
Analyzing input and structural uncertainty

of nonlinear dynamic models with stochastic,

time-dependent parameters

Peter Reichert1,2 and Johanna Mieleitner1

Received 3 February 2009; accepted 11 June 2009; published 1 October 2009.

[1] A recently developed technique for identifying continuous-time, time-dependent,
stochastic model parameters is embedded in a general framework for identifying causes
of bias and reducing bias in dynamic models. In contrast to the usual approach of
considering bias in model output with an autoregressive error model or a stochastic
process, we make the attempt to correct for bias within the model or even in model input.
This increases the potential of learning about the causes of bias and of subsequently
correcting deficits of the deterministic model structure. The time-dependent parameters as
formulated in our approach can also consistently be used for adding stochasticity to the
model without losing precise fulfilment of conservation laws used for deriving the
model equations. An additional advantage of the suggested procedure is that it makes it
possible to derive more realistic uncertainty bounds of internal model variables than is the
case when bias is only considered for measured model output. This is important for
mechanistic models in which internal variables have a direct physical meaning. The
concept is illustrated by an application to a simple eight-parameter conceptual
hydrological model. This application demonstrates the feasibility of the proposed
approach and gives an impression of its potential for application to a large class of
nonlinear, dynamic models.
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1. Introduction

[2] Statistical inference of parameters of deterministic
models is often done by assuming the data to be indepen-
dently and identically distributed around the model predic-
tions at ‘‘true’’ parameter values (to be inferred from the
data). The concept underlying this statistical approach is
that the deterministic model (at ‘‘true’’ parameter values)
describes the ‘‘true’’ system behavior, and the probability
distributions centered at the predictions of the deterministic
model describe the measurement error that is assumed to
be independent for different measurements. For a well-
calibrated measurement device, this assumption seems
often to be reasonable.
[3] However, when plotting time series of residuals of

dynamic models, it often becomes apparent that the assump-
tion of identically and independently distributed errors is
strongly violated. Heteroscedasticity of the residuals is often
caused by a relative error contribution to the total error. If
error variance is mainly dependent on output it can be
accounted for by applying an adequate transformation to
model results and data [Box and Cox, 1964]. If it depends
on other model variables as well, parameterization of the

error variance may still be possible. However, the signif-
icant autocorrelation of the residuals that is often observed
is rarely caused by the measurement device. In most cases
it is caused by input and model structure errors. Such
errors are propagated through (part of) the model which
often has internal states that make its output dependent on
past conditions. This leads to autocorrelated output errors
even in the absence of autocorrelation in input errors. When
only data sets with time steps larger than the correlation
length of such induced output errors are available, this
problem is insignificant. However, with increasing temporal
density and precision of measurements becoming available
with modern instrumentation this problem becomesmore and
more apparent. If this bias is not explicitly addressed in the
formulation of the inference problem, inferred uncertainty
bounds of parameters and results become unreliable (usually,
uncertainty is significantly underestimated).
[4] The problem of violation of the assumption of inde-

pendent errors has been discussed in the hydrological
literature (e.g., discussion of the work by Thiemann et al.
[2001] by Beven and Young [2003] and Gupta et al.
[2003a]). Earlier recognition of this problem, or more
generally of calibrating models in hydrology, led to the
development of alternative approaches to calibration than
statistical inference. One of these approaches is the gener-
alized likelihood uncertainty estimation (GLUE) technique
[Beven and Binley, 1992; Beven and Freer, 2001] that is
widely used in hydrology (this is only an alternative
approach if a ‘‘generalized’’ likelihood function is used;
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otherwise it is a numerical approach to Bayesian inference).
In this approach, the likelihood function is replaced by an
empirical, ‘‘generalized’’ likelihood function that is flatter
and thus leads to larger parameter uncertainty bounds.
However, the empirical nature of the ‘‘generalization’’ of
this approach violates some of the concepts underlying the
Bayesian approach to statistical inference [Mantovan and
Todini, 2006; Beven et al., 2007; Mantovan et al., 2007;
Beven et al., 2008]. Another interesting approach is multi-
objective calibration promoted in hydrology by Gupta et al.
[1998], Yapo et al. [1998], Gupta et al. [2003b], and Boyle
et al. [2003]. It was developed following the experience that
least squares or similar calibration techniques do not only
have the statistical deficiencies mentioned above, but that
they not even lead to a choice of parameter values a
hydrologist would select as physically most appropriate.
However, the problem still remains of how to use the results
of multiobjective calibration for probabilistic prediction.
[5] The problem of all of these approaches is that they

either deal exclusively with parametric uncertainty of a
model or try to map all uncertain elements to an ‘‘effective’’
parametric uncertainty. However, even highly overparame-
terized distributed hydrological models are not able to
reproduce observed hydrographs within measurement accu-
racy, even when considering all errors of the measurement
process (sampling error, instrument calibration error, mea-
surement device error, extrapolation error from point mea-
surement to areas, etc.). For this reason, not even refined
identifiability analysis techniques that analyze which parts
of a time series are particularly informative with respect to
which parameters can provide sufficient help for calibration
[Wagener et al., 2003]. This is also the reason why Bayesian
model averaging performs poorly [Vrugt and Robinson,
2007], although this is in general a very powerful technique
for dealing with model structure uncertainty. If applied to a
set of poor models (as conceptual, deterministic rainfall-
runoff models are from a statistical point of view), Bayesian
model averaging cannot lead to satisfactory results. Satis-
factory calibration can only be achieved by increasing the
flexibility of the underlying model in describing the ob-
served system output.
[6] The main problems of all the difficulties mentioned

above are therefore the simplifying assumptions necessary
for constructing a model of a very complex natural system.
Such a model will never be able to reproduce system
behavior within measurement error. Not accounting for
model structure and input error is, in technical terms, use
of an incorrect likelihood function. Thus, we need a better
likelihood function, not an alternative inference procedure
(see discussion above about suggested alternative inference
procedures). However, this insight does not solve our
problem as we cannot expect that our models will ever be
perfect. Nevertheless, it implies that it is a very important
research direction to try to incorporate a description of
model deficiency and input error into statistical inference
approaches. The idea here is not to modify the inference
approach, but to perform it with a more adequate likeli-
hood function. The construction of such a likelihood func-
tion requires a procedure that supports the modeler in
(1) improving the structure of the deterministic part of the
model and (2) adding a random part to the model that
accounts for the elements that are not considered in the

deterministic model description. This is the research direc-
tion in which we are focusing in the remainder of this
introduction and paper.
[7] The simplest approach for formulating a likelihood

function that corrects for the error outlined above is to
explicitly formulate a model output deficiency or bias term
in nonparametric form and to jointly estimate this term with
the model parameters. This methodology gained attention in
the statistical literature in recent years [Craig et al., 1996;
Craig et al., 2001; Kennedy and O’Hagan, 2001; Bayarri et
al., 2007]. Note that this follows a longer tradition in the
applied sciences where it has been realized that residuals do
not represent errors of the measurement process only but
that they include the effect of input error and model
structure deficits (some early examples for such efforts in
hydrological modeling are the works by Clarke [1973],
Sorooshian and Dracup [1980], and Kuczera [1983]). In
time series models, and in particular in hydrological mod-
eling, the more complex structure of the residuals is often
accounted for by the use of an autoregressive error model
[Kuczera, 1983; Bates and Campbell, 2001; Engeland and
Gottschalk, 2002; Yang et al., 2007a, 2007b]. Note that this
is a special case of the use of Gaussian processes as
suggested by the references from the statistical literature
given above. This statistical description of the effect of
model bias on output, and the use of autoregressive error
models that serve the same purpose, are important steps
toward improving the statistical assumptions underlying the
application of dynamic simulation models. In many cases,
use of one of these techniques may be a good choice.
However, these techniques also have disadvantages. The
main disadvantages are that these methods do not signifi-
cantly contribute to uncovering the causes of the bias and
that they do not support the estimation of the uncertainty of
internal model variables. As the final goal of modeling is to
decrease the bias as far as possible, a technique that would
support the identification of possible causes of bias would
be more useful. The uncertainty of internal model variables
may be of interest for mechanistic models within which
these have a physical meaning. The uncertainty of internal
model variables should then also consider model structural
errors. This is not the case if the effect of structural error is
considered only as a bias or autoregressive error term added
to model output variables that correspond to measured time
series.
[8] Instrumental variable techniques were developed to

avoid biased inference results for noncausal models [Young,
1984; Söderström and Stoica, 1989; Heckman, 1997;
Young, 2008; Heckman, 2008]. However, these techniques
rely on the identification of adequate instrumental variables
to extend the model structure. Techniques that attempt to
identify potential model deficits without making additional
structural assumptions would therefore be more promising.
For analyzing systematic deviations of the results of dynamic
models from observations such a technique was proposed
more than 30 years ago [Beck and Young, 1976; Beck, 1987].
The idea was to make (time-invariant) model parameters
time-dependent to allow them to compensate for model
structure deficits. The identified time variation of the param-
eters can then be used to gain hints about the potential of
model structure extensions that would improve the behav-
ior of an extended model with time-invariant parameters.
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Technically, this idea was implemented by applying an
extended Kalman filter in a state space of a linear model
augmented by the parameter vector. Local linearization in the
extended Kalman filter approach is required because the
augmentation with the parameter vector makes the extended
model nonlinear even if the original model was linear.
[9] The idea of using time-dependent parameters for

