Tetrahymena spp. (Protista, Ciliophora) as Test Species in Rapid Multi-level Ecotoxicity Tests

Almut GERHARDT1,2, Asad UD-DAULA3 and Karl-Werner SCHRAMM3,4

1LimCo International, Ibbenbüren, Germany; 2Swiss Center of Applied Ecotoxicology Eawag/EPFL, Dübendorf, Switzerland; 3Helmholtz Zentrum Munich, German Research Center for Environmental Health, Inst. of Ecological Chemistry, Neuherberg, Germany; 4TUM-Technische Universität München, Department für Biowissenschaftliche Grundlagen, Freising, Germany

Summary. This review summarizes the application of Tetrahymena spp. in ecotoxicology, in order to promote a more integrated, multi-level ecotoxicological assessment approach regarding the effects of chemical stressors on several biological levels (from molecule to ecosystem). Such a multi-level testing approach in one species facilitates the establishment of missing causal relationships between biochemical responses and ecological effects. The review illustrates that Tetrahymena spp. represent excellent ecotoxicological test species due to their important role in the microbial foodweb, wide distribution and abundance, sequenced genome in T. thermophila, large background knowledge and scientific publications in cellular biology, ecology and ecotoxicology. Several bioassays have already been developed on different biological organisation levels, such as enzyme assays (biochemical level), behavioral tests (individual level), population growth tests (population level) and microcosms (community level). Moreover, specific mode-of-action based assays are available (e.g. genotoxicity), or are in development (e.g. endocrine disruption and neurotoxicity). Tetrahymena spp. combine traits of (1) a single cell, thus might replace or complement specific cell-line testing approaches, with traits of (2) a whole organism and population, thus allowing to study complete metabolic pathways and its consequences on population growth and genetic adaptation. Assays involving Tetrahymena spp. might easily be adapted for a rapid multi-level in situ or ex situ toxicity biosensor test system for ecologically relevant risk assessment.

Key words: Biotest, biomarker, biosensor, population growth, toxicity test, risk assessment.

WHY USING TETRAHYMENA SPP. FOR ECOTOXICOLOGICAL TESTS?

Tetrahymena spp. (Protozoa, Ciliata, Oligohymenophorea) are non-pathogenic, free-living eukaryotes and ubiquitously distributed in nature (Sauvant et al. 1999). Their abundance may indicate healthy aquatic environments, and they represent an important trophic level where bio-accumulation or bio-concentration are important processes (Cooley et al. 1972, Carter and Cameron 1973).

Several other reviews previously stated the importance of this genus for biological, ecological and toxicological studies (Sauvant et al. 1999, Lukacinova et al. 2007). Tetrahymena spp. feed on organic matter and bacteria, i.e. they are at the base of microbial
and the detritivore food webs. They play an important role as grazers of microbes in aquatic and soil environments, controlling bacterio-plankton production. Use of these organisms in toxicity testing could help reduce the number of animals used in ecotoxicity testing (Pauli et al. 1993, 2001). Because this genus can easily be cultured at high densities, bioassays with this genus enable the use of a large number of test organisms and replicates. Moreover, because they are unicellular organisms, Tetrahymena spp. possess features of both single eukaryotic cells and whole organisms. Tetrahymena spp. can easily be cultivated in a variety of media and represent well-known model organisms in microbiology and cell biology, esp. T. pyriformis and T. thermophila. Compared to other protozoans, they are quite large (50–60 μm vs. 10 μm), they have a fast generation time (3–7 hours under optimal conditions in the exponential growth phase), and they show a high level of complexity, similar to that of metazoans and human epithelial tissue (Hausmann et al. 1996).

