Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability

Lee D. Bryant1, John C. Little1 & Helmut Bürgmann2

1Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA; and 2Department of Surface Waters – Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland

Correspondence: Helmut Bürgmann, Department of Surface Waters – Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-6047 Kastanienbaum, Switzerland. Tel.: +41 58 765 2165; fax: +41 58 765 2168; e-mail: Helmut.Buergmann@eawag.ch

Present address: Lee D. Bryant, Department of Surface Waters – Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.

Received 19 August 2011; revised 11 December 2011; accepted 19 December 2011. Final version published online 20 January 2012.

DOI: 10.1111/j.1574-6941.2011.01290.x

Editor: Riks Laanbroek

Keywords
hypolimnetic oxygenation; lake aeration; sediment–water interface; manganese oxidation; manganese reduction; metal cycling.

Abstract
Hypolimnetic oxygenation systems (HOx) are being increasingly used in freshwater reservoirs to elevate dissolved oxygen levels in the hypolimnion and suppress sediment–water fluxes of soluble metals (e.g. Fe and Mn) which are often microbially mediated. We assessed changes in sediment microbial community structure and corresponding biogeochemical cycling on a reservoir-wide scale as a function of HOx operations. Sediment microbial biomass as quantified by DNA concentration was increased in regions most influenced by the HOx. Following an initial decrease in biomass in the upper sediment while oxygen concentrations were low, biomass typically increased at all depths as the 4-month-long oxygenation season progressed. A distinct shift in microbial community structure was only observed at the end of the season in the upper sediment near the HOx. While this shift was correlated to HOx-enhanced oxygen availability, increased TOC levels and precipitation of Fe- and Mn-oxides, abiotic controls on Fe and Mn cycling, and/or the adaptability of many bacteria to variations in prevailing electron acceptors may explain the delayed response and the comparatively limited changes at other locations. While the sediment microbial community proved remarkably resistant to relatively short-term changes in HOx operations, HOx-induced variation in microbial structure, biomass, and activity was observed after a full season of oxygenation.

Introduction
Significant environmental variability may be observed at the sediment–water interface (SWI) in aquatic systems because of the extremely steep gradients in chemical and physical properties and the related biogeochemical transformation processes that occur in this zone (Santschi et al., 1990). In particular, microbial activity rapidly depletes the dissolved electron acceptors that may be available in the water, for example, dissolved oxygen (O2) and nitrate (NO3-), within just a few millimeters below the SWI. Fe- and Mn-oxides deposited by sedimentation can act as the terminal electron acceptors for organic matter mineralization by specialized microorganisms below the oxic zone (Nealson, 1997; Thamdrup, 2000; Falkowski et al., 2008). Resultant fluxes of reduced chemical species from the sediment, for example, Fe2+ and Mn2+, can significantly impair the quality (e.g. color, odor, and taste) of the overlying water and are one of the primary sources of reduced metals in the hypolimnion of stratified lakes and reservoirs (Zaw & Chiswell, 1999; Zhang et al., 1999; Beutel, 2003). It has been shown that microbially mediated sediment–water metal fluxes often have a greater influence on water quality than allochthonous sources (Christian & Lind, 2007).

In light of the imminent water crisis and the acknowledged need for alternative approaches for improving water quality (National Research Council (NRC), 2004),
hylolimnetic oxygenation systems (HOx) are being more frequently used to improve water quality by increasing O\textsubscript{2} levels in stratified lakes and reservoirs. While several different types of HOx are used (Singleton & Little, 2006), this work focuses on bubble-plume systems which release air or oxygen gas from diffusers positioned near the reservoir bottom and cause relatively low levels of mixing within the hyplolimnion to prevent destratification (Wüst et al., 1992; McGinnis et al., 2004). HOx systems have been shown to not only increase O\textsubscript{2} concentrations and decrease concentrations of soluble metals and other chemical species in the water column (Beutel & Horne, 1999; Gantzer et al., 2009a, b; Liboriussen et al., 2009) but also have significant influence on conditions at the SWI via enhanced sediment O\textsubscript{2} uptake, deepening of the sediment oxic zone, and suppression of soluble metal fluxes within the benthic zone (Beutel, 2003; Bryant et al., 2011a, b). HOx are often used to treat source water with high levels of Mn (Zaw & Chi-swell, 1999; Beutel et al., 2007; Gantzer et al., 2009b) which is a serious problem during drinking water treatment because of the complexity of Mn redox kinetics (Kohl & Medlar, 2006; Cerrato et al., 2010). Although the thermodynamic stability of Mn speciation can be predicted, reduced Mn can be persistent in the presence of electron acceptors and often requires a microbial catalyst for oxidation (Balzer, 1982; Dellwig et al., 2012). As a result, Mn speciation in natural waters is known to be strongly dependent on microbial processes (Tebo & Emerson, 1986; Nealson et al., 1988; Lovley, 1991).

Redox kinetics of Fe and Mn are closely paired and often the same organisms carry out both Mn and Fe reduction (Nealson & Saffarini, 1994). It has been suggested that the metal-reducing bacterium Geobacter metal\textsubscript{li}reducens and related Geobacteraceae may have a dominant role in biogeochemical cycling of Fe and Mn at the SWI in lakes and reservoirs (Thamdrup, 2000; Cummings et al., 2003). Even in well-oxygenated, lacustrine environments, G. metal\textsubscript{li}reducens, which are obligate anaerobes, can thrive in the suboxic sediment immediately below the SWI (Coppi et al., 2001). These bacteria acquire energy for anaerobic growth by coupling the oxidation of organic matter with the reduction of Fe3+ or Mn4+ from various oxides and hydroxides, although other electron acceptors such as NO\textsubscript{3} may also be used (Thamdrup, 2000).

It is established that sediment microbial communities can change in terms of both population size and structure as a function of sediment O\textsubscript{2} availability (House, 2003). In general, redox conditions and the availability of electron acceptors are natural drivers of microbial community composition and the dominating microbial processes (Nealson, 1997; Koizumi et al., 2004). HOx-induced variation in the extent of the sediment oxic zone (Bryant et al., 2011a) may thus have significant influence on sediment microbial community structure and biologically controlled redox processes. Furthermore, while biogeochemical cycling of metals at the SWI is frequently governed by sediment microbial activity (Santschi et al., 1990; DiChristian & DeLong, 1993; Stein et al., 2001), very little is known about how dynamic changes in environmental conditions (e.g. variations in O\textsubscript{2} availability) affect microbial communities and associated redox processes (Yannarell et al., 2003; Christian & Lind, 2007; Angeler, 2009). It has been shown that the vertical O\textsubscript{2} distribution across the SWI can be significantly influenced by both natural (e.g. wind-driven seiching) and mechanical (e.g. oxygenation) processes (Lorke et al., 2003; Bryant et al., 2010, 2011a). While HOx-induced changes in chemical and physical controls on sediment O\textsubscript{2} uptake and soluble metal fluxes have been evaluated in previous work (Beutel, 2003; Bryant et al., 2011a, b), the influence on sediment microbial populations and processes has not been assessed. We therefore evaluated how sediment microbial community structure responded on a reservoir-wide scale to changes in HOx operation and subsequent Fe, Mn, and O\textsubscript{2} dynamics at the SWI.

