first give an overview of the criteria and concepts used for selecting the set of traits, subsequently we describe the standard format of the protocols, followed by some general recommendations. The protocols themselves are provided as an electronic appendix (Appendix S1).

Trait selection

We reviewed the literature on ecology of terrestrial invertebrates, and selected the 28 traits (see Table 1) for which we found clear evidences that they directly link organism performance with environmental conditions or ecosystem processes. These traits have been then further discussed among a group of specialist scientists working on the ecology, ecophysiology, and evolutionary aspects of predominantly terrestrial invertebrate fauna at different trophic levels with the aim to standardize the methods for their unambiguous use in any terrestrial biome and for the majority of its constituents.

Overall, the selected set of traits largely covers the primary functions related to species performance and interactions between trophic levels at various spatial scales from plots to landscape and even biomes. Traits can be separated into response traits which determine the response of the species to an environmental change, and effect traits which contribute to ecosystem function (Lavorel & Garnier 2002; Naeem & Wright 2003). In Table 1 and trait protocols we defined response and effect properties of the traits selected. We focus on several effect and response traits, which based on the literature, are among the most widely used or are in urgent need of standardized measurement protocols that can be applied across taxa. Most of the selected traits are quantitative and directly measurable on an individual under standardized conditions; others are categorical (e.g., activity time and feeding guild) or ordinal (e.g., ontogeny and respiration system).

Broadly, the selected traits can be grouped into five categories, i.e., morphology, feeding, life history, physiology, and behaviour. *Morphological traits* such as eye morphology, body pigmentation or body...
size are important features of an organism’s interaction with the abiotic and biotic environment. For example, body size is a predictor of multiple ecological processes (de Bello et al. 2010), and strongly correlated with an individual’s metabolic rate (Peters 1983; Brown et al. 2004). Body size also scales with many other life history traits (Ellers & Jervis 2003) and determines the structure and function of ecological networks (Woodward et al. 2005). Feeding traits are related to the trophic position of a species and describe aspects of the morphology and behaviour associated with their diet. Feeding related traits can therefore be important to better understand niche partitioning, trophic interactions as well as shape the structure of ecological networks (Stang et al. 2009; Ibanez 2012; Ibanez et al. 2013).

Life history traits describe the age schedule of reproduction of an organism, including key reproductive aspects such as age at maturity, clutch size, and life span (Stearns 1992). These traits have strong links to fitness and are expected to be among the most sensitive to environmental stress, making them useful to assess the vulnerability of species to global change. For instance, egg size varies enormously between species (Fox & Czesak 2000) and affects hatching success (Fischer et al. 2006) and resistance to desiccation (Fischer et al. 2006) and heat (Liefting et al. 2010). Moreover, trade-offs exist between reproductive traits and dispersal (Guerra 2011), leading to a reduced reproductive investment in some insects with strong range expansion under the influence of global warming (Hughes, Hill & Dytham 2003).

Physiological traits refer to features that allow species to tolerate variations in abiotic conditions (resistance adaptations), as well as biochemical modifications that adjust the rate of metabolic function (capacity adaptations) in response to environmental changes (Somero 1992). Physiological tolerance traits, such as heat tolerance and desiccation resistance have been successfully applied in predicting species distribution patterns along abiotic gradients (Dias et al. 2013), while growth rate can determine an individuals’ susceptibility to predation (Denno et al. 2002; Coley, Bateman & Kursar 2006) and temperature fluctuations (Fordyce & Shapiro 2003). Further, physiological tolerances can be affected by changes in diet (Verdu et al. 2010).

Finely, Behavioural traits enable flexible, rapid responses to environmental change without any associated changes to physiological or morphological phenotypes. Traits such as activity time, aggregation, and locomotion allow organisms to seek out preferred microhabitats to avoid (a)biotic
stress. Behavioural strategies can also increase tolerance to abiotic stresses, for instance through adopting flight strategies that maximize heat dissipation (Verdu, Alba-Tercedor & Jimenez-Manrique 2012) or by choosing microclimates to achieve nutritional homeostasis (Clissold, Coggan & Simpson 2013). Yet in soil fauna species, stratification in soil interacts with other traits, such as physiological traits, thus modifying the individual response to changes in environmental conditions (Cloudsley-Thompson 1962) and vulnerability to extreme temperature events (van Dooremalen et al. 2012).