Tetrahymena spp. possess nuclear dimorphism; two types of cell nuclei exist in a single cell and carry out different functions with distinct cytological and biochemical properties (Collins and Gorovsky 2005). T. pyriformis is incapable of sexual reproduction as it does not possess a micronucleus. T. thermophila possesses a genetically fully sequenced macronucleus, thus facilitating the study of changes in gene expression patterns under pollution stress (toxicogenomics). Moreover, it possesses many core processes conserved across a wide diversity of eukaryotes (including humans) that are not found in other single-cell model systems (Brunk et al. 1990, Eisen et al. 2006, Stover et al. 2006). There is also a statistically-significant correlation (r = 0.928; n = 52 substances) between the sensitivity or T. pyriformis and T. thermophila to various toxicants (Pauli et al. 2000).

growth conditions for the species and potential artefacts due to, for example, binding of substances to organic matter (Jaworska and Wayne-Schultz 1994; Nałęcz-Jawecki and Sawicki 2002; Nilsson 1989, 2003; Zhu et al. 2006), pH effects on substance availability, and mortality of the test species (Carter and Cameron 1973, Schultz et al. 2003). However, *Tetrahymena* spp. might be an excellent test species for genotoxic effects as they have a large genome (Orias et al. 2000) and possess a complex eukaryotic cellular structure, which is an advantage for testing substances that need metabolic activation before showing genotoxic effects. Damage of the macronuclei in *Tetrahymena* spp. has been studied with image analysis (Stefanidou et al. 2002, 2008) after staining the DNA with Feulgen reagent. Stefanidou et al. (1999, 2002) found that increase in DNA synthesis was correlated with suppression of phagocytosis under cocaine exposure. Increase in DNA content could also be recorded after exposure to tartazine, sodium nitrate, sodium benzoate and butylated hydroxytoluene (Stefanidou 2008). The comet assay, or single-cell gel electrophoresis (Cotelle and Farard 1999, Kassie et al. 2000, Hartmann et al. 2001, Akcha et al. 2003) is a rapid and sensitive assay for genetic damage for different pro- and eukaryotic cells (Cotelle and Farard 1999), incl. *Tetrahymena* spp. (Lah et al. 2004). No difference was found when comparing the comet assay performance with different human cell lines and *Tetrahymena* spp. (Lah et al. 2005).

Enzyme biomarkers are used as indicators for the metabolic state of cells. Under toxicant exposure cells express defense mechanisms, which can be reflected by the acid phosphatase or dehydrogenase activity (MMT assay) or by antioxidant enzymes. The ATP content (Adenosin-Tri-Phosphate: as indicator of general energetic state) and the Acp activity (acid phosphatase: as indicator of intracellular digestive function) have both been valuable biomarkers of zinc and triton-X-100 toxicity in *T. pyriformis* (Nicolau et al. 2004). Müller et al. (2006) have suggested that a combination of ATP content and oxygen consumption can be used to assess toxic effects of oxidative stress. Mountassif et al. (2007) suggested that determining D-β-hydroxybutyrate dehydrogenase (an inner mitochondrial membrane enzyme, well-studied in several species; Bergmeyer et al. 1967, Nielsen et al. 1973, Latruffe and Gaudemer 1974), in addition to antioxidant enzymes, may achieve a more complete estimation of cellular detoxification processes.

Various substances from different chemical families may exert endocrine disruptive effects in animals (Kase et al. 2009). Whereas several bioassays already determine estrogenic effects based on cell-lines from mammals (e.g. CALUX tests), *Tetrahymena* spp. also possess endogenous steroids (Csaba et al. 1985), even though the equivalents to mammalian steroid receptors have so far not been found. However, estrogen/androgen receptor binding assays only cover a small percentage of endocrine disrupting effects. Steroidogenid assays based on Aromatase recording have recently

