Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty

CARL-FRIEDRICH SCHLEUSSNER1,2, DELPHINE DERYNG1,3, CHRISTOPH MÜLLER2, JOSHUA ELLIOTT4, Fahad Saeed1,14, CHRISTIAN FOLBERTH5, WENFENG LIU6, XUHUI WANG7,8, THOMAS A M PUGH9,10, WIM THIERRY11,12,13, SONIA I SENEVIRATNE11,13 and JOERI ROGELJ5

1 Climate Analytics, 10969 Berlin, Germany
2 Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
3 Columbia University Center for Climate Systems Research, New York, NY 10025, United States of America
4 University of Chicago and ANL Computation Institute, Chicago, IL 60637, United States of America
5 International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
6 Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf, Switzerland
7 Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Orme des Merisiers, 91191 Gif-sur-Yvette, France
8 Sino-French Institute of Earth System Sciences, Peking University, 100871 Beijing, People’s Republic of China
9 School of Geography, Earth & Environmental Sciences and Birmingham Institute of Forest Research, Birmingham B15 2TT, United Kingdom
10 Karlsruhe Institute of Technology, IMK-IFU, 82467 Garmisch-Partenkirchen, Germany
11 ETH Zurich, 8092 Zurich, Switzerland
12 Vrije Universiteit Brussel, 1050 Brussels, Belgium
13 Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom
14 Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: carl.schleussner@climateanalytics.org

Keywords: 1.5 °C, GGCMI, HAPPI

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Abstract

Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO₂ fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO₂ levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO₂ forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO₂ concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.

Introduction

Among the manifold impacts of anthropogenic climate change, its potential to threaten global food production has always been of particular concern (UNFCCC 1992). Observational evidence already indicates adverse impacts of climate change on crop productivity across the globe (Schlenker and Lobell 2010, Lobell et al 2011b, Moore and Lobell 2015) and underscores the risk posed by extreme weather events, in particular droughts and heat waves, on crop yield (Lesk et al 2016, Schaubberger et al 2017, Ray et al 2015).
In addition to changes in climatic conditions, anthropogenic greenhouse gas emissions and associated rising atmospheric CO$_2$ concentrations could also play a direct role for crop growth and crop yield (Kimball 2016), also related to enhanced water use efficiency (Morgan et al 2011). CO$_2$ effects on crop performance are regionally different (McGrath and Lobell 2013, Deryng et al 2016), and remain a large source of uncertainty in climate impact assessment on agriculture (Asseng et al 2013, Rosenzweig et al 2014, Deryng et al 2016). Thus, despite the possible benefits of elevated CO$_2$ on crop yield, there is an emerging consensus that adopting a stringent mitigation pathway would reduce the risks of crop yield losses, and would especially benefit agriculture and food security in the tropics and sub-tropics (Müller et al 2015), which face a higher risk of heat stress damage (Lobell et al 2011a, Deryng et al 2014).

The adoption of the Paris Agreement and the subsequent special report of the Intergovernmental Panel on Climate Change (IPCC) on 1.5 °C has led to an increasing interest in differentiation between impacts of climate change at 1.5 °C above pre-industrial levels in particular in comparison to 2.0 °C (Schleussner et al 2016b). This focus on impacts at specific warming levels calls for targeted modelling efforts (James et al 2017).

It also raises questions for which impacts of climate change a global mean temperature (GMT) level alone is sufficient to characterise impacts of climate change (Schleussner et al 2016b). In concentration scenarios such as the Representative Concentration Pathways (RCPs), CO$_2$ concentrations are prescribed. The climate sensitivity, however, is uncertain and differs substantially between climate models thereby leading to model-dependent warming trajectories (Stocker et al 2013). To account for uncertainty in the climate sensitivity, the link between CO$_2$ concentration pathways and GMT levels is generally explored in a probabilistic fashion (IPCC 2014). The probability for not exceeding 2 °C above pre-industrial levels in the lowest RCP2.6 scenario, for example, has been assessed to be more than 66% (IPCC 2014). In a concentration pathway approach, uncertainty in the climate sensitivity is thereby consistently dealt with. For GMT focussed studies, however, the corresponding CO$_2$ concentrations uncertainty range has to be explored systematically. This has profound consequences for the assessment of future crop yields at specific warming levels, and the biosphere response more generally, as it is responsive both to changes in CO$_2$ levels as well as climate.