model structure improvement led to the development of
the data-based mechanistic (DBM) modeling approach
[Young and Lees, 1993; Young and Beven, 1994; Young,
2002, 2003; Romanowicz et al., 2006]. This technique
applies to models consisting of a nonlinear transformation
of input and a linear transfer function model with state-
dependent parameters. Because of the state-dependent
parameters, this is a quite large class of models. Taking
advantage of this class of model structures, the method is
very efficient because it is based on the recursive estimation
of transfer function model parameters that vary over time
because of their dependence on other measured or modelled
variables (states). The estimation algorithm is in the form of
a back-fitting algorithm in which the recursive Kalman filter
and smoothing algorithms are used to estimate these state-
dependent parameters on the basis of data that have been
reorganized into a nontemporal order, so as to reveal the
state dependency. The class of model structures is very well
suited for hydrological modeling as it allows for a nonlinear
description of the runoff generation process followed by
linear flood routing by the transfer function. This led to
many applications in hydrology [see Young and Lees, 1993;
Young and Beven, 1994; Young, 2002, 2003; Romanowicz et
al., 2006]. On the other hand, the technique is not directly
applicable to an arbitrary nonlinear dynamic model.
[10] A related development consisted of replacing the

extended Kalman filter by a recursive prediction error
algorithm applicable to linear and nonlinear model equa-
tions [Stigter and Beck, 2004]. This led to the suggestion of
synthesizing data-based and theory-based models of envi-
ronmental systems [Lin and Beck, 2006, 2007b] that was
also applied to hydrological and environmental systems [Lin
and Beck, 2007a].
[11] Starting from the same basic idea of identifying the

causes of model structure deficits as outlined by Beck and
Young [1976], in this paper, we follow a similar pathway as
the one cited in the previous paragraph. Instead of devel-
oping an efficient technique for a special (but rather large in
the case of DBM) class of models, we intend to design a
technique that is, at least in principle, applicable to any
nonlinear, dynamic model. As we want to avoid combining
continuous-time models with discrete-time, time-dependent
parameters, in contrast to all approaches cited above, we use
a continuous-time stochastic process to describe the time-
dependent parameter. This is conceptually more satisfying
and does not require observations at equally spaced points
in time. This is realized by combining a recently developed
technique for the estimation of continuous-time, stochastic,
time-dependent parameters of nonlinear, dynamic models
[Brun, 2002; Buser, 2003; Tomassini et al., 2009], with a
systematic approach of model structure deficit analysis. The
fundament of the generality of the approach is that it does
not rely on linear submodels or the need for local lineari-
zation. Still, convergence properties will depend on the
model structure and the available data. Instead of correcting

model output as it is done by modeling the bias term or
using an autoregressive error model, model parameters are
made time-dependent in an attempt to account for structural
deficits or sources of stochasticity already where they occur
instead of correcting their effect on model output. The
analysis of the behavior of the time-dependent parameter
can then lead to an improvement of the deterministic model
structure or the stochastic, time-dependent parameter can be
integrated as a stochastic element in the model to account
for intrinsic randomness of the system (at the aggregation
level used to describe the system by the model). We prefer
including randomness in the model structure through ran-
dom parameters instead of making the state equations
random [Moradkhani et al., 2005; Vrugt et al., 2005; Vrugt
and Robinson, 2007] for two reasons. First, it is conceptu-
ally more satisfying to make fluxes instead of state equa-
tions random, as this does not violate conservation laws and
seems to more adequately represent processes in nature.
Second, there is a higher potential of learning from the
behavior of time-dependent parameters than from correc-
tions in model states. The reason is related to the first,
conceptual point: the modeler may have ideas about fluxes
that may be influenced by factors that are not considered in
the model.
[12] Our approach can thus be viewed as an extension of

the original idea of using time-dependent parameters for
system identification [Beck and Young, 1976], as a gener-
alization of data-based mechanistic (DBM) modeling
[Young and Beven, 1994; Young, 2002, 2003; Romanowicz
et al., 2006] to more general, nonlinear, dynamic model
structures, or as an extension of ‘‘bias modeling’’ [Craig et
al., 1996, 2001; Kennedy and O’Hagan, 2001; Bayarri et
al., 2007] by moving the bias correction from model output
to intrinsic model variables. As the time-dependent param-
eter can also be a modification factor of or an additive term
to a model input, it can also be viewed as a generalization of
the concept of introducing storm-dependent input modifi-
cation parameters, as it has recently gained attention in
hydrology [Kuczera, 1990; Kavetski et al., 2003, 2006a,
2006b; Kuczera et al., 2006]. To make this link stronger, we
use the same illustrative case study as it was used by
Kuczera et al. [2006] to demonstrate the usefulness of
storm-dependent input modification parameters.

2. Methodology

[13] Figure 1 outlines the suggested procedure for model
deficiency and input error analysis, deficiency reduction,
and uncertainty estimation with the aid of time-dependent,
stochastic parameters. In a first step, (subsets of) the model
parameters are replaced by stochastic processes. The states
of these parameters are then jointly estimated with the other
(time-invariant) model parameters and with selected param-
eters of the stochastic process. In a second step, the results
of the replacement of each parameter subset obtained in the
first step are analyzed for their degree of bias reduction. For
the parameter subsets leading to a significant bias reduction,
exploratory analyses are done in the third step, for identi-
fying potential dependences of the time-dependent param-
eters on external influence factors or internal model states. If
such dependences are found, in a fourth step, the determin-
istic model is modified to account for these dependences
and the analysis is restarted with step 1. If no more
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dependences can be identified, the remaining stochasticity
(if any) is considered in the model in step five of the
procedure by making one or more model parameters sto-
chastic. If several parameters can explain the remaining
bias, this selection must be based on prior knowledge of
dominant mechanisms and modeling uncertainties of the
system. In environmental models, a stochastic parameter
can account for changes in coefficients of rate or substance
flux parameterizations due to aggregation errors, adaptation,
influence factors that are not considered by the model, or
other model simplifications. Because of the necessity of
such simplifications, it cannot be expected that a determin-
istic model leads to a good description of an environmental
system. As we want to respect mass conservation principles
that often underly the deterministic model equations, we
prefer adding stochastic variations to parameters (i.e., in rate
or flux formulations) rather than states.
[14] The five steps outlined above and visualized in

Figure 1 are described in more detail in sections 2.1–2.5
and will be illustrated in sections 4.1–4.5, with results for a
hydrological model introduced in section 3. As mentioned
in section 1, this scheme extends a procedure that was
suggested more than 30 years ago [Beck and Young, 1976;
Beck, 1987] and led to the development of the concept of
data-based mechanistic modeling [Young and Beven, 1994;
Young, 2002, 2003; Romanowicz et al., 2006] and to the
application of discrete-time, time-dependent parameters in

mechanistic environmental modeling [Stigter and Beck,
2004; Lin and Beck, 2006, 2007a, 2007b]. We will extend
this framework to continuous-time, time-dependent param-
eters for arbitrary nonlinear, dynamic models using a
recently developed estimation technique for time-dependent
parameters [Brun, 2002; Buser, 2003; Tomassini et al.,
2009].

2.1. Estimating Time-Dependent Parameters

[15] The key step of the procedure is the formulation and
estimation of continuous-time, time-dependent parameters.
We apply the procedure for estimating time-dependent
parameters developed by Brun [2002], Buser [2003], and
Tomassini et al. [2009]. To introduce the notation used in
this paper, we give a short summary of the technique in the
following paragraphs.
[16] We represent the discrete output of our deterministic,

continuous-time, nonlinear, dynamic model as a single
column vector, y, that consists of the results of specified
model variables at given points in time (and space if the
model is spatially explicit). Model inputs are divided into
inputs to the system described by the model, x, and model
parameters, qM, for which optimal values must be found to
make the model a good representation of the system. The
output of the deterministic model is then characterized by
the function

yM x; qM
� �

: ð1Þ

[17] The simplest modeling concept would then be to
assume the deterministic model to perfectly represent the
output of the system so that only measurement error,
Ey(qM), must be added to the deterministic model results
to get a statistical description of observed system output:

YM x; qM
� �

¼ yM x; qM
� �

þ Ey qM
� �

: ð2Þ

The likelihood function of this model would then be given
by the joint probability density of the vector of random
variables, YM(x, qM):

LM qM; x; y
� �

¼ fYM y j x; qM
� �

¼ fEy
y� yM x; qM

� �� �
; ð3Þ

where fYM is the joint probability density of model results
and fEy

is the joint probability density of the measurement
errors. In most cases, a simple error model is assumed
for the measurement error, Ey. The most frequent choice is a
multivariate normal distribution without correlation.
[18] As discussed in section 1, because of input and

model structure errors (and sometimes also due to a more
complex measurement process), this assumption is often
inadequate and typically leads to overconfident uncertainty
estimates of model parameters and results (in particular if
the measurement process is described by a normal distribu-
tion). A more adequate statistical description is therefore
given by

YM bð Þ
x; qM
� �

¼ yM x; qM
� �

þ b x; qM
� �

þ Ey qM
� �

; ð4Þ

where b is a description of the bias of the deterministic
model [Craig et al., 1996, 2001; Kennedy and O’Hagan,

Figure 1. Recommended procedure for model deficiency
and input error analysis, deficiency correction, and
uncertainty estimation with the aid of time-dependent
parameters.
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2001; Bayarri et al., 2007]. Often, a Gaussian process is used
for describing the knowledge about this bias term, or an
autoregressive error model is applied for describing b + Ey