The handbook protocols

The trait protocols are described using a standard format aimed to facilitate comparisons among traits. Each protocol includes four main sections. The section Definition and relevance provides a formal definition and a short, non-exhaustive justification why that particular trait is of ecological significance based on its role in responding to stressors and/or effecting trophic interactions or ecosystem processes. This section also describes the main approaches to measure a particular trait. The section What and how to measure describes the standardized method, and provides the units of expression and, if applicable, mathematical formulas for trait value calculations. The section Additional notes contains, if available, alternative techniques, often more expensive and challenging, and mainly used by more specialized research groups to answer deeper questions. This section may also list modifications of the methods for specific taxonomic groups and draws attention to potential caveats. Finally, the References list a number of key papers which are cited in the protocol.

Standardization of measurements and acclimation of animals

Invertebrates respond to a multitude of external environmental factors, leading to differences in trait values due to trait plasticity, learning and shifts in physiological status. As a consequence, trait values may depend on the immediate conditions an organism is subjected to at the place or time of collection. To achieve standardized trait measurements it is necessary to provide the same conditions for all individuals measured, which for many traits requires an acclimation period in order to remove the effect of local conditions. Therefore, the handbook starts off with a standardization paragraph that
describes recommendations for pre-treating and acclimating animals to obtain comparable values within and among species for all taxonomic groups. For traits with survival time as the unit of expression, such as inundation resistance, all individuals should have the same nutritional status at the start of the measurements and should either be fully fed or subjected to a short starvation period to empty their gut prior to trait measurements. When measuring feeding traits (e.g., food preference, ingestion rate) it is necessary that all individuals are acquainted with the food items used during the feeding assays. For traits that are strongly temperature-dependent such as metabolic rate, food ingestion rate and locomotion speed, thermal acclimation is absolutely necessary, although the acclimation time depends on the organisms and specific life cycles, as well as on the trait and ontogenetic stage of interest. As trait plasticity can occur during an organisms’ ontogeny, it might be necessary to raise animals under controlled conditions (controlled environmental rooms) and measure traits in individuals born into these rooms. Obviously, in cases where the research interest is focused on the actual survival time when animals are exposed to drought in their habitat, the actual diet composition in the field, or the dispersal distance under natural conditions, then standardized measurements will not need to be imposed, except perhaps for serving as a baseline to measure the extent by which field conditions depart from basal adaptations.

Selection of specimens and number of individuals per species

A key consideration is selecting the appropriate specimens for trait measurements. Aiming to compare standardized trait measurements across studies and taxa of any developmental stage and sex, we recommend selecting healthy, well-shaped, and full-developed individuals of the ontogenetic stage of interest, without any signs of damage and diseases. The use of interception trapping devices, such as pitfall traps, windowpane traps and Malaise traps to collect species for trait measurements should be regarded with caution as the performance of a trap depends on its construction, location, time of day, season or year, and weather (Gibb & Oseto 2006), and, most importantly, they might be selective for specimen with certain traits. We recommend that the sampling methods should be reported in detail and that additional information on trapping efficiency should be provided together with the trait measurements.
When laboratory strains are used for measurements, extreme care should be taken as laboratory adaptation may cause spurious changes in life history and physiological traits of species (Sgro & Partridge 2001; Griffiths, Schiffer & Hoffmann 2005). The type of culturing method, the size of the stock population and the length of the period of laboratory culture are all factors that determine the magnitude of selection response in laboratory population, and therefore these factors need to be reported meticulously with the trait measurements.