In the following, we assess changes in crop productivity under 1.5 °C and 2 °C warmer climates provided by the model intercomparison project ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI, Mitchell et al 2017). Our analysis is based on modelled crop yield data from six models of the Global Gridded Crop Model Intercomparison (GGCMI, Elliott et al 2015, Müller et al 2017) as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP, Rosenzweig et al 2014). We provide projections for the four major staple crops: wheat (Triticum aestivum L.), maize (Zea mays L.), rice (Oryza sativa L.), and soybean (Glycine max L.). Crop yield responses for varying CO$_2$ concentrations are analysed, which allows to disentangle the effect of CO$_2$ fertilization and 0.5 °C warming increments. Finally, we also assess changes in 10 year minimum productivity to understand implications for yield stability—a central aspect for food security.

Methods

The HAPPI modelling protocol includes three 10 year periods with prescribed atmospheric forcing as well as sea-surface temperatures and sea-ice forcing conditions (see Mitchell et al 2017 for further details on the HAPPI protocol). Participating general circulation models (GCMs) have provided multi-member realisations for each of the three periods. The reference period for the HAPPI experiment is the ‘current decade’ from 2006–2015 forced by observations including observed CO$_2$ concentrations that have increased from 380.9 parts per million (ppm) to 402.9 ppm over this decade. Mean warming over this period corresponds to about 0.9 °C above the 1860–1880 period in the Berkeley Earth GMT dataset. The Future 1.5 °C experiment is based on the RCP2.6 experiment and takes constant forcing for greenhouse gases and aerosols and sea-surface temperatures from the 2091–2100 decade. CO$_2$ concentrations in this experiment are constant at 423.4 ppm. The Future 2 °C experiment uses scaled atmospheric and sea-surface temperature forcing from RCP2.6 and RCP4.5 with CO$_2$ concentrations set to 486.6 ppm.

Multi-ensemble projections for four GCMs from the HAPPI intercomparison projected have been re-gridded to a 0.5×0.5 °C regular grid and bias corrected based on the EWEMBI dataset (Lange 2017) following the modelling protocol of the Intersectoral Impact Model Intercomparison Project (ISIMIP, Frieler et al 2017). Five bias-corrected ensemble members per GCM are used in this analysis. Harmonised agricultural management data for fertiliser application rates, irrigated and rainfed areas and crop calendar are applied according to the fully harmonized configuration (fullharm) as introduced in (Elliott et al 2015). An overview of GGCMI model setups is provided in table S1 available at stacks.iop.org/ERL/13/064007/mmedia; an overview of available GCM simulations, model years and ensemble members in table S2. Crop producing regions are masked using rainfed and irrigated areas from the MIRCA 2000 dataset (Portmann et al 2010) that is also used for aggregation of crop yield over actual harvested areas (Porwollik et al 2017).
In addition to the core set of HAPPI experiments, the sensitivity to different CO₂ levels linked to uncertainty in the climate sensitivity is explored. A useful metric to assess the climate sensitivity to increase in CO₂ concentrations is the ‘transient climate response’ (TCR) that is defined as the annual mean GMT change at the time of CO₂ doubling following a linear increase in CO₂ forcing over a period of 70 years (Stocker et al. 2013). The AR5 provides an estimate for a likely range for the TCR between 1 °C to 2.5 °C (Stocker et al. 2013). Here we are approximating probabilities for end of century warming by this TCR estimate assuming a normal distribution with mean at 1.75 °C and a standard deviation of 0.75 °C. Based on this distribution, TCR probability levels for not exceeding 1.5 °C and 2 °C at different CO₂ concentrations are derived (see figure S1). Radiative forcing from non-CO₂ greenhouse gases and aerosols are based on RCP2.6 (1.5 °C, 0.45 W m⁻²) or scaled RCP2.6 and RCP4.5 (2 °C, 0.63 W m⁻²) end of century conditions, respectively (Mitchell et al. 2017).