[Yang et al., 2007a, 2007b]. This procedure is often useful,
but it lacks the potential of uncovering the causes of bias,
and it does not solve the problem of getting corrected
uncertainty estimates for internal model variables or for
model output that is not observed.
[19] To increase the potential of improving the mechanistic

description, we are thus trying to incorporate this bias into the
model structure. This is done by replacing a subset, i, of
parameters of the model qiM, by stochastic, time-dependent
processes, Qi

M,t(qP,i). The idea is that the time-dependent
parameters would compensate for the bias internally in the
model so that we would not longer need an additive output
bias term. Thus, equation (4) becomes

YM ið Þ
x; qM ið Þ

� �
¼ YM x; qM

�i;Q
M;t
i qP;i

� �� �
¼ yM x; qM

�i;Q
M;t
i qP;i

� �� �
þ Ey qM

�i;Q
M;t
i qP;i

� �� �
:

ð5Þ

In this equation, M(i) represents the model with the
parameter(s) i of the original model replaced by stochastic
processes in time, q�i

M, represents the set of parameters of
the original model that excludes parameter(s) i, Qi

M,t is the
stochastic process in time that replaces the parameter(s) i of
the original model, and qP,i is the set of (additional)
parameters that characterize the stochastic process Qi

M,t. The
three model structures given by equations (2), (4), and (5) are
visualized in Figure 2. When combining the parameters of
the original model with the exception of parameter(s) i, q�i

M ,
with the parameters, qP,i, characterizing the stochastic pro-
cess underlying parameter(s) i, we get the set of parameters
for the model M(i) used for describing the outcome of the
model when the parameter(s) i is (are) replaced by a time-
dependent stochastic process

qM ið Þ ¼ qM
�i

qP;i

� �
: ð6Þ

Note that this extension of the model is not restricted to the
original model parameters. By introducing additional
additive or multiplicative parameters to model input and

output (with default values of zero or unity, respectively),
this formulation includes and extends model deficiency or
bias terms as suggested in the literature cited earlier [Craig et
al., 1996, 2001; Kennedy and O’Hagan, 2001; Bayarri et
al., 2007], but it adds additional options of tracking the cause
of the bias within the model structure. The extension of the
model by making a subset of parameters stochastic processes
makes the original model stochastic. As discussed below,
this may be necessary to get a more realistic description of
reality.
[20] Estimation of model parameters of our extended

model consists of estimating the time-invariant parameters
of the original model, q�i

M, (some of) the time-invariant
parameters of the stochastic process characterizing the time-
dependent parameter, qP,i, as well as the realization of the
time course of the time-dependent parameter, Qi

M,t. Model
prediction only requires the specification of the (joint)
distribution of the time-invariant parameters q�i

M and qP,i

as there will be no information available about the realiza-
tion of the time-dependent parameter, Qi

M,t, that is an
internal variable of the extended model (see right structure
in Figure 2).
[21] When discretizing the time-dependent parameter on

a fine grid, the likelihood function of the model M(i), as a
function of the time-invariant parameters (6) only, is approx-
imated by the following integral:

LM
ið Þ

qM ið Þ
; x; y

� �
¼ f

YM ið Þ y j x; qM ið Þ
� �

�
Z

fYM y j x; qM
�i; q

M;t
i

� �

� fQM;t
i

qM;t
i j qP;i

� �
dqM;t

i : ð7Þ

In this equation, the integration extends over the values of
the time-dependent parameter(s) at all points of the grid that
discretizes the temporal dimension.
[22] In the following, we limit the set of parameters to be

replaced by stochastic processes to one to avoid difficult
choices of correlation parameters. The procedure can be
extended to the multidimensional case. As a simple choice
of a continuous-time, stochastic process, we choose the
time-dependent parameter, qi

M,t, to be replaced by a mean
reverting Ornstein-Uhlenbeck process. This process gives
the parameter the freedom for temporary variations without
moving too far from its mean. This seems to be a reasonable
compromise between the case of a constant parameter and a
parameter described by a continuous random walk that
would offer even more flexibility but would make predic-

Figure 2. Dependence structure of the original model with (left) time-invariant parameters, qM

(equation (2)), (middle) the model with additive bias, b (equation (4)), and (right) the model resulting
from replacing parameter subset i by a stochastic process in time, Qi

M,t, to compensate internally for bias
and to consider stochasticity (equation (5)).
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tions extremely uncertain. If more freedom seems to be
necessary, a parameterization of the dependence of the
parameter on states or external influence factors is required.
The mean-reverting Ornstein-Uhlenbeck process fulfills the
stochastic differential equation

dqM;t
i ¼ � 1

ti
qM;t
i � mi

� �
þ

ffiffiffiffi
2

ti

r
sidWt; ð8Þ

where mi is the mean, ti is a characteristic time of
correlation, si

2 is the asymptotic variance of the process,
and Wt is a random walk based on Gaussian white noise, a
so-called Wiener process [Kloeden and Platen, 1995;
Øksendal, 2003]. This process has an analytical solution
for the conditional distribution at a given time point, t, given
the solution at an earlier time, t0, described by the following
normal distribution

QM;t
i tð Þ j QM;t

i t0ð Þ

� N mi þ qM;t
i t0ð Þ � mi

� �
e
� t�t0

ti ; s2
i 1� e

�2
t�t0
ti

� �h i
: ð9Þ

This equation shows that, as a function of time, the mean
starts at the given value at t0 and approaches exponentially
the given mean, mi, of the process. Parallel to this
development, the variance increases from zero and
approaches the asymptotic variance, si

2. This process seems
to be a reasonable generalization to allow a previously time-
invariant parameter to vary in time around its mean value.
For the parameters we would like to keep stochastic, we do
not want to allow more freedom. For identifying model
deficits this seems to be sufficient; if there seems to be a
trend in the identified time series, the parameter can be
replaced by an adequate parameterization of this trend for
the next iteration of the procedure shown in Figure 1.
[23] Note that for deterministic models described by a set

of ordinary differential equations, equation (8) allows us to
describe the model with time-dependent parameter(s) as a
set of stochastic differential equations, where equation (8) is
added to the set of equations of the original model that do
not have a diffusion term. On the other hand, equation (9)
allows us to draw representations of a discretized process
without having to apply a numerical integration scheme for
stochastic differential equations. The first of these notes is
conceptually satisfying, whereas the second leads to signif-
icant practical advantages for implementation.
[24] The numerical Markov chain Monte Carlo simula-

tion scheme used to approximate the posterior distribution
of time-invariant and time-dependent parameters is based on
a Gibbs sampler that generates the (k + 1)th point of the
Markov chain by sampling the following values [Tomassini
et al., 2009].

[25] 1. qMkþ1

�i according to fQM
�ijQ

M;t
i

;QP;i;y(q�i
M jqM;t

i

k
, qP;ik , y) =

fQM
�ijQ

M;t
i

;y(q�i
M jqM;t

i

k
, y) / fQM

�i
(q�i

M) � fYM(yjq�i
M, qM;t

i

k
).

[26] 2. qP;ikþ1
according to fQP;ijQM;t

i
;QM

�i;y
(qP,ijqM;t

i

k
,

qM
�i

kþ1
,y) = fQP;ijQM;t

i
(qP,ijqM;t

i

k
)/ fQP;i (qP,i) � fQM;t

i
jQP;i (qM;t

i

k jqP,i).

[27] 3. qM;t
i

kþ1
according to fQM;t

i
jQM

�i;Q
P;i;y(qi

M,tjqM�i

kþ1
,

qP;ikþ1
, y) / fQM;t

i
jQP;i (qi

M,tjqP;ikþ1
) � fYM(yjq�i

M, qM;t
i

kþ1
).

The dependence on x is not shown here to avoid an even
more complicated notation. The updating step of the time-
dependent parameter qi

M,t is based on a Metropolis-Hastings
algorithm within subintervals of the time axis using a
conditional solution of the Ornstein-Uhlenbeck process with
fixed values at both ends of the intervals [Buser, 2003;

Tomassini et al., 2009]. The parameters q�i
M and qP,i are

sampled by a conventional Metropolis algorithm with
normal jump distributions.

