Predicting space climate change

L. Barnard,1 M. Lockwood,1,2 M. A. Hapgood,2 M. J. Owens,1 C. J. Davis,1,2 and F. Steinhilber3

Received 10 June 2011; revised 2 July 2011; accepted 7 July 2011; published 19 August 2011.

[1] The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largest-fluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how long-term change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, near-Earth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300-year record. Citation: Barnard, L., M. Lockwood, M. A. Hapgood, M. J. Owens, C. J. Davis, and F. Steinhilber (2011), Predicting space climate change, Geophys. Res. Lett., 38, L16103, doi:10.1029/2011GL048489.

1. Past Variations in Space Climate Hazards

[2] Geomagnetic activity records [Lockwood et al., 1999, 2009] and abundances of cosmogenic radionuclides, generated by Galactic Cosmic Rays (GCRs) and stored in terrestrial reservoirs [Steinhilber et al., 2008, 2010], have revealed and quantified centennial and millennial variations in the open solar flux and the near-Earth interplanetary magnetic field (IMF), B. The agreement between the reconstructions is remarkable, given that the two techniques are independent [Lockwood and Owens, 2011]. The cosmogenic isotopes show that in recent decades the Sun has been in a Grand Solar Maximum (GSM) which has lasted longer than all others in the past 9.3 millennia and is expected to end soon [Abreu et al., 2008]. This is supported by geomagnetic and satellite observations which show a decline in mean B since 1985 [Lockwood and Fröhlich, 2007; Lockwood et al., 2009], of which the recent low and prolonged sunspot minimum is part [Lockwood, 2010]. These changes in near-Earth space influence the occurrence of space-weather phenomena, returning Earth to conditions that last prevailed around 1920 [Lockwood et al., 2009; Steinhilber et al., 2010; Lockwood and Owens, 2011], before the advent of susceptible modern operational systems, such as spacecraft, power distribution grids and aircraft [Hapgood, 2011]. McCracken and Beer [2007] have used Monte-Carlo simulations to combine cosmogenic isotope data with observations by modern ionisation chambers and neutron monitors and shown that higher GCR intensities existed before the space age and noted that they were likely to reoccur in the future. McCracken [2007] extended the study of McCracken and Beer [2007] to high-fluence Solar Energetic Particle (SEP) events (sufficient to be seen as “Ground-Level Enhancements”, GLEs, in neutron monitor data) to demonstrate that SEPs were also more frequent in the past and deduced that their fluence was also likely to increase in future.

[3] Measurements of nitrates in ice cores has led to the identification of 15 major SEP events (fluence of >30 MeV protons exceeding 5×10^{5} cm$^{-2}$) during 1700–1970 [Shea et al., 2006] which gives an average SEP event occurrence per century of $P_{SEP} = 5.6$ for this interval. In contrast, spacecraft measurements [Barnard and Lockwood, 2011] during 1970–2009 yield just 1 equivalent event, an occurrence of $P_{SEP} = 2.6$ per century. This decrease was also identified in GLE events by McCracken [2007].

[4] At cruise altitudes of commercial aviation, both SEPs and GCRs pose threats through single event upsets in critical electronics and through exposure of crew and passengers to radiation [Dyer et al., 2003; Barish, 2009]. Radiation standards for avionics are based on past experience from the current GSM and there are no regulations concerning passenger exposure. Allowed radiation limits on the ground vary between nations. The International Commission on Radiological Protection (ICRP) recommends a 20 mSv limit for the annual exposure of occupational radiation workers and a 1 mSv limit for the public and prenatal annual exposure [Wrixon, 2008; Mertens et al., 2010]. Dosages during a flight depend on path, duration and altitude as well as solar activity. For example, Mertens et al. [2010] find a commercial 8-hour polar flight during the 2003 “Halloween” SEP event would have given 0.7 mSv. Models such as QARM [Lei et al., 2006] (which can run be online at http://qarm.space.qinetiq.com/) show that a round trip of two such flights during the recent solar minimum gave a GCR dose of order 0.2 mSv and during the largest known SEP event, the “Carrington event” of 1859 [Shea et al., 2006; Hapgood, 2011], would have given 20 mSv. Some flights have already been diverted to lower latitudes and altitudes based on solar event warnings (mainly to avoid communications blackouts rather than the associated SEP hazard) with monetary and flight-time costs [Fisher and Jones, 2007]. GCRs and SEPs are also a threat to spacecraft, reducing operational lifetimes and thus returns on investment. Current engineering and business models are also based on experience gained during the current GSM and long-term solar change will impact the economics of commercial space activities. Esti-
mation potential \(\phi \) compiled by \textit{Steinhilber et al.} [2008] from cosmogenic isotope and neutron monitor data: \(\phi \) quantifies the solar shielding of the Earth from GCRs and taking \(\phi \geq 600 \) MV defines 24 GSMs prior to the current one. \textit{Lockwood} [2010] carried out a superposed-epoch study of \(\phi \) around the ends of these 24 GSMs (at times \(t = t_o \)). Figure 1 is an updated version of that study and shows that the chance of 25-year running means, \(\phi_{25} \), falling to Maunder minimum levels at \((t - t_o) \leq 40 \) yr is 8\%. We here take the mean \(\phi_M \) and standard deviation \(\sigma \) of the composited \(\phi_{25} \) at a given \((t - t_o) \), and use upper and lower values, \(\phi_U = \phi_M + 2\sigma \) and \(\phi_L = \phi_M - 2\sigma \) (exceeded in about 5 and 95\% of cases, respectively) as predictions of the range of likely behaviours after the end of the current GSM.