Sample size is a general issue in trait-based approaches and has already been covered in other publications, although mainly on plants (e.g., Pakeman & Quested 2007; Bolnick et al. 2011; de Bello et al. 2011; Fu et al. 2013; Pérez-Harguindeguy et al. 2013). If one would like to capture the full spatiotemporal variability around a species trait mean, a proportional number of individuals should be measured from different populations, seasons, communities, and ecosystems (Pakeman & Quested 2007; de Bello et al. 2011; Violle et al. 2012). This number will further increase if other sources of intraspecific variation will be included, e.g. polymorphism, sexual dimorphism and ontogenetic stages (Yang & Rudolf 2010; Violle et al. 2012), which are all particularly important among invertebrates. In general, the minimal number of individuals to be measured for a given species will depend on the variation of the trait values. The higher the variation, the higher the numbers of individuals to be measured for reliable estimates of the species mean trait value.

Future perspectives

This handbook is a first step towards standardizing trait methodology across the most studied terrestrial invertebrate groups. We are aware that its protocols are far from covering all special cases and may miss information for particular taxa. Below we highlight three fields that we hope to develop further with the aid of this handbook and provide some future perspective on the field of trait research.

Incorporating intraspecific trait variability

There is increasing evidence that intraspecific trait variability determine community assembly and the distribution of individuals across different spatio-temporal scales, as well having implications for ecosystem processes (Bolnick et al. 2011; de Bello et al. 2011; Violle et al. 2012; Siefert et al. 2015).
Within-species variability may originate from spatial variability in trait values within a species range, or may be due to genetic or environmental variation within a population at a single site. Information on both types of variability is extremely valuable, e.g. for understanding the mechanisms underlying community assembly or as input for models on functional consequences of global drivers (Yang & Rudolf 2010). Until now the lack of standardized measurements for invertebrate traits, as well as the tiny sample size for many traits, has prohibited a clear indication of the trait variability beyond the single species level. We believe that the use of the standardized protocols can overcome this gap.

Definition and validation of effect traits

Quantifying community variation in response traits, the redundancy among species sharing similar effect traits, as well as the overlap between response and effect traits is important for enhancing predictability of ecosystem functioning under environmental change (Folke, Holling & Perrings 1996; Elmquist et al. 2003; Mori, Furukawa & Sasaki 2013). While our knowledge on response traits of terrestrial invertebrates is relatively good, information on the extent to which response traits and effect traits can be linked within taxa, either via trait correlations or trait trade-offs, is still largely lacking. Even less is known about response-to-effect models across trophic levels (Schmitz 2008; Lavorel et al. 2013; Moretti et al. 2013; Pakeman & Stockan 2014; Deraison et al. 2015), although the degree of overlap between the two types of traits will determine our ability to predict changes in key ecosystem processes under variable environmental conditions. The current definition of response and effect traits in invertebrates is based on literature and expert knowledge, but validation based on controlled experiments is urgently needed.

Construction of an invertebrate trait database

The benefits of standardized trait measurements to the research community can be amplified if this information is compiled in a communal database. Following the successful example of the worldwide TRY initiative, we propose that increased access to trait information collected with standardized protocols will promote the interest to use this data. However, construction and maintenance of such a large database is a major undertaking that requires a dedicated staff and long-term funding. We hope
that an enthusiastic and regular use of this first handbook of protocols for standardized measurement
of terrestrial invertebrate functional traits will encourage researchers and funding agencies alike to
taking this crucial long term option.

References

Underdispersion and overdispersion of traits in terrestrial snail communities on islands. Ecol
Evol, 4, 2090-2102.

variability in leaf respiration in relation to climate, plant functional types and leaf traits. New
Phytophilotist, 206, 614-636.

our assessment of forest management impact on biodiversity? Biodiversity and Conservation,
22, 2957-2975.

ecological characteristics of ants (Hymenoptera: Formicidae). Myrmecological News, 18, 73-76.

ecology (frisbee): an ecological and taxonomical database to help with the assessment of forest
conservation status. Revue Écologie (Terre Vie), 10, 33-36.

honey bees for pollination services. Proceedings of the Royal Society B-Biological Sciences,
280, 20122767.

Chown, S.L. (2012) Trait-based approaches to conservation physiology: forecasting environmental
change risks from the bottom up. Philosophical Transactions of the Royal Society B-Biological
Sciences, 367, 1615-1627.