2.2. Analyzing the Degree of Bias Reduction

[28] The bias of dynamic simulation models due to input
and model structural errors consists usually of three com-
ponents: insufficient quality of fit (the deviation of model
results from measurements is often larger than the measure-
ment error), heteroscedasticity of the residuals (the error
variance is often not constant in violation of the simple
statistical assumption of identically distributed residuals that
is often made), and autocorrelation of residuals (significant
autocorrelation of residuals is often in contradiction to
statistical assumptions about independent measurement
errors). In environmental modeling, there are often the
following dominant causes of these sources of bias.
[29] 1. The quality of the fit is not sufficient. If a careful

parameter estimation has been done, the dominant causes of
insufficient quality of fit are usually input errors and model
structure deficits. To assess the quality of the fit, we need an
estimate of measurement accuracy. This is often not easy to
get, as the overall measurement error can be dominated by
errors due to the sampling process or due to extrapolation of
point measurements to areas rather than errors of the
measurement device. It is often difficult to get independent
replicates of this whole procedure when getting data from
environmental systems.
[30] 2. There is heteroscedasticity in the residuals. The

dominant causes of heteroscedasticity of the residuals are
relative error contributions of both, the measurement pro-
cess and model structure errors. This often leads to a
relatively simple dependence of the error variance on model
output. In this case, either using a parameterization of this
relationship when formulating the statistical model or ap-
plying an adequate transformation to data and model results
is often a successful strategy to significantly reduce this
error. Still, the error will be the combination of measure-
ment, input and model structure errors.
[31] 3. The residuals are autocorrelated. A lag phase of a

measurement device, equilibration of concentrations in a
sampling volume with surrounding concentrations, or other
aspects of the sampling procedure can lead to autocorrelation
of measurement errors. However, in most cases these effects
are small and the dominant cause of autocorrelation of
residuals in environmental modeling studies are input and
model structure errors. As dynamic simulationmodels usually
have internal states that depend on the history of driving
forces, even uncorrelated input errors will lead to autocorre-
lated output errors (as they affect these states and through
this effect also future behavior). Similarly, errors due to
deficits in the model structure either lead directly to system-
atic deviations in output or they lead to autocorrelated output
errors due to their propagation through parts of the model.
[32] The analysis above suggests the following strategy

for analyzing the degree of bias reduction achievable when
making different parameters time-dependent: Try to elimi-
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nate heteroscedasticity with using an error variance that is
parameterized as a function of model results (and, if
necessary, other important influence factors) and use quality
of fit measures and autocorrelation of residuals as primary
indicators for quantifying bias and bias reduction by time-
dependent parameters. As the improvement of the fit will
depend on the variance of the time-dependent parameter,
this variance must be chosen carefully by the analyst if the
output error is not known (we cannot estimate input and
output error jointly [Zellner, 1971]). The results of this
analysis should then allow the analyst to rank the
parameters according to their potential for bias reduction
or at least to separate parameters with a high potential of
bias reduction from those without. The understanding of
mechanisms in the system described by the model should
then allow the analyst to relate the dominant parameters to
mechanistic causes of the model structure deficit.

2.3. Identifying Potential Dependences of Parameters
on States

[33] The results of steps 1 and 2 of the procedure
illustrated in Figure 1 and described in sections 2.1 and
2.2 lead to the identification of the potential of different
parameters for bias reduction and to a posterior distribution
of these parameters as a function of time. If the residuals are
significantly larger than the error of the measurement
process (including sampling), improvement of the quality
of the fit (with careful assessment of not overfitting) is an
important indication of bias reduction. In addition to the
degree of improvement of the fit, for each parameter, we
also get the time series of the parameter that leads to the best
fit of the data. In step 3 of the procedure, we make the
attempt to interpret this time series. In particular we are
interested to learn if the time-dependent parameter compen-
sates for a deficit of the deterministic model structure
(which should not be described by a stochastic process) or
if it describes a random effect of the system described by the
model (which may be represented in an improved model
structure by a stochastic process). Besides results of statis-
tical analyses, this distinction requires knowledge of the
mechanistic structure of the system described by the model.
[34] In simple cases, visual assessment of a plot of the

time-dependent parameter may already uncover obvious
systematic effects (e.g., periodic variation with season or
day or variations that follow external variables) [Beck and
Young, 1976; Beck, 1987]. For more complicated models we
suggest the following procedure to follow the visual
assessment: Compile time series of all available external
influence factors and internal model states and perform an
explorative data analysis of the time series of the time-
dependent parameter as a (potential) function of these
factors. It may be useful to restrict the explorative analysis
to time domains within which the uncertainty range of the
time-dependent parameter is small, as this indicates high
identifiability of the temporal behavior. Any explorative
statistical methodology may be useful, such as scatterplots,
stepwise regression, or cluster analysis. If these analyses
uncover potential relationships between some of these
factors and the model parameter, these results provide direct
hints for model improvement to be implemented in step 4 of
our procedure (see section 2.4 below). If no relationship is
found, internal stochasticity of the system described by the

model may be responsible for the bias. In this case, one or
several parameters may have to be made stochastic to get a
more realistic description of the system. This is briefly
discussed in section 2.5.

2.4. Improving the Deterministic Model

[35] The identification of parameters with a high potential
of bias reduction in step 2 of the procedure described in
Figure 1 (see section 2.2) leads to the identification of
submodels of the deterministic model for which improve-
ments may lead to a better system description. The explor-
ative analyses in step 3 (see section 2.3) may lead to insights
that generate more concrete suggestions for the formulation
of such improvements. If a significant bias reduction was
possible in step 2 and in step 3 significant relationships were
found, an improvement of the deterministic model should
be possible. In any case, if a significant bias reduction was
possible, trials should be made with fits of models that
contain modifications to the submodels affected by the
parameter that led to significant bias reduction. If a model
with less bias can be found (a better fit without overfitting
and/or less autocorrelation of the residuals if the assumption
of independent measurement errors seems reasonable), the
analysis should be restarted at step 1 with the modified
model.

2.5. Describing Remaining Stochasticity

[36] If no more significant dependences in step 4 can be
identified, possibly after several iterations with modified
models through the steps 1 to 4 of the procedure shown in
Figure 1, it seems reasonable to attribute any remaining
model deficiencies to random sources. Knowledge of the
driving forces and internal mechanisms of the system
described by the model will then be necessary to identify
the dominant inputs or submodels that should be made
stochastic to improve the model structure. Input errors,
aggregation errors, and influence factors not considered
by the model can be important reasons to make a determin-
istic description not adequate. Knowledge may be available
about which model simplifications are the most critical ones
for which a stochastic description may be appropriate. In
contrast to step 2 (section 2.2), where a relative assessment
of different parameters was already very useful (as long as
overfitting is avoided), in this step, knowledge of the
measurement error is very important. This knowledge,
formulated as an informative prior distribution, allows us
to infer the variance of the time-dependent parameter
required for improving the fit [Zellner, 1971] and to check
for overfitting by comparing the standard deviation of the
residuals with the measurement error. A comparison of
the inferred variance of the time-dependent parameter with
the knowledge of this uncertain input or model structure
element will provide an independent check of the adequate-
ness of making this particular parameter time-dependent.
[37] After having completed the procedure shown in

Figure 1 we can hope having identified an improved
structure of the deterministic model and included adequate
stochasticity in the model to guarantee a more adequate
description of the investigated system. This revised model
should then lead to a reasonable description of parameter
and model prediction errors within a conventional statistical
inference process (see discussion in section 1). In section 3
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we will introduce a hydrological model to which this
procedure will be applied in section 4.

3. Hydrological Modeling, Model, Watershed,
and Model Application

3.1. Uncertainty in Hydrological Modeling

[38] Uncertainty of model predictions has gained a lot of
attention in hydrological modeling over the past 20 years
(Duan et al. [2003] give a current overview). This led to the
development of many different techniques to address input,
parameter, model structure, and output measurement
uncertainty. Some of them are generalized likelihood
uncertainty estimation (GLUE) [Beven and Binley, 1992;
Beven and Freer, 2001; Beven, 2006], parameter solution
(ParaSol) [van Griensven and Meixner, 2006], sequential
uncertainty fitting (SUFI-2) [Abbaspour et al., 2004],
Bayesian inference based on Markov chain Monte Carlo
[Kuczera and Parent, 1998; Vrugt et al., 2003; Yang et al.,
2007a, 2007b], and Bayesian inference based on importance
sampling [Kuczera and Parent, 1998]. In a recent
comparison of these techniques [Yang et al., 2008] we
concluded that, because of its sound theoretical foundation,
it seems to be the better strategy to improve the formulation
of the likelihood function within Bayesian inference instead
of inventing alternative inference procedures that have a
poorer conceptual foundation. In particular, it was con-
cluded that it is important to explicitly consider input and
model structure uncertainty at their source instead of
modeling their effect as an autoregressive output bias term.
There has been considerable development in this field in
recent years [Kavetski et al., 2003; Vrugt et al., 2003, 2005;
Kavetski et al., 2006a, 2006b; Kuczera et al., 2006; Vrugt
and Robinson, 2007]. It is the goal of this case study to
contribute constructively to this development.

3.2. Hydrological Model logSPM

[39] The simple hydrological model logSPM consists of
mass balance equations for the three compartments of soil,
groundwater and river as visualized in Figure 3 [Kuczera et
al., 2006]. The water balance in the soil is formulated as a
differential equation for the water in the soil per unit
watershed area, hs:

dhs

dt
¼ qrain � qrunoffð Þ � qet � qlat � qgw: ð10aÞ

The amount of water stored in the soil increases because of
rain minus surface runoff, (qrain � qrunoff), and it decreases
because of evapotranspiration, qet, lateral subsurface flow,
qlat, and percolation to groundwater, qgw. The water balance
in the groundwater is formulated as a differential equation
for groundwater per unit watershed area, hgw:

dhgw

dt
¼ qgw � qbf � qdp: ð10bÞ

The amount of water stored in groundwater aquifers
increases because of percolation from the soil, qgw, and it
decreases because of release as base flow to the river, qbf,
and because of percolation to deep aquifers, qdp. Finally, the
water balance in the river is formulated as a differential
equation for river water per unit watershed area, hr:

dhr

dt
¼ qrunoff þ qlat þ qbf � qr: ð10cÞ

The amount of water stored in the river(s) increases because
of surface runoff, qrunoff, lateral subsurface flow, qlat, and
base flow from groundwater, qbf, and it decreases because
of river flow out of the watershed, qr. The fluxes in
equations (10)–(14) are parameterized as follows:

qrain ¼ frain irain tð Þ; ð11aÞ

qrunoff ¼ fsat frain irain tð Þ; ð11bÞ

qet ¼ fet fpet ipet tð Þ; ð11cÞ

qlat ¼ fsat qlat;max; ð11dÞ

qgw ¼ fsat qgw;max; ð11eÞ

qbf ¼ kbf hgw; ð11fÞ

qdp ¼ kdp hgw; ð11gÞ

qr ¼ kr hr: ð11hÞ

The model described by equations (10) and (11) contains
two nonlinearities. The fraction of the watershed with