[6] Figure 2 demonstrates how the solar cycle variations are added to the means shown in Figure 1, using the procedure developed by \textit{Lockwood et al.} [2011] and the reconstruction of annual values of \(\phi \) by \textit{Usoskin et al.} [2002] for 1720 onwards. The polynomial fit is used to estimate \(\phi \) for a predicted \(\phi_{25} \) and solar cycle phase, \(\varepsilon \).

2. Analogue Forecasts of the Future

[7] Figure 3a shows past variations of \(\phi \) (in black) and \(\phi_{25} \) (in grey), from \textit{Usoskin et al.} [2002] and \textit{Steinhilber et al.} [2008] respectively, in the 110 years leading up to the end...
of the current GSM, taken to be at \(t_0 = 2014 \) [Lockwood et al., 2009]. The plot also uses the composite in Figure 1 to predict \(\phi_M, \phi_U \) and \(\phi_L \) at a given \(t - t_0 \), as shown by the thick green, cyan and orange lines, respectively. The annual values for these predicted 25-year means are then computed for \(t > t_0 \) from the polynomial fit shown in Figure 2, where \(\varepsilon \) is computed by assuming future solar cycles are all of the average 11-year duration (shown by the thin green, blue and red lines for \(\phi_M, \phi_U \) and \(\phi_L \), respectively).

Figure 3 also shows the corresponding plots for the integrated GCR flux for a geomagnetic rigidity cut-off of 1 GV, \(I_{>1 \text{GV}} \); the IMF, \(B \) (Figure 3c) and the sunspot number \(R \) (Figure 3d). The predicted \(\phi_M, \phi_U \) and \(\phi_L \) are converted into the corresponding values of \(B \) and \(I_{>1 \text{GV}} \); the former using the formula by Steinhiber et al. [2010], the latter by integrating the formula for differential GCR flux by Castagnoli and Lal [1980] and using their model local interstellar GCR spectrum. Note that 1 GV is used here because it applies at geomagnetic latitude of about 60° and so is relevant to high-latitude aircraft flights. For \(R \), the conversion is made using a linear regression of 25-year means of \(R \) and \(\phi_{25} \) for 1700–2009. Once the 25-year running means of \(I_{>1 \text{GV}} \), \(B \) and \(R \) have been computed, the solar cycle variation in annual means is constructed using the same procedure as was applied to \(\phi \) in Figure 2. A grand minimum (\(\phi \) lower than in the Maunder minimum) occurs within 40 years of \(t_0 \) for \(\phi_L \), giving near-zero \(R \) and \(B \) and with \(I_{>1 \text{GV}} \) rising to 2.5 times the average for recent decades. On the other hand, \(\phi_U \) yields only a slight and brief rise in \(I_{>1 \text{GV}} \) and \(\phi_M \) gives a rise by a factor near 1.5. Additionally we calculated the integrated GCR flux for the cut-off of the Climax neutron monitor (3 GV) (not shown). We find an increase in \(I_{>3 \text{GV}} \) of about 40% for \(\phi_L \), which agrees well with the Maunder minimum value derived by McCracken and Beer [2007].