Following this TCR-based approach, the 1.5 °C, non-exceedance probabilities for 390.0 ppm, 423.4 ppm and 483.0 ppm are 84%, 67% and 44%, respectively. Probabilities for 2 °C and 423.4 ppm (87%) and 483.0 ppm (67%) yield quite consistent values, thereby allowing for comparing consistent GMT—CO₂ combinations. For the 2 °C experiments an additional CO₂ concentration of 590.0 ppm (42%) is chosen that is in line with the high ppm-probability of the 1.5 °C set. These GMT-CO₂ combinations thereby establish a consistent scenario set that in the following will be called ‘low’, ‘medium’ and ‘high’ following the respective CO₂ concentrations (see table 1).

<table>
<thead>
<tr>
<th>CO₂ concentrations associated with different climate responses</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006–2015 Observed ~390 ppm</td>
<td>390 ppm 423.4 ppm 486.6 ppm</td>
<td>423.4 ppm 486.6 ppm 590 ppm</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Applied CO₂ concentrations for the three model periods and corresponding classifications in terms of exceedance probability for the respective warming levels according to a TCR-based estimate (see Methods). Medium values correspond to standard HAPPI CO₂ concentrations.

Results

The choice of CO₂ mixing ratio sets with very similar climate sensitivity probabilities for the 1.5 °C and 2 °C simulations allow for directly assessing the effects of climate sensitivity uncertainty on global crop productivity. Results for wheat, maize, soybean and rice are depicted in figure 1. The response in globally aggregated crop productivity to changing CO₂ concentrations is found to be strongly model and crop dependent. For maize, which is least responsive to elevated CO₂ concentrations, most models do not indicate a substantial effect of different CO₂ levels. On the contrary, for rice as well as wheat for some models, the CO₂ level largely determines the sign of the warming effect. GGCM projections for rice indicate a change in direction of the warming impact from negative at low CO₂ level to (moderately) positive under (medium) high CO₂ levels. This dominant CO₂ effect is independent of the warming level. Results for soybean follow a similar pattern. Projections for wheat indicate generally beneficial effects of rising CO₂ levels and typically a moderately positive response to rising temperatures in most models even at the lowest CO₂ levels considered (compare figure 1, panel 1.5 °C–Low CO₂).

Regrouping of the combined GMT-CO₂ sensitivity runs allows for directly assessing the effect of ~0.5 °C
warming increments at different CO₂ concentrations. For the GCM ensemble used, the warming difference between the recent past (2006–2015) and the 1.5°C period is about 0.67°C, between the 1.5°C and 2°C periods around 0.45°C (see table S3 for the GCM specific warming differences). From our set of GMT-CO₂ experiments we can thereby form three pairs to investigate the impact of ~0.5°C warming increments: 1.5°C minus recent past at 390 ppm, 2°C minus 1.5°C at 423 ppm and 2°C minus 1.5°C at 486 ppm. The resulting global as well as tropical (between 23.5°S/°N) crop productivity changes are displayed in figure 2 (top panel). Apart from a slight positive response of global productivity up to 1.5°C warming for wheat and maize, median global crop productivity is consistently negatively affected by 0.5°C warming increments. Differences between global and tropical yields are particularly pronounced for wheat, whereas median crop productivity is projected to decrease by 2.5% as a result of additional 0.5°C warming (see also table S4). As shown in figure 2 (middle and bottom panel), the effect of uncertainty in climate sensitivity is comparable and for wheat, soy and rice more pronounced than the effect of a 0.5°C temperature increase.

Changes in crop productivity are further regionalised using the climatological regions from the IPCC SREX report (IPCC 2012). Figure 3 depicts the regionally resolved changes (see also table S4). While some high latitude regions like North Asia or Northern Europe see some benefits under future warming up to 1.5°C (blue bars in figure 3), warming benefits beyond 1.5°C remain limited. Tropical and subtropical regions are affected most strongly, with median reductions in total crop productivity of 3%–5% projected for regions such as Central America and the Caribbean, the Sahel or East Africa. Rice productivity is particularly affected in water-scarce regions such as the Mediterranean or West Asia (projected median productivity reductions of about 5%). Future drought during summer is projected to increase (Greve and Seneviratne 2015) for these regions, the period where irrigation demand is highest (Thiery et al 2017). This renders the projected changes for these regions conservative, as no water limitations are considered for irrigated crops in our simulations. Finally, the multi-ensemble nature of the HAPPI modelling protocol also allows for assessing changes in the 1-in-10 year low global crop productivity as shown in figure 4. The changes in 10 yr extreme lows follow the trend for the median projections displayed in figure 2. For rice, the impact of warming from current GMT to 1.5°C is more pronounced for the 1-in-10 year low harvests than the warming from 1.5°C–2.0°C at any CO₂ level (Wang et al 2015).