**SUBCELLULAR BIOCHEMICAL BIOMARKER TESTS**

Biochemical biomarkers can provide valuable information about the potential mode of toxic action of chemicals. For example, the relative percent of the fatty acid methyl esters might be used to study the physical accomodation of compounds into cell membranes (Bearden et al. 1999a, b; Schultz et al. 2002). Whereas narcotic effects (“baseline toxicity”) are a result of an unregulated, passive process resulting from severe cell damage, including loss of membrane integrity, swelling of the cytoplasm and cell rupture, apoptosis is a highly regulated process of cell death by plasma membrane bleeding, aggregation of nuclear chromatin, shrinkage of cytoplasm. Bogaerts et al. (1998) determined the cytotoxic effects of several inorganic and organic compounds on *T. pyriformis* using the fluorescin diacetate assay (FDA) (Rotmann and Papermaster 1966; Bogaerts et al. 1998, 2001), which has also been shown to be a reliable indicator for cytotoxicity in marine microalgae (Gilbert et al. 1992). This assay revealed higher or at least similar sensitivity compared to Microtox and *Daphnia* spp. swimming inhibition assays. Other assays apply two or three dyes simultaneously, e.g. to stain nuclei of dead cells or mark additional cell functions, e.g. by fluorescence markers (Dias et al. 2003, Dayeh et al. 2004), hence allowing for multi-parameter cytotoxicity tests, which can be performed on multiwell filter plates (Dayeh et al. 2005) instead of in traditional microcentrifuge tubes.

Biomarkers for genotoxicity have traditionally been DNA-integrity and DNA-strand breakage (Gallo et al. 2008). *Tetrahymena* spp. might be an excellent test species for genotoxic effects as they have a large genome (Orias et al. 2000) and possess a complex eukaryotic cellular structure, which is an advantage for testing substances that need metabolic activation before showing genotoxic effects. Damage of the macronuclei in *Tetrahymena* spp. has been studied with image analysis (Stefanidou et al. 2002, 2008) after staining the DNA with Feulgen reagent. Stefanidou et al. (1999, 2002) found that increase in DNA synthesis was correlated with suppression of phagocytosis under cocaine exposure. Increase in DNA content could also be recorded after exposure to tartazine, sodium nitrate, sodium benzoate and butylated hydroxytoluene (Stefanidou 2008). The comet assay, or single-cell gel electrophoresis (Cotelle and Farard 1999, Kassie et al. 2000, Hartmann et al. 2001, Akcha et al. 2003) is a rapid and sensitive assay for genetic damage for different pro- and eukaryotic cells (Cotelle and Farard 1999), incl. *Tetrahymena* spp. (Lah et al. 2004). No difference was found when comparing the comet assay performance with different human cell lines and *Tetrahymena* spp. (Lah et al. 2005).

Enzyme biomarkers are used as indicators for the metabolic state of cells. Under toxicant exposure cells express defense mechanisms, which can be reflected by the acid phosphatase or dehydrogenase activity (MMT assay) or by antioxidant enzymes. The ATP content (Adenosin-Tri-Phosphate: as indicator of general energetic state) and the Acp activity (acid phosphatase: as indicator of intracellular digestive function) have both been valuable biomarkers of zinc and triton-X-100 toxicity in *T. pyriformis* (Nicolau et al. 2004). Müller et al. (2006) have suggested that a combination of ATP content and oxygen consumption can be used to assess toxic effects of oxidative stress. Mountassif et al. (2007) suggested that determining D-β-hydroxybutyrate dehydrogenase (an inner mitochondrial membrane enzyme, well-studied in several species; Bergmeyer et al. 1967, Nielsen et al. 1973, Latruffe and Gaudemer 1974), in addition to antioxidant enzymes, may achieve a more complete estimation of cellular detoxification processes.

Various substances from different chemical families may exert endocrine disruptive effects in animals (Kase et al. 2009). Whereas several bioassays already determine estrogenic effects based on cell-lines from mammals (e.g. CALUX tests), *Tetrahymena* spp. also possess endogenous steroids (Csaba et al. 1985), even though the equivalents to mammalian steroid receptors have so far not been found. However, estrogen/androgen receptor binding assays only cover a small percentage of endocrine disrupting effects. Steroidogenid assays based on Aromatase recording have recently

---

**Tetrahymena** in Multi-level Ecotoxicity Tests 273
been developed and validated for both fish (Hinfray et al. 2006) and animal cell lines (e.g. H 295 R) (Kase et al. 2009). Aromatase alteration was correlated with reproductive effects in fish from contaminated sites (Lavado et al. 2004), and laboratory tests with many different substances proved effects on Aromatase activity (Sanderson et al. 2000, 2002; Hinfray et al. 2006; Cheshenko et al. 2008). Because transformation of testosterone to estradiol was found in *Tetrahymena* spp., it might possess cytochrome P 450 aromatase as well (Csaba et al. 1998).