Materials and methods

Study site

This work focused on Carvins Cove Reservoir (CCR), one of the primary drinking water supply reservoirs for the [Image 310x142 to 509x341]

Fig. 1. Map of CCR. The map shows the location of the linear bubble-plume HOx and sampling sites. Near-field locations include CCR-1 (0 m; relative to beginning of HOx lines) and CCR-2 (189 m); central, mid-reservoir locations include CCR-3 (683 m) and CCR-6 (1814 m). Modified from Bryant et al. (2011a).
county of Roanoke, VA, USA. CCR is eutrophic (average total phosphorus ~ 50–70 μg L⁻¹; P.A. Gantzer, pers. commun.) with a maximum depth of ~ 23 m, width of ~ 600 m, and length of ~ 8000 m (Fig. 1). In 2005, a linear bubble-plume diffuser HOx operated with pure oxygen gas was installed by the Western Virginia Water Authority in the deepest section of the reservoir (Fig. 1). Oxygenation was implemented in CCR to replenish O₂ depleted during summer stratification and to decrease Fe and Mn levels in the source water (McGinnis & Little, 2002; Gantzer et al., 2009a). A considerable improvement in source water quality has been observed since HOx operations began, with soluble Mn levels decreasing by > 97% (Gantzer et al., 2009b). Data were collected from 2005 through 2008 to evaluate the influence of the HOx on CCR (Gantzer et al., 2009a, b; Bryant et al., 2011a, b). During the 2006 CCR oxygenation season, on which this study is largely focused, HOx oxygen-gas flow was increased incrementally from 0 to 85 m³ h⁻¹ over a 5-month period (June–October; Fig. 2).

Sediment sampling

Sediment cores were obtained at near-field sites CCR-1 and CCR-2 and upstream at mid-reservoir sites CCR-3 and CCR-6 (sample codes 1, 2, 3, and 6, respectively; Table 1), thereby characterizing the region from directly alongside the HOx to ~ 2000 m upstream of the HOx (Fig. 1). Sampling was performed at four times coinciding with changes in HOx flow rate during the 2006 oxygenation season (12 July, 2 August, 28 August, and 19 October; sample codes A–D; Table 1). Per the HOx flow and sampling regime (Fig. 2), sediment samples were obtained at the end of the month-long anoxic period after the HOx had been turned off and at three points during the subsequent oxic period after oxygenation was resumed. On each sampling date, three undisturbed sediment cores were obtained from each site. One core was used for O₂ microprofile measurements, one for bulk sediment analyses, and one for microbial analyses. A sediment core was also obtained from each site during follow-up work in 2007 to specifically evaluate the presence of Mn-oxidizers in CCR sediment. Sediment cores, obtained using a 90-mm diameter Uwitec corer following Bryant et al. (2011b), were considered undisturbed based on clarity of the overlying water (i.e. absence of resuspended sediment) and visual inspection of the sediment surface. Cores were kept in the dark and on ice during transport to the laboratory.

Core subsamples (~ 12 mL) for microbial analyses were collected within ~ 2 h of sampling at the following depth intervals: 0–2, 2–4, 4–6, and 10–12 mm (sample codes a–d; Table 1) relative to the sediment surface (SWI = 0 mm). Subsamples were immediately placed in sterile glass bottles, sealed, and frozen at ~ 80 °C until analysis (excluding 3 days while being shipped frozen and encased in ice packs to Eawag, where microbial work was performed).

Sediment porewater measurements

O₂ porewater data (O₂_d) were obtained via O₂ microsensor profiles of sediment cores following Bryant et al. (2011b). Sediment cores were cut to a height of ~ 20 cm for profiling using a Uwitec core-cutter. Care was taken to ensure sediment cores remained undisturbed during the cutting process. Cores were profiled typically within 1–2 h of sampling using Clark-type O₂ microsensors (OX-100; Unisense A/S, Aarhus, Denmark) which have an internal reference and a guard cathode. OX-100 microsensors have an extremely small tip size and depth resolution (100 μm), rapid response time (90% response in < 10 s), and negligible stirring sensitivity. The microsensors were manually controlled by a micromanipulator (M3301R; World Precision Instruments, Inc., Sarasota, FL) and were used in coordination with a high-sensitivity picoammeter (PA2000; Unisense A/S). Mild stirring of the core surface water was maintained during profiling to prevent the water column from becoming stagnant while also minimizing the introduction of artificial turbulence (Glud, 2008). Cores were profiled at 1-mm depth resolution from 5 cm above to 1 cm below the SWI; for each profile, three
Table 1. Sediment sampling strategy and nomenclature used in microbial analytical techniques