Discussion

Our findings of consistently reduced productivity under scenarios of increased warming align well with existing literature estimating the impacts of warming on crop productivity using either process-based (Rosenzweig et al 2014, Zhao et al 2017, Liu et al 2016) or statistical estimates (Lobell and Asseng 2017). Not considering uncertain effects of CO₂ fertilisation, median changes in local yields over the tropical crop producing regions for the four major staple crops wheat, maize, soybean and rice have been found to be negatively affected under a 1.5°C GMT increase relative
Figure 3. As figure 2, but aggregated over the SREX world regions. Projections are only given for regions that include at least 0.1% of global production in MIRCA-2000. Results for individual regions are also given in table S4. Note that agricultural areas for the different regions vary substantially (see table S5 for the regional share of grid cells with agricultural activity per crop and region).
to pre-industrial levels and even more so under 2°C (Schleussner et al. 2016a). Even when accounting for the full effects of CO$_2$ fertilisation in crop models, median local tropical yields for wheat and maize are still found to be negatively affected and reductions to double between 1.5°C and 2°C. Our findings confirm the assessment of increasing risk for local crop productivity between 1.5°C and 2°C based on 20 year time slices at mean warming levels of 1.5°C and 2°C from RCP8.5 simulations from the ISIMIP Fast Track experiment (Warszawski et al. 2013). If at all, our reported reductions are on the low end. For wheat, we find a reduction for global productivity of about 2% per 0.5°C warming (likely range −2.7 to −0.1%) compared to 4%–6% per degree of warming reported in other studies combining observational and model evidence (Asseng et al. 2014, Liu et al. 2016). Zhao et al. (2017) have investigated impacts of GMT increase for all four major staple crops at 380 ppm. They find warming to reduce global yields of wheat by 6.0 ± 2.9%, rice by 3.2 ± 3.7%, maize by 7.4 ± 4.5% and soybean by 3.1% ± 5% per °C GMT increase. Our findings for soybean and rice are at the upper end of the confidence range of Zhao et al. (2017), but our median projections for maize are again slightly more conservative.

One possible origin for our lower estimate is the limited capability of most models in our ensemble to represent the effects of heat stress on wheat that is found to play a dominant role in productivity losses in field studies (Asseng et al. 2014) and observations (Liu et al. 2016), and different temperature response mechanisms in models are a major source of uncertainty in wheat (Wang et al. 2017). Similar effects of extreme heat on crop productivity are documented for maize and soybean, which these models were able to capture in a recent study for the USA (Schauberger et al. 2017, Anderson et al. 2015). Another key uncertainty relates to the CO$_2$ fertilization effect that may lead to enhanced photosynthesis rates and increased crop water productivity, and thereby increased crop productivity under elevated CO$_2$ concentrations. The strength of this effect is not at all well-constrained by observations and very differently represented in different crop models (Deryng et al. 2016, see also figure 1). Hasegawa et al. (2017) suggest that this uncertainty could be reduced for rice, if the reduced effect of CO$_2$ fertilization on morphological development, in particular leaf area, would be accounted for. This is, however not yet included for in the models used here.

In spite of substantial uncertainties in model response, our analysis of crop yield changes at 1.5°C and 2°C for different warming and concentration levels indicates that the warming level alone is insufficient to characterise projected impacts of crop productivity. The responsiveness to geophysically plausible CO$_2$ concentrations at 1.5°C and 2°C is large for most models and crop species and generally outweighs the difference introduced by a half a degree warming increment (figure 2). This sensitivity remains even for maize, which has no direct CO$_2$ fertilisation of photosynthesis and only experiences increased water use efficiency under elevated CO$_2$ (figure 1). However, the crop response to elevated CO$_2$ response in GGCMS has been shown to be a large source of uncertainty (Deryng et al. 2016) and provides rather optimistic results as models have yet to represent CO$_2$ interaction processes with, for example, ozone. Another uncertainty dimension relates to the effects of elevated CO$_2$ on crop quality (Taub et al. 2008, Myers et al. 2014), which is a key dimension of food security. Assessments of climate impacts on crop productivity overlooking the nutrition dimension may easily be misleading with regard to the effect of climate change on future food security (Gustafson et al. 2016, Müller et al. 2014). Thus, the medium and high CO$_2$ level scenarios as shown in our study are associated with greater level of uncertainty than our low CO$_2$ level scenario and should be interpreted with caution.