Figures 4, 5, and 3e analyse the other energetic particle hazard, SEPs. We employ the recent survey of gradual SEPs at energies >60 MeV [Barnard and Lockwood, 2011], predominantly generated at the shocks ahead of super-Alfvénic coronal mass ejections (CMEs) [Reames, 2004].
Figure 4. Analysis of the occurrence and fluence of gradual SEP events from a survey of space-age data [Barnard and Lockwood, 2011]. (a) The Cumulative Distribution Functions (CDF) of annual B values for 1968–2009 and 1700–2009, which are fitted with Gaussian distributions to give the blue and green lines, respectively. The red and cyan lines give the corresponding Probability Density Functions (PDFs). The other three panels are for data from 1968–2009 only and show the results for all B below threshold values given by the x-axis. (b) The number of SEPs as a ratio of the total number N_o, the red line showing that the corresponding PDF is quite similar to, but somewhat narrower than, that of B for the same interval (shown in red in a). (c) The logarithm of integrated event fluence, F, as a ratio of the corresponding value for all events, F_o. (d) The normalized log fluence per event $(F/N)/(F/N)_o$.

Figure 5. Black dots are plotted at the annual means of sunspot number, R, and IMF, B, of major SEP events (fluence of 30 MeV protons $>5 \times 10^9$ cm$^{-2}$) during 1700–2009 [Shea et al., 2006]: the size of each dot is proportional to the log of the estimated event fluence. The contours in Figures 5a and 5b are the percent of years when the annual means of R and B fall into bins that are 25 and 1 nT wide, respectively: (a) all years after the Maunder minimum (1700–2009); (b) the space age (1968–2009). The B values in Figure 5a are from geomagnetic data [Lockwood et al., 2009] extended back to 1700 using modelled open solar flux [Vieira and Solanki, 2010] and converted into B using a polynomial fit [Lockwood and Owens, 2011]. In Figure 5b observed B are used and the large SEPs in this interval are colored mauve. The dashed line is the linear regression fit to the event coordinates. (c) Contours of P_{SEP} derived by taking the PDFs of event occurrence with distances along and perpendicular to the dashed regression line.
2011}; as a result, although B increases with R on average, a spread of B-R combinations is possible. Figure 5b shows that in the space age, B has generally been higher than the optimum combination of B and R for large SEPs to occur. This contrasts with Figure 5a in which optimum combinations were much more common. Figure 5c shows contours of the SEP rate F_{SEP} as a function of R and B, derived from a fit to the occurrence frequency of all events. Annual (B, R) coordinates vary both over solar cycles and on longer timescales and it is found that they often move in and out of the band of high F_{SEP} occurrence at varying phases of the cycle.

Figure 3e shows F_{SEP} variations derived from the annual R and B means using Figure 5c. During the recent solar minimum the fall in B caused F_{SEP} to rise. For predictions based on ϕ_D, the average probability of a large event continues to rise (by up to 3 times) before falling to low values as the Sun enters the grand minimum. For ϕ_D, F_{SEP} shows oscillations similar to the present solar cycle before a slow decay: peak F_{SEP} occur for the lower B values at sunspot minimum, as was true for the interval 1900–1930 ($-120 < t - t_0 < -72$ yr). The most likely exit from the current GSM is given by ϕ_M which yields persistently higher F_{SEP} than we have experienced during the current GSM. The solar cycle variation is different to the other two cases, showing lowest F_{SEP} at sunspot minima with clear peaks in both the rising and falling phases: the average F_{SEP} remains enhanced throughout the next century.

This analysis reveals that the risk of the space-weather radiation effects is considerably enhanced over the next century compared to the space age thus far. There is an 8% chance of the Sun falling into a grand minimum during the next 40 years [Lockwood, 2010], giving enhanced dosages of GCR radiation which is of concern for aircraft avionics, crew and passengers. The risk of large SEP events is initially enhanced in this case but then is low during the grand minimum itself. A more likely scenario is given by the mean of all previous examples and this predicts a more modest rise in the GCR fluxes but a persistently enhanced risk of a large SEP event. Lastly we note that both GCR and SEP enhancements will be amplified by the probable continuation of the decrease in the geomagnetic field, and the shielding it provides, that has been observed over the past 160 years [Gubbins et al., 2006].

Acknowledgments. L.B. was supported by a Ph.D. studentship from the UK Natural Environment Research Council, M.L., M.A.H. and C.J.D. are funded by the Science and Technology Research Council and FS by NCCER climate (Swiss climate research).

The Editor thanks Margaret Shea and an anonymous reviewer for their assistance in evaluating this paper.

References

L. Barnard, C. J. Davis, M. Lockwood, and M. J. Owens, Space Environment Physics, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, Reading RG6 6BB, UK. (m.lockwood@reading.ac.uk)

M. A. Hapgood, RAL Space, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.

F. Steinhilber, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, Ueberlandstr. 133, CH-8600 Dübendorf, Switzerland.