Figure 3. Schematic diagram of the model logSPM
[Kuczera et al., 2006].
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saturated soil, fsat, and the ratio of actual to potential
evapotranspiration, fet. Both of these quantities are para-
meterized as functions of the mean water depth in the soil,
hs. They are given by

fsat ¼
1

1þ sF exp �kshsð Þ �
1

sF þ 1
ð12Þ

and

fet ¼ 1� exp �kethsð Þ; ð13Þ

respectively. These nonlinear dependences are visualized in
Figure 4. The final output of the model, river flow, Qr, is
given as the product of the watershed area, Aw, and river
flow per watershed area, qr,

Qr ¼ Aw fQ qr ð14Þ

(see below for an explanation of the factor fQ).
[40] The hydrological model defined by equations (10)–

(14) has two input time series, rainfall, irain(t), and potential
evapotranspiration, ipet(t). In addition, the watershed area,
Aw, is considered as an external input to the model, rather
than a model parameter.
[41] The model has eight parameters and three initial

conditions, and we added three additional parameters to
manipulate the input time series irain(t) and ipet(t) and the
output, Qr. These three factors, frain, fpet, and fQ, will be
equal to unity for the base simulation. As time-dependent
parameters, they serve the purpose of investigating input
uncertainty and multiplicative output bias. All parameters
and their marginal prior distributions are summarized in
Table 1. Note that this model deviates in three details from
the original model by Kuczera et al. [2006]: First, the
parameter sF in the model used in this paper is equal to the
original parameter sF by Kuczera et al. [2006] plus 99.
Second, the parameter ket was (implicitly) set to unity by

Kuczera et al. [2006]. And third, we added a deep
percolation flow, qdp, to the model.

3.3. Likelihood Function

[42] To decrease the heteroscedasticity of the residuals, a
Box-Cox transformation was applied to model results and
data. We then assumed the measurement error to be homo-
scedastic, independent and normally distributed in the
transformed units:

y0 ¼

yþ l2

l0

� �l1

�1

l1

; ð15Þ

where l0 is a constant to make (y + l2) nondimensional,
l2 is an offset parameter with the same units as y, and l1
is a nondimensional exponent. On the basis of previous
experience [Yang et al., 2007a, 2007b], we applied this
transformation with y0 = 1 m3/s, l2 = 0.1 m3/s, and l1 = 0.3.
Linear error propagation applied to the transformation (15)
yields the following approximate dependency of the standard
deviation in original units, sy, on the standard deviation
in transformed units, sy0, as a function of y expressed in the
original units,

sy ¼ sy 0 � l0

yþ l2

l0

� �1�l1

: ð16Þ

For an exponent l1 < 1 and a constant standard deviation in
the transformed units, sy0, this leads to an increase in the
standard deviation in the original units, sy, with increasing
values of y. The offset l2 > 0 guarantees that the standard
deviation in the original units does not approach zero if y
approaches zero.
[43] In transformed units, we use now the likelihood

functions discussed in section 2.1. Equation (3) without bias
correction is used for comparative purposes and equation (7)

Figure 4. Shape of the nonlinear functions used for describing the fluxes shown in Figure 3 and given
by equations (11a)–(11h). (left) Fraction of saturated area, fsat, given by equation (12) and (right) fraction
of actual evapotranspiration, fet, given by equation (13). The solid parts of the curves represent the range
of values covered in the base simulation shown in Figure 5.
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with internal bias correction based on time-dependent param-
eters for the analysis of model deficiencies.

3.4. Abercrombie Watershed

[44] The model was applied to the Abercrombie water-
shed, New South Wales, Australia. The watershed area, Aw,
of this watershed is 2770 km2. The data were kindly
provided by George Kuczera, to allow for comparison with
other studies on input uncertainty [Kuczera et al., 2006].

3.5. Model Application

[45] The marginal prior distributions of all parameters are
summarized in Table 1. We chose wide prior distributions to
account for our lack of knowledge of watershed character-
istics and the high aggregation level of the model that makes
it difficult to transfer knowledge about physical properties
of the watershed into values of model parameters. Indepen-
dence of the parameters was assumed when building the
joint prior distribution.
[46] Step functions were used to describe the two model

inputs of rainfall intensity and potential evapotranspiration
to account for the fact that only daily sums of these
variables were available. The model output, Qr, according
to equation (14), was averaged over 1 day for comparison
with measured data. In contrast to the work by Kuczera et
al. [2006] the model was applied to the whole time series
kindly provided by George Kuczera to better allow for an
assessment of the presence or absence of a long-term trend
in ground water level.
[47] To get samples approximating the posterior parame-

ter and result distributions, Markov chains of length 50,000
were run for the time-invariant parameter cases, of length
5000 when exploring the effect of making different param-
eters time-dependent, and of 40,000 for the final simulation
with making the selected parameter time-dependent. To
save storage space, only each fifth step was kept for the

time-invariant parameter case, each second step when
including time-dependent parameters. Multiple realizations
of the chains were calculated while improving the start
values and (normal) jump distributions based on the previ-
ous run. This finally led to good convergence even of
relatively short chains in both cases, for time-invariant
and time-dependent parameters. This was confirmed by
running the long chain for the faster case of time-invariant
parameters.

4. Results and Discussion

[48] We started the analysis with a base parameter esti-
mation of the time-invariant parameters of the model
described in section 3. The simulation results shown in
Figure 5 demonstrate that the model is able to reproduce the
main characteristics of the data.
[49] However, systematic deviations remain. In particular,

the normality and independence assumptions of the error
term are not fulfilled, and with a posterior mean of 1.2 the
standard deviation of the transformed residuals is too large
to represent measurement error only. Note that according to
equation (16), in linear approximation, this would corre-
spond to a standard deviation in original units increasing
from 0.24 m3/s at a discharge of 0–30 m3/s at a discharge of
100 m3/s. As most of the deviation between data and model
results is explained by the ‘‘measurement error,’’ the model
prediction without measurement error is overconfident. The
95% confidence intervals of the prediction are hardly
distinguishable from the prediction line (see Figures 5a
and 5b). The Nash-Sutcliffe index [Nash and Sutcliffe,
1970] of our simulation was significantly smaller (0.51)
than that found by Kuczera et al. [2006] (0.74). This is
probably due to the longer simulation period and the use of
the Box-Cox transformation that decreases the weight of
large discharges (see equation (16)). This can affect the

Table 1. Parameters of the logSPM Model and Their Marginal Prior Distributions as Used in our Applicationa

Parameter Units Prior Value Meaning

ks 1/mm LN(0.01,0.02), coefficient describing increase of saturated area
[0.00037,0.054] with soil water depth

sF LN(300,600), coefficient describing increase of saturated area
[11,1613] with soil water depth

ket 1/mm LN(0.01,0.02), coefficient describing increase of evapotranspiration
[0.00037,0.054] with soil water depth

qlat,max mm/d LN(2,4), maximum lateral flux per unit of watershed area
[0.074,10.8]

qgw,max mm/d LN(6,12), maximum percolation flux to the groundwater
[0.22,32] per unit of watershed area

kbf 1/d LN(0.002,0.004), coefficient for base flow water discharge from
[0.000074,0.011] groundwater to the river

kdp 1/d LN(0.002,0.004), coefficient for deep percolation from ground
[0.000074,0.011] water to deeper aquifers

kr 1/d LN(1,2), coefficient for river water discharge to
[0.037,5.4] downstream river sections

hs,ini mm LN(100,200), initial water volume per unit area in the soil
[3.7,538]

hgw,ini mm LN(100,200), [3.7,538] initial water volume per unit area in the groundwater
hr,ini mm LN(0.1,0.2), initial water volume per unit area in the river

[0.0037,0.54]
frain - 1 rain multiplier
fpet - 1 potential evapotranspiration multiplier
fQ - 1 river discharge multiplier

aLN(m, s) means a lognormal distribution with mean m and standard deviation s. The intervals given in brackets are 95%
prior uncertainty intervals.
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Nash-Sutcliffe index (calculated in the original, not trans-
formed scale) significantly.
[50] In addition to these deficits of the statistical descrip-

tion, there is also a physical deficiency in the model simula-
tion. Despite having introduced a deep percolation flux into
the model (see Figure 3 and equations (10b) and (11g)) and
applying the model over a longer simulation period than

that of Kuczera et al. [2006], the simulation at the max-
imum of the posterior distribution shows an increasing
trend of groundwater level over the simulation period (see
Figure 5c), as was also found by Kuczera et al. [2006].
[51] In the following, we try to reduce the deficits of the

deterministic model and to add appropriate stochasticity to
the model to account for nondeterministic system and input

Figure 5. Results of the base model with time-invariant parameters as a function of time in days since
31 December 1971. (a) Detail of Figure 5b at a higher temporal resolution (section between the dashed
vertical lines). (b) Measurements (dots), results for parameter values corresponding to the maximum
posterior distribution (solid lines), and calculated 95% probability confidence intervals of model
predictions without measurement error (grey area) of river discharge at the watershed outlet (left axis) and
measured rainfall intensity (right axis). (c) Water level in the groundwater reservoir (solid line and left
axis) and in the soil (dashed line and right axis). (d) Runoff (solid line and left axis) and lateral
flow, base flow, and deep percolation flow (long-dashed, short-dashed, and dash-dotted lines and right
axis). (e) Residuals of Box-Cox-transformed data and model results.
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characteristics. We do this according to the procedure
illustrated in Figure 1. The following subsections 4.1–4.5
correspond to the steps 1–5 of this procedure and imple-
ment the techniques described in the subsections 2.1–2.5
for our case study.