Our analysis highlights consistent negative effects of 0.5°C warming on global and most regional crop productivity for all crops and CO$_2$ levels investigated. As the climate sensitivity, and thereby the CO$_2$ concentrations at which warming levels of 1.5°C and 2°C may be reached, are inherently uncertain, this has important implications for our understanding of future climate impacts on crop productivity in light of climate sensitivity uncertainty. If TCR turns out to be towards the high end (meaning stronger
warming at the same CO$_2$ concentration level), the negative effects of additional warming may subsequently dominate over small (and uncertain) effects of CO$_2$ fertilization. In the opposite case, stronger CO$_2$ fertilization, if fully materialized, may dominate, but temperature increase between 1.5 °C and 2 °C will still lead to adverse impacts (figure 2). At the same time, a low TCR would allow for a bigger carbon budget to reach warming targets (Rogelj et al. 2016). Since it is currently not possible to further constrain estimates of TCR, the uncertainty in future impacts on crop productivity under different warming levels is inherently coupled to the geophysical uncertainty of the climate sensitivity (Knutti et al. 2017).

Finally, additional 0.5 °C warming increments will consistently lead to more extreme low yields, in particular in tropical regions (figure 4). Together with a steep rise in world population and food demand over the next decades (Kc and Lutz 2017), this will greatly increase the risk of future food shortages already as early as the 2030s when 1.5 °C warming could be reached (Lobell and Tebaldi 2014). In a globally connected food system, such production shortages would not only affect the producing regions, but will potentially have strong effects in remote but food importing regions and especially on vulnerable populations that spend large shares of their available income on food. Studies on observed food price shocks linked to extreme weather indicate that poor, food importing countries—most often least developed countries and small island states—are particularly vulnerable to external production shocks (Bren d’Amour et al. 2016).

Conclusion

Using multi-model multi-ensemble projections for future 1.5 °C and 2 °C worlds, we have analyzed changes in crop productivity at these warming levels. We have found consistent negative impacts of 0.5 °C warming increments for median as well as low productivity extremes alike for global food productivity with tropical regions being affected more strongly. Despite uncertainties in potential positive effects of elevated CO$_2$ concentrations for crop productivity, we have found that warming levels alone are insufficient to assess future impacts of climate change on future crop productivity. By linking this back to the uncertainty in the geophysical climate response to increased CO$_2$ emission, our analysis provides a novel viewpoint on the nested geo- and biophysical uncertainties linked to assessments of climate impacts at discrete warming levels. Our findings indicate that impacts of warming on crop production will be consistently lower at 1.5 °C compared to 2 °C. However, uncertainties related to potentially positive effects of increasing CO$_2$ fertilization on crop productivity are found to dominate over warming increments. Thereby, our results underscore that GMT levels alone are insufficient to characterise impacts of anthropogenic greenhouse gas emissions on crop productivity.

Acknowledgments

The authors would like to thank the HAPPI initiative and all participating modelling groups that have provided data. This research used science gateway resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. CFS and FS acknowledge support by the German Federal Ministry of Education and Research (01LS1613A). DD was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11 IL 093_Global_A_SIDS and LDCs). DD acknowledges the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia. WT was supported by an ETH Zurich postdoctoral fellowship (Fel-45 15-1). CM acknowledges financial support from the MACMIT project (01LN1317A) funded through the German Federal Ministry of Education and Research (BMBF). TP acknowledges support from European Commission’s 7th Framework Program under Grant Agreement number 603542 (LUC4C). JR acknowledges support by the Oxford Martin School Visiting Fellowship Programme. This is paper number 36 of the Birmingham Institute of Forest Research. XW acknowledges financial support from AXA.