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (mm)</th>
<th>Date</th>
<th>RDA-label</th>
<th>Location</th>
<th>Depth (mm)</th>
<th>Date</th>
<th>RDA-label</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-1</td>
<td>0–2</td>
<td>7/12/06</td>
<td>1Aa</td>
<td>CCR-3</td>
<td>0–2</td>
<td>7/12/06</td>
<td>3Aa</td>
</tr>
<tr>
<td>CCR-1</td>
<td>2–4</td>
<td>7/12/06</td>
<td>1Ab</td>
<td>CCR-3</td>
<td>2–4</td>
<td>7/12/06</td>
<td>3Ab</td>
</tr>
<tr>
<td>CCR-1</td>
<td>4–6</td>
<td>7/12/06</td>
<td>1Ac</td>
<td>CCR-3</td>
<td>4–6</td>
<td>7/12/06</td>
<td>3Ac</td>
</tr>
<tr>
<td>CCR-1</td>
<td>10–12</td>
<td>7/12/06</td>
<td>1Ad</td>
<td>CCR-3</td>
<td>10–12</td>
<td>7/12/06</td>
<td>3Ad</td>
</tr>
<tr>
<td>CCR-1</td>
<td>0–2</td>
<td>8/2/06</td>
<td>1Ba</td>
<td>CCR-3</td>
<td>0–2</td>
<td>8/2/06</td>
<td>3Ba</td>
</tr>
<tr>
<td>CCR-1</td>
<td>2–4</td>
<td>8/2/06</td>
<td>1Bb</td>
<td>CCR-3</td>
<td>2–4</td>
<td>8/2/06</td>
<td>3Bb</td>
</tr>
<tr>
<td>CCR-1</td>
<td>4–6</td>
<td>8/2/06</td>
<td>1Bc</td>
<td>CCR-3</td>
<td>4–6</td>
<td>8/2/06</td>
<td>3Bc</td>
</tr>
<tr>
<td>CCR-1</td>
<td>10–12</td>
<td>8/2/06</td>
<td>1Bd</td>
<td>CCR-3</td>
<td>10–12</td>
<td>8/2/06</td>
<td>3Bd</td>
</tr>
<tr>
<td>CCR-1</td>
<td>0–2</td>
<td>8/28/06</td>
<td>1Ca</td>
<td>CCR-3</td>
<td>0–2</td>
<td>8/28/06</td>
<td>3Ca</td>
</tr>
<tr>
<td>CCR-1</td>
<td>2–4</td>
<td>8/28/06</td>
<td>1Cb</td>
<td>CCR-3</td>
<td>2–4</td>
<td>8/28/06</td>
<td>3Cb</td>
</tr>
<tr>
<td>CCR-1</td>
<td>4–6</td>
<td>8/28/06</td>
<td>1Cc</td>
<td>CCR-3</td>
<td>4–6</td>
<td>8/28/06</td>
<td>3Cc</td>
</tr>
<tr>
<td>CCR-1</td>
<td>10–12</td>
<td>8/28/06</td>
<td>1Cd</td>
<td>CCR-3</td>
<td>10–12</td>
<td>8/28/06</td>
<td>3Cd</td>
</tr>
<tr>
<td>CCR-1</td>
<td>0–2</td>
<td>10/19/06</td>
<td>1Da</td>
<td>CCR-3</td>
<td>0–2</td>
<td>10/19/06</td>
<td>3Da</td>
</tr>
<tr>
<td>CCR-1</td>
<td>2–4</td>
<td>10/19/06</td>
<td>1Db</td>
<td>CCR-3</td>
<td>2–4</td>
<td>10/19/06</td>
<td>3Db</td>
</tr>
<tr>
<td>CCR-1</td>
<td>4–6</td>
<td>10/19/06</td>
<td>1Dc</td>
<td>CCR-3</td>
<td>4–6</td>
<td>10/19/06</td>
<td>3Dc</td>
</tr>
<tr>
<td>CCR-1</td>
<td>10–12</td>
<td>10/19/06</td>
<td>1Dd</td>
<td>CCR-3</td>
<td>10–12</td>
<td>10/19/06</td>
<td>3Dd</td>
</tr>
<tr>
<td>CCR-2</td>
<td>0–2</td>
<td>7/12/06</td>
<td>2Aa</td>
<td>CCR-6</td>
<td>0–2</td>
<td>7/12/06</td>
<td>6Aa</td>
</tr>
<tr>
<td>CCR-2</td>
<td>2–4</td>
<td>7/12/06</td>
<td>2Ab</td>
<td>CCR-6</td>
<td>2–4</td>
<td>7/12/06</td>
<td>6Ab</td>
</tr>
<tr>
<td>CCR-2</td>
<td>4–6</td>
<td>7/12/06</td>
<td>2Ac</td>
<td>CCR-6</td>
<td>4–6</td>
<td>7/12/06</td>
<td>6Ac</td>
</tr>
<tr>
<td>CCR-2</td>
<td>10–12</td>
<td>7/12/06</td>
<td>2Ad</td>
<td>CCR-6</td>
<td>10–12</td>
<td>7/12/06</td>
<td>6Ad</td>
</tr>
<tr>
<td>CCR-2</td>
<td>0–2</td>
<td>8/2/06</td>
<td>2Ba</td>
<td>CCR-6</td>
<td>0–2</td>
<td>8/2/06</td>
<td>6Ba</td>
</tr>
<tr>
<td>CCR-2</td>
<td>2–4</td>
<td>8/2/06</td>
<td>2Bb</td>
<td>CCR-6</td>
<td>2–4</td>
<td>8/2/06</td>
<td>6Bb</td>
</tr>
<tr>
<td>CCR-2</td>
<td>4–6</td>
<td>8/2/06</td>
<td>2Bc</td>
<td>CCR-6</td>
<td>4–6</td>
<td>8/2/06</td>
<td>6Bc</td>
</tr>
<tr>
<td>CCR-2</td>
<td>10–12</td>
<td>8/2/06</td>
<td>2Bd</td>
<td>CCR-6</td>
<td>10–12</td>
<td>8/2/06</td>
<td>6Bd</td>
</tr>
<tr>
<td>CCR-2</td>
<td>0–2</td>
<td>8/28/06</td>
<td>2Ca</td>
<td>CCR-6</td>
<td>0–2</td>
<td>8/28/06</td>
<td>6Ca</td>
</tr>
<tr>
<td>CCR-2</td>
<td>2–4</td>
<td>8/28/06</td>
<td>2Cb</td>
<td>CCR-6</td>
<td>2–4</td>
<td>8/28/06</td>
<td>6Cb</td>
</tr>
<tr>
<td>CCR-2</td>
<td>4–6</td>
<td>8/28/06</td>
<td>2Cc</td>
<td>CCR-6</td>
<td>4–6</td>
<td>8/28/06</td>
<td>6Cc</td>
</tr>
<tr>
<td>CCR-2</td>
<td>10–12</td>
<td>8/28/06</td>
<td>2Cd</td>
<td>CCR-6</td>
<td>10–12</td>
<td>8/28/06</td>
<td>6Cd</td>
</tr>
<tr>
<td>CCR-2</td>
<td>0–2</td>
<td>10/19/06</td>
<td>2Da</td>
<td>CCR-6</td>
<td>0–2</td>
<td>10/19/06</td>
<td>6Da</td>
</tr>
<tr>
<td>CCR-2</td>
<td>2–4</td>
<td>10/19/06</td>
<td>2Db</td>
<td>CCR-6</td>
<td>2–4</td>
<td>10/19/06</td>
<td>6Db</td>
</tr>
<tr>
<td>CCR-2</td>
<td>4–6</td>
<td>10/19/06</td>
<td>2Dc</td>
<td>CCR-6</td>
<td>4–6</td>
<td>10/19/06</td>
<td>6Dc</td>
</tr>
<tr>
<td>CCR-2</td>
<td>10–12</td>
<td>10/19/06</td>
<td>2Dd</td>
<td>CCR-6</td>
<td>10–12</td>
<td>10/19/06</td>
<td>6Dd</td>
</tr>
</tbody>
</table>

Sample identifiers are based on the first digit to identify location (1, 2, 3, and 6 identifying sites CCR-1, CCR-2, CCR-3, and CCR-6, respectively), followed by an uppercase letter identifying sampling date in chronological order (i.e. ‘A’ represents first sampling date 12 July 2006) and a lowercase letter indicating depth below the sediment surface in order of increasing depth (i.e. ‘b’ represents second depth from sediment-water interface at 2–4 mm).

Measurements were obtained at each depth. Because of the time involved with core processing, single O₂ profiles were obtained per core. Additional single-point measurements of the SWI were also obtained in triplicate after profiling. While this approach may not characterize potential spatial heterogeneity in the sediment O₂ distribution (Glud et al., 2009), sediment core O₂ data were analogous to data obtained under similar conditions with an in situ microprofiler during subsequent campaigns in CCR (Bryant et al., 2011a, b). O₂ microsensor data were calibrated using a linear calibration based on O₂ concentrations in the overlying core water (as determined by Winkler titration; Dalsgaard et al., 2000) and in the anoxic sediment.

Soluble Fe and Mn concentrations in the sediment (Fe₅s and Mn₅s, respectively) were obtained via in situ pore-water analyzers (“peepers”) constructed following Hesslein (1976), Lewandowski et al. (2002), and Bryant et al. (2011b). Peepers were fabricated using 0.45-μm Millipore (Billerica, MA) filter paper and therefore measured both colloidal (< 0.45 μm) and dissolved (< 0.2 μm) components of soluble (< 0.45 μm) Fe and Mn. Peepers were deployed in duplicate for 2–4 weeks at a time to allow the peepers to come to equilibrium with in situ concentrations. Peeper data were obtained only at location CCR-1 because of the limited availability of equipment. Immediately upon retrieval, water samples were obtained via sterilized pipettes from each peeper chamber, transferred to acidified plastic tubes, and analyzed for metals via inductively coupled plasma (ICP) spectroscopy (Clesceri et al., 1998) and for ferrous Fe²⁺ (Fe_f) using the ferrozine method (Stookey, 1970; Viollier et al., 2000).
Water sample measurements

Because peeper data were measured at site CCR-1 only, near-sediment water samples were used to obtain metals data for all sites. Following protocol by Dalsgaard et al. (2000), water samples were taken using a syringe with attached tubing to withdraw water at ~5 cm above the sediment from each core designated for bulk sediment sampling. Per sample site and date, individual water samples were obtained for analysis of total metals, soluble metals, and O₂ concentrations. Care was taken not to introduce headspace into the syringe during sampling. All water samples for metal analyses were transferred immediately to plastic bottles and acidified. Near-sediment water samples for soluble Fe and Mn (Fe_s_5 and Mn_s_5, respectively) analyses were first filtered through 0.45-μm Millipore filter paper, while samples for total Fe and Mn (Fe_tot_5 and Mn_tot_5, respectively) analyses were transferred directly (Van Cappellen et al., 1998). After acidifying, samples were then analyzed via ICP (Clesceri et al., 1998). Water samples were analyzed for O₂ concentration at ~5 cm above the sediment (O₂_d_5) via Winkler titration.