Although *Tetrahymena pyriformis* does not possess a nervous system, they produce biogenic monoamines such as dopamine, adrenaline, noradrenaline and other catecholamines (Brizzi and Blum 1970, Goldman et al. 1981, Gundersen and Thompson 1983, Le Roith and Roth 1985, Takeda and Sugiyama 1993, Naokuni and Kanji 1993). Neurotoxicity can be assessed with biomarkers such as levels of dopamine and its derivates Noradrenaline and Adrenaline in *Tetrahymena* spp. (Ud-Daula et al. 2008), thus allowing to use this species in pharmacological studies of drugs to treat/prevent dopaminergic cell disorders related to human neurological and psychiatric diseases. Although the recent research indicates the existence of both the aromatase and dopaminergic pathways in *Tetrahymena* spp., the relevant DNA sequences remain unknown, which complicates the extrapolation of results to other/higher test species.

Ecotoxicogenomics provides some potential for the development of new molecular biomarkers, because it provides insight in the effects of chemicals on gene expression patterns. The genome of the macronucleus in *Tetrahymena thermophila* has been sequenced in 2006 (Eisen et al. 2006) and a genome database has been created (www.ciliate.org (Eisen et al. 2006, Stover et al. 2006)). *Tetrahymena* spp. have a fairly complete set of ancestral eukaryotic functions, and show a high degree of functional homology with human and mammalian genomes. Therefore, it has been suggested as a potential model organism in ecotoxicological monitoring (Fillingham et al. 2002, Turkewitz et al. 2002). For example, *T. thermophila* exposed to DDT or TBT showed changes in gene expression patterns using the suppression subtractive hybridization (SSH) library (Miao et al. 2006, Feng et al. 2007). However, extrapolation from ecotoxicogenomic results to physiological responses, which are usually a consequence of complex gene interactions, remains difficult unless other biomarkers on different biological levels are measured simultaneously. *Tetrahymena* can also be an alternative to several transfected reporter-gene cell-lines for e.g. toxic evaluation of endocrine disruptors (e.g. Yeast assays, CALUX systems). For example, La Terza et al. (2008) tested soil elutriates from three agricultural farms using *T. thermophila* transfected with a green fluorescent protein gene under control of heat shock promoter elements derived from the *T. thermophila* hsp70 gene. This assay is being further developed into a real-time *in vivo* biosensor system, and other and more specific promotor genes than hsp70 gene expression have to be developed, too.

**INDIVIDUAL LEVEL BASED TESTS**

Behavioral endpoints have been developed as suitable indicators for both the individual fitness and ecosystem health, since they link biochemical processes on the suborganismal level to ecological consequences on the ecosystem level (Gerhardt 2007). Behavioral effects often occur at short response times, low toxicant concentrations and because they can be recorded in a non-destructive way just by observation in real-time and on repeated basis, allowing for time-series analysis (Gerhardt 2007). Behavioral studies with *Tetrahymena* spp. have concentrated on chemotaxis, phagocytosis and motility. The chemotactic response of *Tetrahymena* spp. has been proposed as indicator for the evaluation of contamination of water and soil (Koppelhus et al. 1994, Doi et al. 2005). Behavior has been studied in choice chambers (Leick and Helle 1983, Kohidai et al. 1999). For example, Gilron et al. (1999) developed a sublethal method to record the chemotactic response of *Tetrahymena* spp. Phagocytosis is an important defence mechanism, both in protozoans and in mammalian cells (Chiesa et al. 1993, Renaud et al. 1995). Additionally, filter-feeding activity of *Tetrahymena pyriformis* on fluorescent latex beads were studied under exposure to metals (copper, zinc) or Triton-X (Nicolau et al. 1999). This method was eventually automatized by advanced image analysis (Dias et al. 2003). In order to differentiate between dead and living ciliates, genetically-modified bacteria were used, which carry a green fluorescent protein that looses its fluorescence in food vacuoles of the ciliate (Parry et al. 2001). The use of fluorimetric tests systems offers high throughput methods such as fluorescence microtiter plates (Parry et al. 2001) or flow cytometry (Fu et al. 2003).
Several other studies with *Tetrahymena* spp. have been performed to examine the relationship between ciliary movement, locomotion under exposure to copper, morphine (Power et al. 2006) or single-walled carbon nanotubes (Ghafari et al. 2008). Naitoh and Eckert (1969) showed that the rate and direction of ciliary beat of *Tetrahymena* spp. is affected by changes in ion permeability, especially Ca$^{2+}$ and K$^+$ ions, which are the most important ion channels in *Tetrahymena* spp., thus changing membrane potential. Goto et al. (1982) confirmed this by showing a correlation between swimming speed and membrane fluidity. Toxicants which alter ion fluxes might thus have an inhibitory effect on swimming speed, which serves as easily accessible indicator for membrane stability (Cassidy et al. 1989; Wu et al. 1994, 1996, 1997; Al-Saadi et al. 1981; Darcy et al. 2002), however, the precise background mechanism in membrane perturbation has still to be elucidated.