ORCID iDs

Carl-Friedrich Schleussner @ https://orcid.org/0000-0001-8471-848X
Delphine Deryng @ https://orcid.org/0000-0001-6214-7241
Christoph Müller @ https://orcid.org/0000-0002-9491-3550
Fahad Saeed @ https://orcid.org/0000-0003-1899-9118
Christian Folberth @ https://orcid.org/0000-0002-6738-5238
Wenfeng Liu @ https://orcid.org/0000-0002-8699-3677
Thomas A M Pugh @ https://orcid.org/0000-0002-6242-7371
Wim Thiery @ https://orcid.org/0000-0002-5183-6145
Joeri Rogelj @ https://orcid.org/0000-0003-2056-9061

References

Lobell D B and Tebaldi C 2014 Getting caught with our plants
Elliott J, James R, Mitchell D
Lobell D B, Bänziger M, Magorokosho C and Vivek B 2011a
Lobell D B and Asseng S 2017 Comparing estimates of climate
Lesk C, Rowhani P and Ramankutty N 2016 Influence of extreme
Lange S 2017 Bias correction of surface downwelling longwave and
IPCC 2014
Knutti R, Rugenstein M A A and Hegerl G C 2017 Beyond
Hasegawa T et al
rising CO₂ data and modeling protocols for Phase 1 (v1.0) Geosci. Model
Kaufmann F T, Siebert S and Doll P 2010 MIRCA2000—Global
Porporato A et al 2017 Spatial and temporal uncertainty of crop
Seneviratne S I 2017 Present-day irrigation mitigates heat
Plauborg F, Pfeiffer B and Ramankutty N 2016a Assessing the impacts of 1.5°C global
Globeoschem. Cycles 24
Porporato A et al 2017 Spatial and temporal uncertainty of crop
Rosenzweig C et al 2014 Assessing agricultural risks of climate
Schleussner C-F et al 2015b The fingerprint of climate trends in the next two decades Environ. Res. Lett. 9 34011
Elliot J et al 2015 The global gridded crop model intercomparison: data and modeling protocols for Phase 1 (v1.0) Geosci. Model Dev. 8 257–77
Frieler K et al 2017 Assessing the impacts of 1.5°C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) Geosci. Model Dev. 10 4321–45
Gustason D, Gatman A, Leet W, Drewnowski A, Fanzo J and Ingram J 2016 Seven food system metrics of sustainable nutrition Security 8 1–17
Hasegawa T et al 2017 Causes of variation among rice models in yield response to CO₂ examined with Free-Air CO₂ Enrichment and growth chamber experiments Sci. Rep. 7 14858
IPCC 2012 Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) ed C B Field, V Barros, T F Stocker and Q Dahe (Geneva: Cambridge University Press)
Kc S and Lutz W 2017 The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 Glob. Environ. Change 42 181–92
Kimball B A 2016 Crop responses to elevated CO₂ and interactions with H₂O, N, and temperature Curr. Opin. Plant Biol. 31 36–43
Knutti R, Rugenstine M A A and Hegel G C 2017 Beyond equilibrium climate sensitivity Nat. Geosci. 10 727
Lange S 2017 Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset Earth Syst. Dyn. Discuss. 2017 1–30
Lesk C, Rowhani P and Ramankutty N 2016 Influence of extreme weather disasters on global crop production Nature 529 84–7
Lobell D B and Tebaldi C 2014 Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades Environ. Res. Lett. 9 74003
McGrath J M and Lobell D B 2013 Regional disparities in the CO₂ fertilization effect and implications for crop yields Environ. Res. Lett. 8 14054
Mitchell D J et al 2017 Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design Geosci. Model Dev. 10 571–83
Müller C et al 2017 Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications Geosci. Model Dev. 10 1403–22
Myers S S et al 2014 Increasing CO₂ threatens human nutrition Nature 510 139–42
Schlenker W and Lobell D B 2010 Robust negative impacts of climate change on African agriculture Environ. Res. Lett. 5 14010
Schleussner C-F et al 2016a Differential climate impacts for policy relevant limits to global warming: the case of 1.5°C and 2°C Earth Syst. Dyn. 7 327–51
Wang E et al 2017 The uncertainty of crop yield projections is reduced by improved temperature response functions Nat. Plants 3 17102
Zhao C et al 2017 Temperature increase reduces global yields of major crops in four independent estimates Proc. Natl Acad. Sci. 114 9326–31