Bulk sediment analyses

The upper ~2 cm of sediment of each core designated for bulk sediment sampling was transferred directly into sterile glass containers immediately after obtaining the cores and taking near-sediment water samples. Samples were analyzed following standard methods for total solids (per method SM2540B; Greenberg et al., 1992), total Fe, Mn, and P (Fe_Tot, Mn_Tot, and P_Tot, respectively; per methods SW6010B and SW3050B; Environmental Protection Agency (EPA), 1996), and total organic carbon (TOC; per Lloyd Kahn method; EPA, 1988).

Microbial methods

Nucleic acid extraction from CCR sediment

Nucleic acids were extracted from sediment samples using a slightly modified bead-beating method of Bürgmann et al. (2001). 0.5 ± 0.05 g of each sediment sample (Table 1) was used for extraction. For each sample (one per depth from each core designated for microbial analysis), after bead-beating and centrifuging sediment in 1.25 mL CTAB buffer (Bürgmann et al., 2001) at 16 100 g for 3 min, 400 μL phenol (pH 8) and 400 μL chloroform-isoamyl alcohol (24 : 1; CIA) were added to 1000 μL of sediment extract. After vortexing (15 s) and centrifugation (5 min at 16 100 g), 800 μL of supernatant was combined with 400 μL CIA, re-vortexed (20 s), and centrifuged for 5 min at 16 100 g. 900 μL of supernatant was removed, combined with 900 μL of polyethylene-glycol precipitation solution (Bürgmann et al., 2001), and vortexed briefly. The sample was incubated for 1 h at 37 °C, centrifuged for 30 min at 20 800 g, and the supernatant was removed. The resultant pellet was washed with cold 70% ethanol, centrifuged for 5 min at 16 100 g, and supernatant was again removed (Bürgmann et al., 2001). Nucleic acid extracts were dissolved in 50 μL Tris-EDTA buffer and stored at −20 °C prior to subsequent PicoGreen quantification, PCR amplification, and ribosomal intergenic spacer analysis (RISA).

DNA quantification with PicoGreen

Extracted nucleic acid concentrations were quantified with PicoGreen (Bürgmann et al., 2001) based on the Quant-it dsDNA quantitation kit (Invitrogen, Basel, Switzerland) using a Synergy HT microplate reader (Bio-Tek Instruments, Inc., Winooski, VT). The purity of extracted DNA was assessed spectrophotometrically from the absorbance ratio at 260 and 280 nm. Nucleic acid samples were diluted to concentrations of 5, 10, and 20 ng μL⁻¹ for PCR and RISA analyses.

Nucleic acid amplification via PCR

Diluted samples of sediment-extracted nucleic acids were used for all PCR analyses. The general bacterial primer set ARISA-16S-1406f/ARISA-23r (Table 2) was used for PCR amplification of the ribosomal intergenic spacer region for RISA (Borneman & Triplett, 1997; Fisher & Triplett, 1999; Sigler et al., 2002). Additional PCR products were obtained using primers specific to the 16S rRNA genes of Geobacteraceae (494f/825r; Table 2), following Holmes et al. (2002). Each PCR reaction using ARISA or Geobacteraceae-specific primers contained 1 μL of sample, 1× PCR buffer, 3 mM MgCl₂, 0.2 μM of each primer, 0.2 mM dNTP, 1 mg mL⁻¹ bovine serum albumin, 0.25 μL of Taq polymerase, and 32.15 μL of nuclelease-free water with a final reaction volume of 50 μL. Following initial denaturation at 94 °C for 5 min, 35 PCR cycles were performed under the following conditions: denaturing at 94 °C for 30 s, annealing at 55 °C for 1 min, extension at 72 °C for 1.5 min, and a 5-min final extension at 72 °C. Amplification products were then visualized on ethidium bromide-stained agarose gel using the GelDoc documentation system (Bio-Rad Laboratories, Reinach, Switzerland) for densitometric screening.
Sequencing and sequence analysis of Geobacter amplicons

Geobacteraceae-specific PCR products of the top sediment layer (0–2 mm below the SWI) of each site for the two end-point sampling dates (7 July and 19 October 2006) were cloned using the pGEM T-easy Vector Systems cloning kit (Promega, Madison, WI) according to manufacturer instructions. All clones were subjected to standard blue-white screening. Five random clones from each library were selected for plasmid extraction using the GenElute HP Plasmid Miniprep Kit (Sigma-Aldrich, St. Louis, MO) and sequenced (Mircorsynth, Balgach, Switzerland).

Sequences were checked for chimera formation using the Bellerophon 3 web service (http://greengenes.lbl.gov/cgi-bin/nph-bel3_interface.cgi). Sequences were uploaded and taxonomically classified using the Classifier tool on the Ribosomal Database Project (RDP) website. Fourteen sequences classified as belonging to *Geobacteraceae* were uploaded and aligned to the RDP database, and closely related type strains were identified using RDP’s Seqmatch tool and hierarchy browser. The alignment was downloaded from RDP, and a phylogenetic inference tree was calculated in MEGA 5 (Tamura et al., 2001) using the unweighted pair group method with arithmetic mean (UPGMA) clustering algorithm, Kimura 2-parameter distance metric, and complete elimination of gaps. The resulting tree is based on 335 sites and was tested using 1000 bootstrap resamplings. The 14 *Geobacteraceae* sequences were deposited at GenBank under accession numbers JN098406 through JN098419.

Geobacter real-time PCR

A real-time detection PCR (RTD-PCR) protocol for *Geobacteraceae* targets was performed using *Geobacter*-specific primers 494f and 825r and following Holmes et al. (2002; Table 2). Each RTD-PCR reaction contained, in a final volume of 30, 5 μL of sample, 1× SYBR green PCR buffer (Applied Biosystems, Carlsbad, CA), 1.2 μM of each primer, 3 mM MgCl2, and 8.1 μL of nuclease-free H2O. RTD-PCR amplification was performed using an Applied Biosystems 7500 Fast Real-Time PCR System with one cycle at 50 °C for 2 min, one cycle at 95 °C for 10 min, and 45 cycles at 95 °C for 15 s and 56 °C for 1 min, followed by melting-curve analysis. RTD-PCR amplification of genomic DNA extracts of *G. metallireducens* strain GS15 (DSM7210) with primers 494f and 825r was used to create a standard curve (Holmes et al., 2002) based on known concentrations ranging from 6 × 10−7 to 6 × 10−3 ng μL−1. The calibration was linear over six orders of magnitude but results from sample dilutions indicated that DNA extracts inhibited the PCR and that PCR inhibition varied between samples. Results therefore were not evaluated quantitatively but scored qualitatively. Each sample was amplified in three different dilutions (5, 10, and 20 ng μL−1 DNA). Any sample with positive amplification (fluorescence threshold exceeded) and a correct melting temperature within ±1 °C of the standards (83 °C) was scored as *Geobacteraceae*-positive.