**POPULATION LEVEL TEST METHODS**

Under optimal culture conditions, *Tetrahymena* spp. grow first logarithmically, followed by a prestationary phase, ending in a stationary phase. In the log growth phase, the generation time can be as fast as 3–7 hours. Population growth can be recorded by different direct and indirect methods. Cell counts can be performed by an electronic particle counter or microscopically by a hemocytometer. According to the OECD (www.oecd.org) the 50% inhibitory growth concentration (IGC$_{50}$, mmol/l) is a widely applied toxicity endpoint. Indirect counting methods rely on spectrometric methods, such as the TETRATOX assay (Schultz 1997), measuring the turbidity of the medium caused by the population growth of the species, at 440 nm. Additionally to this fast, efficient and validated counting method (Larsen et al. 1997, Pauli and Berger 1997), toxicity tests with *Tetrahymena* spp. can be conducted in high throughput (e.g. microtiterplates, Sauvant et al. 1995) and in miniaturized microbioreactor systems (Ritzthaler 2006). A large database (TETRATOX, www.vet.ulk.edu/TETRATOX) for ca. 2.400 industrial organic chemicals has been developed, and serves as basis for linear or non-linear QSAR development (e.g. Schultz et al. 2003, Apтуla et al. 2006). However, Stewart et al. (2001) found that toxic potency values of chemicals acting via the electro(nucleo)philic mode of action could have lower reproducibility using the TETRATOX assay. In addition to TETRATOX a miniaturized tox-kit (Prototoxkit™) has been developed (Microbiotests Inc, Deinzee, Belgium), which is frequently used in ecotoxicological assessment of waste water, river water and sediments and considers 5–6 generations within a test duration of 24 hours (Kristiansen et al. 1996, Fochtmann et al. 2000, Latif and Lieck 2004, Papadimitriou et al. 2008).

For semi-volatile substances Wang et al. (2010) developed a closed test system with enough head space for the aerobic organisms, including a protocol to correct for estimation errors of the substance concentrations in the headspace.

However, turbidity measurements might suffer from errors such as 1) lack of all dead organisms have precipitated, and 2) test substance or metabolism products might also affect turbidity. An alternative is microcalorimetry, i.e. recording the change in heat production, which allows for automatic and non-invasive recording of thermodynamic and kinetic data of aquatic animal species (Wegener and Moratzky 1995, Stangel and Wegener 1996) and *Tetrahymena pyriformis* (Beemann et al. 1999). Other studies that have successfully used microcalorimetry with *Tetrahymena* spp. in studying toxic effects on population growth are Wu et al. (2006), Chen et al. (2007) and Kong et al. (2009). *Tetrahymena* spp. can be assessed directly, but also be used as “vehicle”, e.g. in the test system BACTOX (Schlimme et al. 1999). In the BACTOX assay, bacteria are co-cultivated with *Tetrahymena* spp., and the alteration of *Tetrahymena* spp. population serves as indicator for the assessment of bacteria (Schlimme et al. 1999).