Clissold, F.J., Coggan, N. & Simpson, S.J. (2013) Insect herbivores can choose microclimates to

Review of Ecology, 7, 199-222.

ecological risk assessment: Using macroinvertebrate species under multiple stressors. Environ
Pollut, 185, 24-34.

and defense against natural enemies. Oikos, 115, 219-228.

handbook of protocols for standardised and easy measurement of plant functional traits

(2008) Plant species traits are the predominant control on litter decomposition rates within

Table 1 – List of the terrestrial invertebrate traits selected for the handbook and considered to be key in responding to the environment (RT, response traits) and/or effecting ecosystem processes and services (ET, effect traits) at various scales from local plots, to landscapes and biomes.

Symbols: “-” no relation with response to or effect on environment, “+” affinity with response to or effect on environment, “++” strong affinity with response to or effect on environment; the evaluation is based on qualitative expert knowledge.

<table>
<thead>
<tr>
<th>Trait type</th>
<th>Trait</th>
<th>Definition</th>
<th>RT</th>
<th>ET</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology</td>
<td>Body size</td>
<td>Size of the body. It includes body length, body width, body mass, and body volume</td>
<td>++</td>
<td>++</td>
<td>Environmental conditions affect body size which will influence amount and composition of resources used</td>
</tr>
<tr>
<td></td>
<td>Eye morphology</td>
<td>Form of the eye. It includes: eye number, eye size, eye sight</td>
<td>+</td>
<td>+</td>
<td>Eye morphology can be filtered by environmental conditions which will reflect prey and/or predator recognition</td>
</tr>
<tr>
<td></td>
<td>Respiration system</td>
<td>Structures developed to perform gas exchange</td>
<td>++</td>
<td>-</td>
<td>Type of respiration mode directly affect drought tolerance and desiccation resistance</td>
</tr>
<tr>
<td></td>
<td>Hairiness</td>
<td>Degree of hair coverage. It includes: hair length and hair density</td>
<td>+</td>
<td>+</td>
<td>Abiotic condition and biotic interactions (pollination) affect hairiness providing fitness and performance</td>
</tr>
<tr>
<td></td>
<td>Colour</td>
<td>Body coloration. It includes: colour, intensity, contrast</td>
<td>+</td>
<td>+</td>
<td>Abiotic condition and biotic interactions (e.g. predation) affect pigmentation providing fitness and performance</td>
</tr>
<tr>
<td>Feeding</td>
<td>Feeding guild</td>
<td>Food type, upon which species feed. It informs about “who eats what or whom”</td>
<td>++</td>
<td>++</td>
<td>Feeding guild is a good surrogate for trophic level and position in the food web. It determines the quality of resources, which influences a species growth, reproduction and survival</td>
</tr>
<tr>
<td></td>
<td>Ingestion rate</td>
<td>Quantity of food consumed in a given period</td>
<td>++</td>
<td>++</td>
<td>The rate of food ingested by an organism reflects its nutritional and energetic requirements and is related to species responses to food quality</td>
</tr>
<tr>
<td>Biological Feature</td>
<td>Definition</td>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biting force</td>
<td>Biomechanical force exerted on food items by the tip of the mouth-parts, claws or fore legs</td>
<td>$+$ $++$ Biting force mainly determines the effect on trophic network interactions and thus on ecosystem function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life history