RISA community fingerprints

Banding patterns obtained via RISA were used to characterize the bacterial community structure (Fisher & Triplett, 1999; Sigler et al., 2002). Each band’s relative intensity was used as an estimator of relative abundance of each observed phylotype. While the individual abundance of a phylotype may not accurately reflect the abundance of the corresponding bacteria in the original population, for example, because of PCR bias, changes in community composition between samples are generally reliably reflected using this approach (Hartmann et al., 2005; Nocker et al., 2007). 5 μL of RISA amplicons (mixed with 3 μL of bromphenol blue/sucrose loading dye) was loaded onto 5% bis-acrylamide gels. Gel electrophoresis was performed in a 1×TAE buffer at 35 °C for 15 min at 30 V and then 4 h at 200 V. Following electrophoresis, staining was performed by gently agitating the gel in 50 mL of 1×TAE with a 1:5000 dilution of SYBR Green dye (Molecular Probes, Inc, Life Technologies, Grand Island, NY) for 30 min. RISA band patterns were then analyzed using the Gel Doc high-resolution gel documentation system and Quantity One software (Bio-Rad Laboratories). Densitometric data for each gel were manually assembled in Microsoft Excel into a single dataset by matching bands between gels based on calculated fragment size. Community analysis results were based either on relative band intensity or on a converted dataset with presence–absence data.

Table 2. Primers used for nucleic acid amplification via PCR

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Target</th>
<th>Sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARISA-16S-1406f</td>
<td>Universal; 16s rRNA gene</td>
<td>5′-TGY ACA CAC CGC CCG T-3′</td>
<td>Yannarell et al. (2003)</td>
</tr>
<tr>
<td>ARISA-235r</td>
<td>Bacteria; 23s rRNA gene</td>
<td>5′-GGG TTB CCC CAT TCR G-3′</td>
<td>Yannarell et al. (2003)</td>
</tr>
<tr>
<td>494f</td>
<td>Geobacteraceae; 16s rRNA gene</td>
<td>5′-AGG AAG CAC CGG CTA ACT CC-3′</td>
<td>Holmes et al. (2002)</td>
</tr>
<tr>
<td>825r</td>
<td>Geobacteraceae; 16s rRNA gene</td>
<td>5′-TAC CGG CRA CAC CTA GT-3′</td>
<td>Anderson et al. (1998)</td>
</tr>
</tbody>
</table>
Statistical analysis

All statistical analyses were performed using the statistical software R (R Development Core Team, 2009) with packages **VEGAN** (Oksanen et al., 2009) and **BIODIVERSITY R** (Kindt & Coe, 2005). The influence of site, sediment depth, and time on nucleic acid concentration was analyzed by one- or multi-factorial analysis of variance (ANOVA). Similarity of community structure was assessed via hierarchical cluster analysis (single linkage) using the Bray dissimilarity metric. Additionally, RISA results, which identified patterns of community similarity, were correlated by constrained ordination (Redundancy Analysis; RDA) to several other datasets from the 2006 campaign used as independent environmental variables to explain observed variance in the community fingerprints. Parameters used to define environmental variables are presented in Table 3. Two subsets of data were chosen. The first set included ARISA data from all samples and was analyzed using depth as a covariable in a partial RDA focusing on site- and date-related trends. Constraining variables available for this set were site-specific chemical data for the overlying water, bulk sediment, and depth-resolved O₂ concentrations in the sediment porewater. The second set contained all samples of site CCR-1 (sample ID ‘1’; Table 1) with depth-resolved peeper and O₂ profile data used as constraining variables. Selection of parsimonious, non-auto-correlated sets of constraints for the statistical models was assisted by forward selection of constraints using **VEGAN**’s ordistep function. Models were tested by permutation analysis (1000 iterations). Passive fitting of variables not included in the RDA model was performed using **VEGAN**’s envfit function. The predictive value of the parsimonious sets of environmental variables was further tested using the Mantel test (Mantel, 1967). For the Mantel test, the matrix of environmental variables was scaled and centered. The Bray dissimilarity was used for the calculation of the distance matrix of the community dataset, and Euclidean distance was used for the environmental dataset. Additionally, the simple Mantel ‘r’ was estimated for individual environmental variables.

Isolation of Mn-oxidizing bacteria

In 2007, the presence of Mn-oxidizers in CCR sediment was studied based on the leukoberlin blue (LBB) method following Tebo et al. (2007) and Cerrato et al. (2010). LBB is a color indicator that chemically reacts with oxidized Mn. Microorganisms were recovered by suspending 1 g of aseptically handled sediment (samples obtained from the upper 2 cm of cores from CCR-1, CCR-2, CCR-3, and CCR-6) in 5 mL sterile tap water contained in a sterile 16 × 125 mm screw-cap tube. A dilution series of recovered samples was prepared in 5 mL sterile tap water (10⁻³ to 10⁻¹), and 0.1 mL from each dilution tube was spread on Mn-oxidation agar plates. The agar media contained 1 mg L⁻¹ FeSO₄·7H₂O, 0.2 g L⁻¹ MnSO₄·4H₂O, 2 g L⁻¹ Peptone (Becton Dickinson, Sparks, MD), 0.5 g L⁻¹ yeast extract (Becton Dickinson), 10 mM HEPES buffer (pH 7.4), and 15 g L⁻¹ Bactoagar, as described by Stein et al. (2001). Probable Mn-oxidizers, visually identified as dark-brown or orange irregularly shaped colonies, were selected and streaked to obtain isolates. Fourteen selected isolates were then inoculated in Mn-oxidation broth and incubated at 30 °C. A negative control consisting of sterile Mn-oxidation agar media was maintained to ensure that oxidation observed was biological rather than chemical. Samples were removed weekly, and Mn-oxidation was measured after addition of LBB at a 1 : 5 ratio (Stein et al., 2001). Absorption measurements of isolate samples and controls were obtained using a Hitachi Digital Spectrophotometer (Hitachi High-Technologies America, Inc., Schaumburg, IL) at 620 nm. The calibration curve was prepared from potassium permanganate and LBB.

Table 3. Parameters and corresponding units of environmental variables used in statistical analyses

<table>
<thead>
<tr>
<th>Environmental variable</th>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling site</td>
<td>Distance</td>
<td>m</td>
</tr>
<tr>
<td>Sample depth below sediment surface</td>
<td>Depth</td>
<td>mm</td>
</tr>
<tr>
<td>Date sample was obtained</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>HOx oxygen-gas flow rate</td>
<td>Flow</td>
<td>m³ h⁻¹</td>
</tr>
<tr>
<td>Soluble Fe obtained via peeper; depth specific on cm scale</td>
<td>Fe_s</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Ferrous Fe (Fe²⁺) obtained via peeper; depth specific on cm scale</td>
<td>Fe_f</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Soluble Mn obtained via peeper; depth specific on cm scale</td>
<td>Mn_s</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Total Fe in water sample obtained at 5 cm above the sediment</td>
<td>Fe_tot_5</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Total Mn in water sample obtained at 5 cm above the sediment</td>
<td>Mn_tot_5</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Soluble Fe in water sample obtained at 5 cm above the sediment</td>
<td>Fe_s_5</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Soluble Mn in water sample obtained at 5 cm above the sediment</td>
<td>Mn_s_5</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Dissolved O₂ in water sample obtained at 5 cm above the sediment</td>
<td>O₂_d_5</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Dissolved O₂ in porewater; depth specific on mm scale</td>
<td>O₂_d</td>
<td>mg L⁻¹</td>
</tr>
<tr>
<td>Total Fe in bulk sediment</td>
<td>Fe_tot</td>
<td>mg kg⁻¹</td>
</tr>
<tr>
<td>Total Mn in bulk sediment</td>
<td>Mn_tot</td>
<td>mg kg⁻¹</td>
</tr>
<tr>
<td>Total P in bulk sediment</td>
<td>P_tot</td>
<td>mg kg⁻¹</td>
</tr>
<tr>
<td>TOC in bulk sediment</td>
<td>TOC</td>
<td>mg kg⁻¹</td>
</tr>
</tbody>
</table>
Results and discussion