4.1. Estimating Time-Dependent Parameters

[52] To try to explore the causes of systematic deviations
of model results from measurements, we replaced sequen-
tially the logarithms of all eight model parameters and three
modification factors listed in Table 1 by random Ornstein-
Uhlenbeck processes and identified their joint posterior
with the other, time-invariant parameters as described in
section 2.1. The mean of the log of the modification factors
was kept equal to zero, the means of the logs of the other
parameters were estimated on the basis of the prior given in
Table 1.
[53] The degree of bias reduction of different parameters

depends on the sensitivity of the model results to the
parameter, the amount of memory effects of the submodels
depending directly or indirectly on the parameter, and the
degree of variability allowed for the parameter. To eliminate
the last factor from the comparison, we chose the same
standard deviations, si, for the logs of all time-dependent
parameters. Our choice of a value of 0.2 for this standard
deviation implies a comparison of the degree of bias
reduction possible with relative parameter changes of the
order of �33 to +50% (based on the 95% confidence
interval). The characteristic times, ti, were also set to the
same value of 1 day. This allows the parameter to change at
the same time scale as new measurements are available.
This high flexibility seems meaningful at this exploratory
stage of the procedure; this choice has, however, to be
reassessed for step five of the analysis.

4.2. Analyzing the Degree of Bias Reduction

[54] In the second step of the procedure illustrated in
Figure 1, we quantify the bias reduction achievable with
making different parameters time-dependent. As outlined at
the beginning of section 4, the most significant contribu-
tions to bias are the poor fit (the estimated standard
deviation of the error term is significantly larger than
measurement error), the autocorrelation of the residuals,
and the nonnormality of the residuals. As we can hardly
expect a model improvement that reduces the autocorrela-
tion of the residuals without improving the fit, we can use

the degree of improvement of the fit as a primary indicator
of bias reduction. However, we have to be careful that we
do no longer apply this criterion when the residual error
approaches the measurement error, as then a further reduc-
tion would be an indication of overfitting.
[55] Using the Nash-Sutcliffe index [Nash and Sutcliffe,

1970] as an indicator of the quality of fit, Table 2 shows to
which degree different time-dependent parameters can
reduce the bias. On the basis of the top four parameters in
this ranking there are three options for model improvement.
[56] 1. The rain multiplier, frain, represents input uncer-

tainty of rainfall. The significant improvement of the fit
achieved by making this parameter time-dependent is an
indication that input uncertainty could be a major cause of
systematically deviating model results. However, this
interpretation needs a careful check of the size of input
‘‘corrections’’ applied by this parameter as it is not
astonishing that modification of the main driving force
improves the fit. On the other hand, as precipitation must be
extrapolated from a small number of measurement sites to
the whole catchment, input uncertainty is known to be
significant in rainfall-runoff modeling of large catchments
[Kuczera, 1990; Kavetski et al., 2003; Kavetski et al.,
2006a, 2006b; Kuczera et al., 2006]. This result also
corresponds to similar results in data-based mechanistic
modeling [Young and Beven, 1994; Young, 2002, 2003;
Romanowicz et al., 2006], in which time dependence of the
parameter related to input was particularly influential.
[57] 2. The parameters ks and sF are used to quantify the

nonlinear dependence of the soil water household on soil
water level (see equation (12) and Figure 4). According to
equations (11b), (11d), and (11e) and the flow scheme
shown in Figure 3, runoff, infiltration, lateral flow, and
percolation are affected by the function fsat(hs) determined
by these parameters. The significant improvement of the fit
achieved by making these parameters time-dependent leads
to the hope that an alternative function fsat(hs) or an
alternative improvement of the soil submodel could lead to
better results.
[58] 3. The output multiplier, fQ, represents (multi-

plicative) bias correction of the output. This is the classical
way of dealing with model bias [Craig et al., 1996, 2001;
Kennedy and O’Hagan, 2001; Bayarri et al., 2007].
[59] As we want to account for causes of bias instead of

providing bias description, we concentrate on improvement
of the soil runoff submodels and on describing and quan-
tifying input uncertainty.

4.3. Identifying Potential Dependences of Parameters
on States

[60] The time series of the state of the time-dependent
parameter that leads to the best fit can be hoped to provide
hints for the formulation of model improvements. In the
third step of the analysis illustrated in Figure 1, we try to
find such hints by searching for relationships between the
time-dependent parameter and model states or external
influence factors. This analysis can be constrained to time
domains within which the posterior is significantly narrower
than the prior. This guarantees that only values are used that
could be identified from the data. Despite doing a careful
analysis for the present application, no significant relation-
ships could be found between time-dependent parameter
estimates and internal or external influence factors. This is a

Table 2. Nash-Sutcliffe Indices for Simulations With One

Parameter Made Time-Dependent and Base Simulation Without

Time-Dependent Parameter

Time-Dependent Parameter Nash-Sutcliffe Index

frain 0.90
ks 0.84
fQ 0.67
sF 0.63
fpet 0.60
kr 0.57
ket 0.54
qlat,max 0.54
kdp 0.53
qgw,max 0.52
kbf 0.52
none 0.51
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hint that stochasticity may be a main contributor to model
deficiency or that improvement of the deterministic model
will only lead to improved model performance for a small
fraction of the data points.

4.4. Improving the Deterministic Model

[61] Steps 2 and 3 of the procedure illustrated in Figure 1
led to somewhat diverging indications. The significant bias
reduction achievable in step 2 (section 4.2) leads to the hope
that a significant fraction of this reduction can be achieved
by improving the deterministic model. According to the
results of this analysis, the soil runoff submodels are the
most promising candidates for model improvement. On the
other hand, the explorative data analysis performed in step 3
(section 4.3) did not lead to more precise hints for improve-
ment of the deterministic model. Nevertheless, in step four
of the procedure illustrated in Figure 1, we try to improve
the deterministic model.
[62] The results from section 4.2 indicated that there may

exist opportunities for model improvement of the soil runoff
submodels. On the basis of this result, we implemented two
model modifications. Modification 1 provides a more flex-
ible parameterization of the nonlinear saturated area fraction
function:

fsat ¼ a
he1s

Ke1
1 þ he1s

þ 1� að Þ he2s
Ke2
2 þ he2s

: ð17Þ

This function allows the differentiation of two regimes of
increase of saturated area fraction. Modification 2 improves
the runoff model. As Figure 5 demonstrates, the model is
unable to match the highest peaks during flood events. This
may be caused by soil areas that are more quickly saturated
then the mean response in the catchment. This cannot be
considered by our simple hydrological model that does not
resolve the spatial dimension. A simple description of the
effect of fast runoff can be achieved by allowing part of the
rain to directly leave as runoff, if the rain intensity is very

high. The modified runoff flux is then parameterized as
follows:

qrunoff ¼ fsat þ 1� fsatð Þfrunoffð Þ frainirain ð18aÞ

with

frunoff ¼ b
frain irainð Þ4

K4
rain þ frain irainð Þ4

: ð18bÞ

Exponent 4 was chosen to guarantee that the term is very
small at small and intermediate rainfall intensities. These
modifications are visualized in Figure 6.
[63] The more flexible parameterization of the saturated

area function did not significantly increase the Nash-
Sutcliffe index (of 0.51 in the base simulation) despite three
additional parameters. However, the other model improve-
ment defined by equation (18) led to an increase of the Nash-
Sutcliffe index from 0.51 to 0.73. This is quite substantial
even when considering that this modification requires two
additional parameters. For this reason, we chose to use the
model extension given by equation (18) but to keep the
original saturation area parameterization.
[64] Figure 7 shows the results of the model with the

modifications given by equations (18a) and (18b). The
results of the simulations are very similar to those of the
original model with the exception that five of the seven
largest positive residuals (too low prediction of high floods)
decreased significantly (compare Figures 5e and 7e). How-
ever, we still remain with a too large ‘‘measurement’’ error
(sy 0 = 1.1 in transformed units corresponds according to
equation (16) approximately to an increase from sy =
0.22 m3/s at a discharge of zero to sy = 28 m3/s at a discharge
of 100 m3/s) and too narrow uncertainty bands (without
measurement error) that are still hardly distinguishable from
the prediction line.