**MICROCOSM TESTS**

Laboratory microcosms represent small model ecosystems and consist of several interacting species, usually a foodweb. Kawabata et al. (1995) constructed a microcosm simulating the microbial food web with the flagellate algae *Euglena gracilis* as primary producer, the ciliate *T. thermophila* as consumer and the bacterium *Escherichia coli* as decomposer. Matsui et al. (2000) found that the three species in this microcosm can co-exist for about one year, whereas in single cultures the species cultures were less stable. This microcosm has been used in several ecotoxicological studies of effects of y- or UV-radiation (Fuma et al. 1998, Takeda et al. 1998), nickel (Fuma et al. 1998a, b), manganese, gadolinium (Fuma et al. 2001), acidification
(Miamoto et al. 1998), copper, aluminium (Fuma et al. 2003) and dysprosium (Fuma et al. 2005). The effect index (EIM) is calculated as the difference in cell densities between exposed and control microcosms by Euclidean distances (Fuma et al. 2003). Doi et al. (2007) used a computer simulation model, where all constituents of the microcosm microbial food web are defined as factors of crucial functions for the sustainability of the system, e.g. by feeding on bacteria, T. thermophila prevents their extensive growth. Thus, this model allows to estimate functional ecosystem effects, too.

CONCLUSIONS

Thanks to all the efforts made in the past decades, the application fields of Tetrahymena spp. in ecotoxicology have been widely extended. Their unique biological and ecological advantages allow them to be used as sensitive and easy-to-handle “toxic action indicators” at the biochemical, organismal and population levels, as an important part of a microcosm simulating a microbial food web, and to assess the direct/indirect effects of chemicals at the community level. Moreover, due to the advancements in cellular and molecular biology, more and more bioassays based on behavioral alteration or new molecular biomarkers have been introduced. These assays, not only to elucidate toxic mode of actions, but also to shed light on the mechanisms at the molecular and individual levels. Concurrently, some previous studies have further shown their potential being adapted for the future ecotoxicological research, which focus on complex samples and long-term effects, more closely reflecting ecological effects. Hence, Tetrahymena spp. have been, and will be, one of the key representatives for integrated multi-level (eco) toxicological research. However, the recently developed biotests and biosensors still have to be standardized, validated and implemented for practical risk assessment and multi-level tests should be developed by simultaneous assessment of biomarkers from different biological organization levels. In this sense we agree with Lukacinova et al. (2007) that Tetrahymena spp. tests might replace mammal tests in toxicology and fish/fish cell line tests in ecotoxicology in the future, thus concordant with the European 3 R strategy in eco/toxicity testing approaches.

Acknowledgements. The authors thank Zhanyuan Wang, MSc student at the Helmholtz Zentrum, Munich, Germany, for his input and Dr. Theodorakis for linguistic support. The work was financially supported by the Swiss Center of Applied Ecotoxicology Eawag/EPFL, Dübendorf (Switzerland), the Helmholtz Zentrum, Munich (Germany) and LimCo International (Germany).

REFERENCES

Chen X. J., Feng W. S., Miao W., Shen Y. F., Yu Y. H. (2007) Effects of ytterbium ion on the growth, metabolism and membrane kinetics of...


I. Method description.


Hinfray N., Palluel O., Turies C., Cousin C., Porcher J. M., Brion F. (2006) Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio). Environ. Toxicol. 21: 332–337


Schultz T. W., Yarbrough J. W., Woldemeskel M. (2005) Toxicity to Tetrahy-


Stangel P., Wegener G. (1996) Calorimetric and biochemical stud-
ies on the effects of environmental hypoxia and chemicals on freshwater fish. Thermochim. Acta 271: 101–113

mena thermophila research. Nucleic Acids Res. 34: D500–503
Takeda N. H., Miyamoto K., Fuma S., Yanagisawa K., Inoue Y., Sato N. (1998) Comparative evaluation of ecological effects of 1-

crobial properties and toxicity of anthraquinones by microcalo-
Young H. K. (1993) Antimicrobial resistance spread in aquatic envi-

Received on 31st March, 2010; revised on 18th August, 2010; accepted on 19th August, 2010