Sediment and water geochemistry

Concentrations of \(\text{O}_2 \), Fe, and Mn in the sediment and overlying water changed considerably in response to HOx operations. Although a response was observed at all sampling sites, the effect was typically stronger at the near-field sites CCR-1 and CCR-2 because of proximity to the HOx and sediment focusing in the deeper region (Schaller & Wehrli, 1997). Data for all CCR sites are presented in Table S3 (Supporting Information). Results for site CCR-1 are highlighted in Fig. 3. As the oxygenation season progressed and HOx flow rate increased (Fig. 2), \(\text{O}_2 \) concentrations in porewater and in the water at 5 cm above the sediment were observed to increase throughout CCR (Fig. 3; Table S3). While porewater \(\text{O}_2 \) data may have been influenced by redox changes occurring during transport and profiling of the cores under ex situ conditions, \(\text{O}_2 \) data obtained via sediment core profiling are comparable to in situ data obtained during a subsequent CCR campaign (Bryant et al., 2011a, b), as mentioned previously. Sediment core profiling was advantageous for the current study in that it allowed for clear identification of the SWI and direct correlation of \(\text{O}_2 \) profile data to core samples used for microbial analyses.

Concentrations of soluble Fe typically decreased in the water at 5 cm above the sediment; trends in soluble Mn concentrations were more variable but concentrations generally increased as the oxygenation season progressed (Bryant et al., 2011b). Similarly, near-field peeper data show that by the end of the oxygenation season porewater concentrations of soluble Fe had decreased by 50% in the upper sediment while concentrations of soluble Mn had increased on average by 130% (Fig. 3; Table S3). Soluble (<0.45 μm) metal measurements from peelers could have included colloidal (<0.45 μm) as well as reduced, dissolved (<0.2 μm) forms of Fe and Mn. Ferrozine results show that the percentage of soluble Fe in the form of reduced Fe_f decreased from 60% to 0% in the upper sediment by the end of the oxygenation season (Table S3). Voltammetric-electrode profiles of sediment cores, obtained during a companion study and following Brendel & Luther (1995), also indicated negligible levels of Fe\(^{2+}\) in CCR porewater following continuous oxygenation (LD Bryant, unpublished data); conversely, a majority of porewater Mn remained in the reduced Mn\(^{2+}\) form (Bryant et al., 2011b). The differing responses and variation in colloidal fractions of Fe and Mn are likely due to the higher redox potential of Mn\(^{4+}\) relative to Fe\(^{3+}\) which facilitates Mn to be more easily reduced than Fe in low \(\text{O}_2 \) environments (Davison, 1985; Nealon & Saffarini, 1994; Jørgensen & Boudreau, 2001). Increased near-sediment and porewater concentrations of Mn may be attributed to the reduction of newly deposited Mn-oxides resulting from HOx-induced sediment loading and subsequent accumulation of particulate matter, confirmed by sediment trap (Gantzer et al., 2009b) and bulk sediment data (Fig. 3; Tables S2 and S3). Trends in bulk sediment data indicate a general increase in levels of total Fe, Mn, and TOC in the near-field sediment over the course of the oxygenation season. Furthermore, bulk sediment levels of total Fe, Mn, and TOC have increased considerably in this region since the start of CCR oxygenation in 2005 (Bryant et al., 2011b; unpublished TOC data).
Nucleic acid content of sediment

Previous work has established the use of nucleic acid concentration as an indicator for microbial biomass (Widmer et al., 2006). Although ANOVA did not indicate that sampling site (averaging over depth and time) was a significant \((P < 0.05) \) influence by itself, sampling site was found to be significant if time was considered as an additional factor in multivariate ANOVA. Nucleic acid concentration was typically highest at near-field sites CCR-1 and CCR-2 and at CCR-6, the site influenced most directly by HOx plume detrainment in the far field (Fig. 4; Bryant et al., 2011a). Nucleic acid concentrations were consistently lower at CCR-3, the far-field site least affected by the HOx because of distance from the HOx, CCR bathymetry, and plume detrainment. HOx-induced increases in \(O_2 \) concentrations at CCR-1, CCR-2, and CCR-6 as well as enhanced levels of TOC and metal oxide precipitation in the near field (discussed below) may thus have supported a denser sediment microbial community in these regions during the campaign.

ANOVA revealed that nucleic acid contents varied significantly \((P < 0.05) \) by sampling date across all samples and also in multivariate analyses with either depth or site as additional factors. The date \(\times \) depth interaction term was also significant indicating that the depth profile varied with sampling date. A sharp decrease in nucleic acid concentrations in the upper sediment layer was observed after the first month of oxygenation during which sediment \(O_2 \) levels remained depleted (Fig. 4; Table S3). This may possibly be due to less than optimal growth conditions being maintained for certain groups within the microbial community during this anoxic period (Dellwig et al., 2012). After this initial decrease, nucleic acid concentrations in the surficial sediment typically increased as oxygenation was resumed. Nucleic acid concentrations in the deeper sediment, which were considerably higher than in the upper sediment, also increased at most sites by the end of the campaign (Fig. 4). Correspondingly, trends in \(O_2 \) concentrations in the upper sediment indicate increased porewater \(O_2 \) throughout the oxygenation season at all locations (Table S3). As the upper sediment became more oxic during oxygenation (Bryant et al., 2011a), enhanced sediment \(O_2 \) availability may have increasingly supported microbial growth. Sediment trap data collected at 2 m above the sediment at CCR-1, CCR-2, and CCR-3 confirm that sedimentation rates of total solids, total Fe and Mn, and TOC generally increased throughout the reservoir as the 2006 oxygenation season progressed, particularly in the near field (Gantzer et al., 2009b; Bryant et al., 2011b). This likely resulted from HOx-induced increases in oxidation and subsequent precipitation of Fe- and Mn-oxides and/or enhanced accumulation of organic matter originating from primary production following late-summer phytoplankton blooms. In particular, increased levels of TOC in conjunction with elevated sediment \(O_2 \) availability may have enhanced microbial growth. Decreased nucleic acid concentrations in the surficial sediment relative to concentrations in the deeper sediment throughout most of

![Fig. 4. Nucleic acid concentration data obtained via PicoGreen analyses for sites CCR-1 (a), CCR-2 (b), CCR-3 (c), and CCR-6 (d). Per sampling date, concentration data are presented for the upper sediment where the greatest variation in sediment \(O_2 \) concentrations was observed (0–2 mm below the SWI) and for the deeper sediment region (2–12 mm below the SWI). Data shown for the deeper sediment (2–12 mm) are averages based on data from the three sampling depths within this region (Table 1).](image-url)
the oxygenation season may be due to the periodic deposition and subsequent accumulation at the sediment surface of material initially rich in Fe- and Mn-oxides and with relatively low microbial biomass.