Figure 6. Suggested model modifications according to (left) equation (17) and (right) equation (18).
The solid parts of the curves represent the ranges of values covered in the base simulation shown in
Figure 5.
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4.5. Describing Remaining Stochasticity

[65] Our inability to improve the fit by extending the
parameterization of the saturated area function and the
minor improvement of most of the discharge hydrograph
achieved by the modified description of runoff are indica-
tions that further mechanistic model improvements may be
difficult to find. Note that the Nash-Sutcliffe index im-
proved considerably for the second modification given by
equation (18) because the improvement of a small number
of high discharges has a significant influence on this
indicator. As there are still significant deficiencies in the
description of the observed hydrograph by the model, it
seems reasonable that these are caused by random mecha-
nisms not (yet) described by the model. Step 5 of the

procedure illustrated in Figure 1 makes the attempt to
include the dominant random mechanisms in the model.
[66] The major mechanisms leading to a failure of the

deterministic description of river discharge by a simple,
conceptual hydrological model are aggregation and input
errors.
[67] 1. Because of the spatially aggregated description by

the model, states of the system with the same amount of
water stored in soil and groundwater but differing in the
spatial distribution of the water are described by the same
state of the model. Applying the deterministic model
formulation, this results in the same calculated river dis-
charge. In the real system, the spatial distribution of water
affects its release to the river. Keeping the model structure
simple, this mechanism can be described statistically by

Figure 7. Results of the model modified according to equation (18) with time-invariant parameters as a
function of time in days since 31 December 1971. See caption of Figure 5 for an explanation of the plots.
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temporal variations in parameters characterizing water re-
lease from soil and groundwater.
[68] 2. It is well known that rainfall often has a very high

spatial variability. As usually only point measurements at
rain gauges are available, this leads to a very high uncer-
tainty when deriving watershed-integrated rain intensities
from measured rain data. In our approach, this uncertainty
can be taken into account by the rain intensity multiplication
factor, frain (see equations (11a) and (11b)).
[69] Despite the conceptual difference of these sources of

stochasticity, they may be hardly distinguishable in model
applications, because heterogeneous rainfall is the cause for
‘‘nonequilibrated’’ filling of soil and ground water reser-
voirs. For this reason, it seems meaningful to describe the
combined error of rainfall uncertainty with respect to

spatially averaged flux and spatial inhomogeneity by the
single time-dependent parameter frain. We have to be aware,
however, that this factor will then be larger than if it would
only represent the uncertainty in rainfall averaged over the
catchment.
[70] In contrast to step 1 of the procedure illustrated in

Figure 1 (see section 4.1), we are now interested in inferring
the variation required for this parameter to explain the
model deviations except for the measurement error. This
requires the specification of an informative prior for the
measurement error. Therefore, for this analysis, we use a
lognormal distribution with a mean of 0.5 and a standard
deviation of 0.05 as a prior for the standard deviation of the
error of Box-Cox-transformed model results and data.
According to equation (16), in linear approximation, this

Figure 8. Results of the model modified according to equation (18) with frain made time-dependent as a
function of time in days since 31 December 1971. See caption of Figure 5 for an explanation of the plots.
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corresponds to a standard deviation of discharge measure-
ments increasing from 0.1 m3/s at a discharge of zero to
12.6 m3/s at a discharge of 100 m3/s. We then include the
standard deviation of the modification factor, frain, with a
noninformative prior proportional to 1/sfrain in our inference
procedure. As capturing precipitation at a daily resolution
can be assumed to be only weakly correlated between
successive days, we kept the characteristic correlation time
at 1 day as in the exploratory analysis done in section 4.1.
Note, however, that for very high intensity sampling of
precipitation we may want to use a larger correlation time
than the measurement interval to account for the correlation
structure imposed by the movement of precipitation cells.
But this is not relevant for daily averaged measurements.
[71] Figures 8, 9, and 10 show the results of the model

with the extension (18) and with making the parameter frain
time-dependent. Figure 8 shows that the systematic
deviations decreased significantly, the 95% uncertainty
band of the prediction is no longer confined to the line
width of the simulation, the groundwater level does not show
a significant trend, and the residuals are smaller and con-
siderably less heteroscedastic and autocorrelated. Figures 9a
and 9b shows the realization of the rain input modification
factor leading to the best fit, and Figures 9c and 9d show
the median and 95% uncertainty band of its posterior dis-

tribution. The wide 95% uncertainty bands in Figures 9c and
9d clearly indicate that there exist only a few short time
domains of high identifiability. These time domains corre-
spond to time of high precipitation. In the case of the
parameter frain, it is evident, that it is not identifiable when
precipitation is zero. This leads to artificially high values
during periods of no rainfall. During the periods within which
the parameter is identifiable, it is constrained to values
between about 0.4 and 2.5. This seems not an unrealistic
range given the high uncertainty when extrapolating data
from point rainfall measurement sites to the whole catchment
and when having in mind that the parameter also para-
meterizes uncertainty because of uneven spatial distribution
of rainfall (and resulting water transport). Finally, Figure 10
shows the prior and posterior marginals of all model
parameters for all three simulations shown in Figures 5, 7,
and 8. Given the informative prior for the standard deviation
of the error term in transformed units, all parameters with
the exception of the initial water level in the river are iden-
tifiable (to different accuracy). However, as it is typical for
models with systematic errors, the values of the model
parameters depend strongly on the model formulation. There
is strong correlation between the two parameters of the
saturated area fraction function fsat, ks and sF (not visible in
Figure 10). The poor identifiability of the initial water level in

Figure 9. (a, b) Realization of the time-dependent parameter frain leading to the best fit and (c, d)
median and 95% probability interval of the marginal posterior distributions of the time-dependent
parameter at each point in time. The two dashed lines in Figures 9b and 9d indicate the section shown in
Figures 9a and 9c. Dashed lines in Figures 9a and 9c indicate values of 0.5 and 2.0.
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the river is caused by the short retention time of water in the
river of the order of 1.1 d. This leads to only a short-term
effect of this initial condition on the simulation. The last
parameter, sQ,trans, the estimated standard deviation of
discharge in transformed units (see equation (15)), demon-
strates the improvement of the fit with the model modifica-
tion (18) and with the time-dependent parameter.
[72] Note that this application of time-dependent param-

eters to rainfall input time series is very similar to the rain
multiplier technique suggested earlier to account for rainfall
input uncertainty [Kuczera, 1990; Kavetski et al., 2003,
2006a, 2006b;Kuczera et al., 2006]. However, our technique

is more generally applicable to time series models for
which it may not be easy to define natural divisions of the
time axis in subintervals as it is possible for rain events. In
particular it is also applicable to other parameters of the
hydrological model that affect continuous processes relevant
during dry periods.

5. Summary and Conclusions

[73] We propose a systematic approach to model deficit
analysis and improvement. The approach is based on tech-
niques of the estimation of continuous-time, time-dependent
model parameters developed earlier [Brun, 2002; Buser,

Figure 10. Marginals of the parameters of the prior (dash-dotted lines) and of the posterior marginals
for all simulations shown in Figures 5 (original model, time-invariant parameters, long-dashed line),
7 (modified model (18), time-invariant parameters, short-dashed line), and 8 (modified model (18), time-
dependent parameters, solid line).
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2003; Tomassini et al., 2009]. Our approach can be viewed
(1) as an extension (with respect to continuous-time descrip-
tion and applicability to nonlinear models) of a similar use
of discrete-time, time-dependent parameters developed over
the last 30 years [Beck and Young, 1976; Beck, 1987; Young
and Beven, 1994; Young, 2002, 2003; Stigter and Beck, 2004;
Romanowicz et al., 2006; Lin and Beck, 2006, 2007a, 2007b],
(2) as a further step of bias analysis by moving from a
statistical description of the effect of bias on the output [Craig
et al., 1996, 2001; Kennedy and O’Hagan, 2001; Bayarri et
al., 2007] to correcting the sources of bias in the model
structure or input, or (3) as a generalization of the concept of
rain multipliers accounting for rainfall input uncertainty in
hydrological modeling [Kuczera, 1990;Kavetski et al., 2003,
2006a, 2006b; Kuczera et al., 2006]. Besides offering a
systematic approach to improving the deterministic model, it
is a very important feature of the technique to provide a
pathway to including stochasticity into the (previously)
deterministic model. Because of input and aggregation errors
inherent in environmental models, we think that this may
usually be necessary to make the model a realistic description
of the underlying environmental system.
[74] In the particular application to a hydrological model

discussed in this paper, our technique led to a clear
identification of submodels susceptible to improvement.
However, it did not provide good hints on how to improve
these submodels. This was in contrast to an application of
our technique to the didactical model of a synthetic degra-
dation experiment used by Bayarri et al. [2007]. For this
model, from a scatterplot of the identified time-dependent
parameter versus concentration, we got an indication of the
functional shape required to improve the model. In the
application described in this paper, even after improving the
deterministic model, the model still did not lead to a
satisfying description of the measured hydrograph. Applica-
tion of a time-dependent modification factor to rainfall input
to address input uncertainty with respect to average flux and
spatial distribution, significantly improved the fit. However,
as there may be rain events without precipitation at the
measurement site (that cannot be captured with a simple
input modification factor), a more specific rain uncertainty
model could probably improve the representation of the
uncertainty of catchment-wide rainfall better than our
general technique of applying time-dependent parameters
also to input variables. In addition, the intermittent nature of
rainfall leads to large sections of the time series within
which the correction factor is not identifiable (because it is
multiplied by zero). The suggested technique has thus more
advantages over other approaches (e.g., to the use of rainfall
multipliers) if it is applied to parameters to which the model
output is sensitive permanently. This is typically the case for
model-internal parameters.
[75] The main problem of the proposed approach is its

lack of numerical efficiency. This makes it difficult to apply
to computation-intensive computer codes. For the class of
models used in data-based mechanistic modeling, more
efficient techniques exist [Young and Beven, 1994; Young,
2002, 2003; Romanowicz et al., 2006]. More research is
required to achieve a similar level of efficiency for the
continuous-time, stochastic parameters and for general
nonlinear, dynamic models that we address with our
approach. This could be achieved by increasing the

efficiency of the numerical solution technique, by using a
less computation intensive technique that leads to similar
results, or by applying the technique to a fast emulator of a
computation intensive simulator [Currin et al., 1991;
O’Hagan, 2006; Bhattacharya, 2007; P. Reichert et al.,
Mechanism-based emulation of dynamic simulation models:
Concept and application in hydrology, submitted to
Computational Statistics and Data Analysis, 2009].
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work with Hans-Rudolf Künsch, Roland Brun, Christoph Buser, Lorenzo
Tomassini, and Mark Borsuk and from various discussion in SAMSI
working groups within the program on ‘‘Development, Assessment and
Utilization of Complex Computer Models’’ (see http://www.samsi.info).
The hydrological application profited from a lot of previous work in this
field (cited in section 3.1). In particular, it builds on work by the research
group of George Kuczera, who also kindly provided the data. This makes
our results directly comparable to previous studies by this group. Extensive
comments by Jasper Vrugt, Peter Young, and an anonymous reviewer led to
significant improvements in the manuscript. This project was partially
supported by the U.S. National Science Foundation under agreement
DMS-0112069. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References
Abbaspour, K. C., C. A. Johnson, and M. T. van Genuchten (2004),
Estimating uncertain flow and transport parameters using a sequential
uncertainty fitting procedure, Vadose Zone J., 3(4), 1340–1352.

Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte Carlo
scheme for parameter estimation and inference in conceptual rainfall-
runoff models, Water Resour. Res., 37(4), 937–947.

Bayarri, M. J., J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish,
C.-H. Lin, and J. Tu (2007), A framework for validation of computer
models, Technometrics, 49(2), 138–154.

Beck, M. B. (1987), Water quality modeling: A review of the analysis of
uncertainty, Water Resour. Res., 23(8), 1393–1442.

Beck, M. B., and P. C. Young (1976), Systematic identification of
DO-BOD model structure, J. Environ. Eng. Div. Am. Soc. Civ. Eng.,
103(5), 902–927.

Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320,
18–36.

Beven, K., and A. Binley (1992), The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Processes, 6, 279–298.

Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncer-
tainty estimation in mechanistic modelling of complex environmental
systems using the GLUE methodology, J. Hydrol., 249, 11–29.

Beven, K., and P. Young (2003), Comment on ‘‘Bayesian recursive para-
meter estimation for hydrologic models’’ by M. Thiemann, M. Trosset,
H. Gupta, and S. Sorooshian, Water Resour. Res., 39(5), 1116,
doi:10.1029/2001WR001183.

Beven, K. J., P. Smith, and J. Freer (2007), Comment on ‘‘Hydrological
forecasting uncertainty assessment: incoherence of the GLUEmethodology’’
by Pietro Mantovan and Enzio Todini, J. Hydrol., 338, 315–318.

Beven, K. J., P. J. Smith, and J. E. Freer (2008), So just why would a
modeller choose to be incoherent?, J. Hydrol., 354, 15–32.

Bhattacharya, S. (2007), A simulation approach to Bayesian emulation of
complex dynamic computer models, Bayesian Anal., 2(4), 783–816.

Box, G. E. P., and O. R. Cox (1964), The analysis of transformation, J. R.
Stat. Soc., Ser. B, 26(2), 211–252.

Boyle, D. P., H. V. Gupta, and S. Sorooshian (2003),Multicriteria calibration of
hydrologic model, in Calibration of Watershed Models, Water Sci. Appl.,
vol. 6, edited by Q. Duan et al., pp. 185–196, AGU, Washington, D. C.

Brun, R. (2002), Learning from data: Parameter identification in the context
of large environmental simulation models, Ph.D. thesis, ETH Zurich,
Zurich, Switzerland.

Buser, C. M. (2003), Differentialgleichungen mit zufälligen zeitvariieren-
den Parametern, diploma thesis, ETH Zurich, Zurich, Switzerland.

Clarke, R. T. (1973), A review of somemathematical models used in hydrology,
with observations on their calibration and use, J. Hydrol., 19, 1–20.

Craig, P. S., M. Goldstein, A. H. Seheult, and J. A. Smith (1996), Bayes
linear strategies for matching hydrocarbon reservoir history, in Bayesian
Statistics 5, edited by J. M. Bernardo, J. O. Berger, and A. P. Dawid,
pp. 69–95, Clarendon Press, Oxford, U. K.

18 of 19

W10402 REICHERT AND MIELEITNER: ANALYZING INPUT AND STRUCTURAL UNCERTAINTY W10402



Craig, P. S., M. Goldstein, J. C. Rougier, and A. H. Seheult (2001), Baye-
sian forecasting for complex systems using computer simulators, J. Am.
Stat. Assoc., 96, 717–729.

Currin, C., T. Mitchell, M. Morris, and D. Ylvisaker (1991), Bayesian
prediction of deterministic functions, with application to the design
and analysis of computer experiments, J. Am. Stat. Assoc., 86, 953–963.

Duan, Q., H. V. Gupta, S. Sorooshian, A. N. Rousseau, and R. Turcotte
(Eds.) (2003), Calibration of Watershed Models, Water Sci. Appl., vol. 6,
AGU, Washington, D. C.

Engeland, K., and L. Gottschalk (2002), Bayesian estimation of parameters in
a regional hydrological model, Hydrol. Earth Syst. Sci., 6(5), 883–898.

Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved
calibration of hydrologic models: Multiple and noncommensurable mea-
sures of information, Water Resour. Res., 34(4), 751–763.

Gupta, H., M. Thiemann, M. Trosset, and S. Sorooshian (2003a), Reply to
comment by K. Beven and P. Young on ‘‘Bayesian recursive parameter
estimation for hydrologic models,’’ Water Resour. Res., 39(5), 1117,
doi:10.1029/2002WR001405.

Gupta, H. V., L. A. Bastidas, J. A. Vrugt, and S. Sorooshian (2003b),
Multiple criteria global optimization for watershed model calibration,
in Calibration of Watershed Models, Water Sci. Appl., vol. 6, edited by
Q. Duan et al., pp. 125–132, AGU, Washington, D. C.

Heckman, J. (1997), Instrumental variables—A study of implicit behavioral
assumptions used in making program evaluations, J. Hum. Resour.,
32(3), 441–462.

Heckman, J. J. (2008), Econometric causality, Int. Stat. Rev., 76(1), 1–27.
Kavetski, D., S. W. Franks, and G. Kuczera (2003), Confronting input
uncertainty in environmental modelling, in Calibration of Watershed
Models, Water Sci. Appl., vol. 6, edited by Q. Duan et al., pp. 49–68,
AGU, Washington, D. C.

Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Bayesian analysis of
input uncertainty in hydrological modeling: 1. Theory, Water Resour.
Res., 42, W03407, doi:10.1029/2005WR004368.

Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of
input uncertainty in hydrological modeling: 2. Application,Water Resour.
Res., 42, W03408, doi:10.1029/2005WR004376.

Kennedy, M. C., and A. O’Hagan (2001), Bayesian calibration of computer
models, J. R. Stat. Soc., Ser. B, 63(3), 425–464.

Kloeden, P. E., and E. Platen (1995), Numerical Solution of Stochastic
Differential Equations, Springer, Berlin.

Kuczera, G. (1983), Improved parameter inference in catchment models.
1. Evaluating parameter uncertainty,Water Resour. Res., 19(5), 1151–1162.

Kuczera, G. (1990), Estimation of runoff-routing parameters using incom-
patible storm data, J. Hydrol., 114, 47–60.

Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter
uncertainty in conceptual catchment models: The Metropolis algorithm,
J. Hydrol., 221, 69–85.

Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a
Bayesian total error analysis of conceptual rainfall-runoff models: Char-
acterising model error using storm-dependent parameters, J. Hydrol.,
331, 161–177.

Lin, Z., and M. B. Beck (2006), Towards a synthesis of data-based and
theory-based models of environmental systems, Water Sci. Technol.,
53(1), 101–108.

Lin, Z., and M. B. Beck (2007a), On the identification of model structure in
hydrological and environmental systems, Water Resour. Res., 43,
W02402, doi:10.1029/2005WR004796.

Lin, Z., and M. B. Beck (2007b), Understanding complex environmental
systems: A dual approach, Environmetrics, 18, 11–26.

Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty
assessment: Incoherence of the GLUE methodology, J. Hydrol., 330,
368–381.

Mantovan, P., E. Todini, and M. L. V. Martina (2007), Reply to comment
by Keith Beven, Paul Smith and Jim Freer on ‘‘Hydrological fore-
casting uncertainty assessment: Incoherence of the GLUE methodology,’’
J. Hydrol., 338, 319–324.

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005), Uncer-
tainty assessment of hydrologic model states and parameters: Sequential
data assimilation using the particle filter, Water Resour. Res., 41,
W05012, doi:10.1029/2004WR003604.

Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through
conceptual models part I—A discussion of principles, J. Hydrol., 10,
282–290.

O’Hagan, A. (2006), Bayesian analysis of computer code outputs: A tutorial,
Reliab. Eng. Syst. Safety, 91, 1290–1300.

Øksendal, B. (2003), Stochastic Differential Equations: An Introduction
with Applications, 6th ed., Springer, Berlin.

Romanowicz, R. J., P. C. Young, and K. J. Beven (2006), Data assimilation
and adaptive forecasting of water levels in the river Severn catchment,
United Kingdom, Water Resour. Res., 42, W06407, doi:10.1029/
2005WR004373.
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