<table>
<thead>
<tr>
<th>Life History Factor</th>
<th>Description</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontogeny</td>
<td>Developmental history. It includes type and number of developmental stages</td>
<td>$++$ $+$ Response to environmental stressors and effects on the ecosystem can change significantly across an organism’s life history. Changes in environmental conditions can affect ontogeny and ecosystem processes</td>
</tr>
<tr>
<td>Clutch size</td>
<td>Number of eggs or juveniles produced in one reproductive event</td>
<td>$++$ $++$ Clutch size respond significantly to environmental conditions which affect number of offspring and their impact on the ecosystems</td>
</tr>
<tr>
<td>Egg size</td>
<td>Size dimension or mass of an egg</td>
<td>$++$ $+$ Resistance to environmental and particularly climatic conditions increase with egg size, which indirectly determines impact on the ecosystem via changes in population sizes</td>
</tr>
<tr>
<td>Life span</td>
<td>Amount of time an adult individual lives, from emergence from last instar until death</td>
<td>$++$ $++$ Stressors can heavily affect life span which is reflected in different ecosystem functions</td>
</tr>
<tr>
<td>Age at maturity</td>
<td>Age at first reproductive event</td>
<td>$++$ $+$ Time of first reproductive event can be changed under environmental stress, with consequences for population size and ecosystem processes</td>
</tr>
<tr>
<td>Parity</td>
<td>The number of times a females lays eggs or gives birth</td>
<td>$++$ $+$ The spreading of reproductive events over a life time has fitness consequences that are related to the trade-off between current and future reproduction</td>
</tr>
<tr>
<td>Reproduction mode</td>
<td>Mode by which new offspring are produced (sexual or asexual)</td>
<td>$+$ $+$ Mode of reproduction can be changed under environmental stress, with consequences for population sizes and ecosystem processes</td>
</tr>
</tbody>
</table>

Physiology

<table>
<thead>
<tr>
<th>Physiological Factor</th>
<th>Description</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting metabolic rate</td>
<td>Amount of energy expended by an organism at rest</td>
<td>$++$ $+$ Metabolic rate is related to several organism features such as behaviour, longevity and reproduction output and its reaction norm with temperature can indicate how organisms differ in their response to environmental changes</td>
</tr>
<tr>
<td>Relative growth rate</td>
<td>Increasing in mass of an organism per unit of time</td>
<td>++</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Desiccation resistance</td>
<td>Ability to withstand dry conditions</td>
<td>++</td>
</tr>
<tr>
<td>Inundation resistance</td>
<td>Ability of terrestrial organisms to survive under water</td>
<td>++</td>
</tr>
<tr>
<td>Salinity resistance</td>
<td>Ability to withstand conditions of high salinity</td>
<td>++</td>
</tr>
<tr>
<td>Temperature tolerance</td>
<td>Ability to survive at any temperature. It includes: hot and cold</td>
<td>++</td>
</tr>
<tr>
<td>pH resistance</td>
<td>Ability to withstand acidic or alkaline conditions</td>
<td>++</td>
</tr>
</tbody>
</table>

Behaviour

<p>| Activity time | Activity period of a species within 24h | ++ | + | Environmental conditions, e.g. climatic conditions, determine the activity time. This can affect ecosystem function through asynchrony, e.g. spatiotemporal mismatch in biotic interactions. |
| Aggregation | Clustering of individuals | + | + | Clustering of individual reduces microclimatic stress, especially overcoming cold and drought and can locally result in enhanced ecosystem process rates via high population sizes. |
| Dispersal mode | The form of self-directed movements an animal uses to move from one place to another | ++ | - | Dispersal mode influences access to new habitat, resources and suitable environments, mates, and shelters, and opportunities to escape adverse environmental conditions. |</p>
<table>
<thead>
<tr>
<th>Topology</th>
<th>Description</th>
<th>++</th>
<th>+</th>
<th>Habitat conditions and biotic interactions influence locomotion speed which reflect behaviours critical for survival, including efficient use of resources, foraging, predator avoidance, fitness and survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locomotion speed</td>
<td>The pace of self-propelled movement of an organism</td>
<td>++</td>
<td>+</td>
<td>Disturbance and land use changes are expected to affect sociality. High levels of sociality are expected to have a bigger impact on ecosystem function</td>
</tr>
<tr>
<td>Sociality</td>
<td>Degree of interactive behaviour with other members of its species to the point of having a recognizable and distinct society</td>
<td>+</td>
<td>++</td>
<td>Offers the possibility to overcome unfavourable environmental conditions in a resting stage</td>
</tr>
<tr>
<td>Annual activity time</td>
<td>Period in an organism's life cycle when growth, development, and physical activity are temporarily stopped</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

546

547