Microbial community structure

Hierarchical clustering of the RISA community fingerprints shows that a majority of the CCR sediment samples were fairly similar in terms of microbial community structure as indicated by the main cluster highlighted in green in Fig. S1. However, several samples, primarily obtained near the HOx (sites CCR-1 and CCR-2) at the end of the experimental campaign (19 October 2006; sample ID ‘D’; Table 1), formed a separate cluster (in orange in Fig. S1). The sediment in the near-field region is influenced by the HOx more directly (Bryant et al., 2011a, b) which could have contributed to the observed shift in community structure. Hypolimnetic O₂ levels remained high throughout the summer (after oxygenation was resumed) and fall prior to fall turnover which occurred in mid-November 2006. An oxic hypolimnion facilitated elevated O₂ in the upper sediment layers and also precipitation of Fe- and Mn-oxide particles as reduced Fe and Mn were oxidized in the water column (Gantzer et al., 2009a, b; Bryant et al., 2011a, b). Enhanced precipitation of organic material may also have occurred. In addition to HOx effects on sediment composition, natural sediment focusing could have been a factor as well. CCR-1 and CCR-2 are located in the deepest part of CCR; thus, this region likely had higher levels of freshly accumulated organic matter and precipitated metal oxides. Bulk sediment data showed that TOC, Fe, and Mn levels were typically higher in the near field than in shallower regions (e.g. CCR-6) farther from the HOx (Bryant et al., 2011b).

The influence of HOx proximity and terrestrial sediment focusing on near-field sediment composition is further supported by the fact that the greatest dissimilarity to the main cluster was observed for samples obtained from the sediment surface from sites CCR-1, CCR-2, and CCR-3 at the end of the oxygenation season (1Da, 2Da, and 3Da; designated in red in Fig. S1). The sediment microbial community in the surficial sediment would obviously have been most directly affected by both accumulation of newly deposited material including fresh, easily degradable organic matter (resulting from HOx operations, algal deposition, and/or sediment focusing) as well as increased hypolimnetic and sediment O₂ levels as oxygenation progressed. These results are in agreement with the nucleic acid content data showing deviation in nucleic acid concentrations in the upper sediment as compared to the deeper sediment (Fig. 4).

Correlation between microbial community structure, geochemical cycling, and HOx operation

RDA (Borcard et al., 2011) based on RISA band intensity data were performed to relate sediment microbial composition to environmental variables (Table 3) and to obtain further insight into trends in community composition. Initially, a partial RDA (with depth as the covariable) based on the full set of RISA data was performed using an environmental dataset based on global experimental and system characteristics available for all sites (Fig. 5). Forward selection of constraining variables indicated Feₚ₅, Mn_tot, and O₂_d₅ as a parsimonious set of constraints. The constrained model explained 17% of the unconstrained variance in microbial community structure. The overall model and the contribution of all three constraints were significant according to permutation analysis (P < 0.01). Additionally, the Mantel test confirmed a significant influence of the selected variables on the community composition (r = 0.17, P < 0.01). Individually, O₂_d₅ most strongly correlated with the community dataset (r = 0.18, P < 0.05).

As also indicated by the cluster analysis (Fig. S1), RDA results in Fig. 5 reveal a population shift in the upper sediment samples obtained near the HOx in October (1D, 2D, and 3Da samples; solid ellipsis in Fig. 5) that correlated with the variable O₂_d₅. O₂_d₅ was directly correlated with HOx flow which is shown as a passively fitted variable in Fig. 5. Moderate correlation between near-field sites and O₂_d is also observed. Conversely, a majority of samples from the far-field site CCR-6 appeared somewhat distinct from other samples and far less affected by HOx flow and SWI O₂ levels (dashed ellipsis in Fig. 5). While CCR-6 is directly influenced by the HOx via plume detrainment (Bryant et al., 2011a), it is farther away and is also the shallowest site and therefore less affected by sediment focusing. These RDA results indicate that O₂ levels in the overlying water column, subsequent metal oxide precipitation, and the resulting sediment composition may have been stronger controls on sediment microbial community structure than sediment O₂ availability.

To evaluate the relationship between community composition and porewater geochemical data at different depths, an RDA was performed on a reduced dataset that included only samples from site CCR-1 for which depth-resolved geochemical data (Feₚ, Feₚ, and Mnₚ) were available in addition to O₂ profile data (Fig. 6). Forward selection indicated Feₚ and O₂_d as parsimonious constraining variables. This RDA explained ~ 29% of the unconstrained variance. The model was significant (P < 0.05) with the contribution of Feₚ and O₂_d signif-
significant and marginally significant ($P < 0.1$), respectively. The Mantel test confirmed both a significant correlation of the selected variables with the community dataset ($r = 0.31$, $P < 0.05$) and also the significant and marginally significant influence of the individual variables. This analysis shows the considerable correlation between community structure at site CCR-1 and the biogeochemical conditions. The temporal trend in each sediment layer (as designated by arrows in Fig. 6) shows that the top three sediment layers were highly dynamic over the oxygenation season with the community in the top layer becoming quite dissimilar to the other communities by the end of the oxygenation season. Conversely, the deepest sediment layer remained unaffected (samples 1Ad, 1Dd).

In summary, the multiple RDA explained moderate proportions of the overall variance in the sample set as a function of the environmental and geochemical variables evaluated. The ordination also indicated that community structure was not influenced by an easily discernable trend of one or a few species but rather by independent changes of many phylotypes (Figs 5 and 6). Low percentages of explained variance are not unusual in constrained ordinations of biological data. However, in comparison to results from other ordination studies of environmental microbial communities (Yannarell & Triplett, 2005; Busing et al., 2009; Bürgmann et al., 2011), a relatively small part of the variance in the community dataset was explained by our RDA ordinations. This may be attributed to the adaptability of the microbial community to transient changes in environmental conditions. Alternatively, microbial community structure may have been influenced by potentially important drivers of microbial community composition that were not considered here (e.g. temperature, pH, food-web properties). During subsequent work in CCR, temperature at the SWI was found to decrease considerably in the absence of HOx-induced mixing during periods when the HOx was turned off (Bryant et al., 2011a). Conversely, it was shown that pH at the SWI was largely unaffected by HOx-induced changes in sediment O_2 concentrations (Bryant et al., 2011b). It is therefore unlikely that pH was a major driver of community change in this system. pH remained between ~ 8 and 9 which, while relatively unfavorable for abiotic oxidation of Mn, is a favorable range for microbial oxidation (Crittenden et al., 2005; Dellwig et al., 2012). Oxygenation may also have affected food-web properties in the sediment, for example, by inducing changes in the population of bacterial grazers. Such indirect effects of HOx operation may have been insufficiently represented in the linear statistical model used for the ordination. Additionally, other factors limiting the explained variance may have been methodological, for example, that (1) sediment geochemical data may not have sufficiently represented microbial sediment samples because of localized...
sediment heterogeneity and/or (2) a large part of the observed variance was simply random or related to methodological noise. In future studies, a broader set of environmental variables, a higher-resolution evaluation of the microbial community structure (e.g. based on automated RISA or deep-sequencing approaches), and studies on the abundance of functional groups of microorganisms (e.g. by quantitative PCR targeting functional genes and their mRNA transcripts) might reveal additional information such as trends in less-abundant phylotypes and specific reactions of functional groups. However, these methods were outside of the scope of this study.

Presence of metal-oxidizers and reducers

Via PCR, sequencing/phylogenetic analysis, and culturing on LBB medium, Fe- and Mn-reducing and Mn-oxidizing bacteria were confirmed to be members of the CCR sediment microbial community. The sample group evaluated for PCR-based detection of *Geobacteraceae* consisted of temporal end-points (12 July and 19 October) from the upper sediment (0–2 mm) and included all sites. Sequencing and phylogenetic analysis confirmed the presence of organisms with high sequence similarity to various *Geobacter* species, specifically *Geobacter chapellei* as well as *Pelobacter propionicus* which clusters with the genus *Geobacter* (Lonergan et al., 1996; Fig. 7). Similar assemblages have previously been reported for freshwater sediment used as substrate in microbial fuel cells (Holmes et al., 2004). The members of the genus *Geobacter*, including *Geobacter chapellei*, are well known metal-reducing bacteria. While the genus *Pelobacter* is mostly known for fermentative lifestyles, both *P. carbolicus* and *P. propionicus* have been shown to reduce Fe$^{3+}$ (Lovley et al., 1995; Lonergan et al., 1996). *P. propionicus* has been found to have pili with a similar structure and close genetic relationship to the ‘nanowire’ conductive pili of *G. sulfurreducens* (Reguera et al., 2005). PCR and sequencing/phylogenetic analyses thus confirmed the presence of a variety of metal-reducing organisms in CCR. Biological reduction of Mn in the anoxic sediment is expected to be a key process in the solubilization of the metal and thus for the upward flux of Mn into the water column (Thamdrup, 2000; Cummings et al., 2003).

After confirming that *Geobacteraceae*, a well-characterized group of Fe- and Mn-reducers, were present in CCR, we were interested in whether the *Geobacteraceae* showed a dynamic response to HOx operation. Because of methodological difficulties, only a qualitative evaluation was possible. Real-time PCR indicated a decreased presence of *Geobacteraceae* in the upper sediment layer during the anoxic period as compared to the end of the oxygenation season, with the exception of site CCR-6 (Table 4). This is surprising, as *Geobacteraceae* are considered to be anaerobic. While recent genomic studies have indicated a capa-
Table 4. Geobacteraceae RTD-PCR results showing the presence of Geobacteraceae in the upper sediment layer (0–2 mm below the surface) after 1 month without oxygenation (12 July 2006) and 4 months with oxygenation (19 October 2006)

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Sample ID</th>
<th>RTD-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-1</td>
<td>7/12/06</td>
<td>1Aa</td>
<td>–</td>
</tr>
<tr>
<td>CCR-2</td>
<td>7/12/06</td>
<td>2Aa</td>
<td>–</td>
</tr>
<tr>
<td>CCR-3</td>
<td>7/12/06</td>
<td>3Aa</td>
<td>–</td>
</tr>
<tr>
<td>CCR-6</td>
<td>7/12/06</td>
<td>6Aa</td>
<td>+</td>
</tr>
<tr>
<td>CCR-1</td>
<td>10/19/06</td>
<td>1Aa</td>
<td></td>
</tr>
<tr>
<td>CCR-2</td>
<td>10/19/06</td>
<td>2Aa</td>
<td>+</td>
</tr>
<tr>
<td>CCR-3</td>
<td>10/19/06</td>
<td>3Aa</td>
<td>+</td>
</tr>
<tr>
<td>CCR-6</td>
<td>10/19/06</td>
<td>6Aa</td>
<td>+</td>
</tr>
</tbody>
</table>

RTD-PCR results are scored ‘+’ for presence and ‘−’ for absence of amplifiable Geobacteraceae templates.

bility for aerobic metabolism (Méthé et al., 2003), several other factors may also have influenced our results. It is possible that the 1-month period of anoxia at the beginning of the study period was not long enough to support an increased community of anaerobic Geobacteraceae relative to the initial (pre-anoxia) community size. Additionally, the population size of Geobacteraceae may have been more strongly controlled by other factors (e.g. availability of sediment Fe- and Mn-oxides) than O₂ as also indicated for the microbial community as a whole by RDA results in Fig. 5. Enhanced precipitation of metal oxides as the oxygenation season progressed may have increased the availability of electron acceptors supporting Geobacteraceae growth. Furthermore, deposition and subsequent mineralization of fresh organic matter may have created anoxic ‘hot spots’ which could also have facilitated anaerobic communities in the upper sediment throughout the oxygenation season (Glud, 2008).

While Mn-oxidizers were not taxonomically identified or quantified, their presence and capacity for Mn-oxidation was confirmed via LB analyses. Three of the 14 selected colonies were identified as Mn-oxidizers. The presence of Fe- and Mn-reducers as well as Mn-oxidizers confirms that Fe and Mn redox processes in CCR are influenced by metal-redox bacteria. Further investigation, however, is needed to more fully understand how oxygenation influences these bacteria specifically.

Conclusions

In summary, a pronounced response of the microbial community structure to oxygenation was only observed in near-surface sediment samples obtained near the HOx after 4 months of increasing oxygen-gas flow (Figs 5 and 6; Fig. S1). We found a significant correlation between these shifts in the sediment microbial community structure and environmental variables that changed in response to HOx operation (Figs 5 and 6). Additionally, nucleic acid concentrations in the sediment were typically elevated throughout the oxygenation season in regions most directly influenced by the HOx and at locations throughout the reservoir by the end of the campaign (Fig. 4). RTD-PCR indicated an increased presence of Geobacteraceae after oxygenation (Fig. 7). These data in combination with geochemical data showing increases in porewater concentrations of soluble Mn at the end of the oxygenation season (as precipitation of metal oxides increased) suggest enhanced activity and subsequent growth of the metal-reducing community (Figs 3 and 4; Table S3). Because a correlation between CCR HOx operation and the environmental variables themselves (e.g. porewater O₂ and soluble metal concentrations) has been observed in previous work (Bryant et al., 2011a, b), the absence of an evident short-term shift in the microbial community structure and response to oxygenation may indicate that the considerable HOx-induced variation in sediment–water Fe and Mn dynamics (Fig. 3; Table S3; Bryant et al., 2011b) was largely abiotically controlled (Stein et al., 2002). Conversely, our results may be attributed to the ability of many bacteria to adapt to variations in sediment O₂ levels and utilize various electron acceptors, particularly over relatively short time scales (Thamdrup, 2000; Méthé et al., 2003). CCR had been continually oxygenated for the year prior to this campaign (Gantzer et al., 2009a; Bryant et al., 2011a). Hence, the microbial community may have been pre-adapted to oxic conditions. Longer-term oxygenation combined with a late-season influx of fresh organic matter may have been necessary to induce the changes observed in the microbial community on the final October sampling date.

Insight was obtained on the relative significance of the environmental and geochemical variables assessed in the CCR system. Of the variables evaluated, HOx flow, proximity to the HOx, sediment porewater O₂ and ferrous Fe concentrations, near-sediment soluble Fe concentrations, and total Mn levels in the bulk sediment were found to have the greatest influence on variation in community composition. Characterizing the effect of HOx operations on microbial and chemical processes controlling sediment–water fluxes of chemicals that impair water quality will ultimately (1) enhance understanding of environmental controls on sediment microbial community structure and (2) help optimize techniques used to manage lakes and reservoirs.

Acknowledgements

The authors are extremely grateful to Francisco Vasquez and Krista Köllner who offered invaluable advice and support with microbial techniques. We thank Francisco Vasquez for performing the cloning for Geobacteraceae.
sequence analysis. Biswarup Mukhopadhyay gave advice on sampling strategy and preservation. We thank Mary-Theresa Pendergast, Jose Manuel Cerato, Deric Learman, and Joseph Falkinham for assistance in isolation of Mn-oxidizing bacteria. Robert Rebodos assisted with ferrozine analyses. Paul Gantzer, Lindsay Olinde, Elizabeth Rumsey, and the staff at Western Virginia Water Authority provided help in the field and with laboratory samples. Alfred Wüest kindly reviewed the manuscript prior to submission. The manuscript was also greatly improved by feedback from two anonymous reviewers. The research described in this paper resulted from a shared contribution by the authors. This publication is based upon work supported by the National Science Foundation (NSF) under grants EAR-PF 0848123, DGE 504196, and CBET 1035514, the Western Virginia Water Authority, and Eawag.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Average linkage hierarchical cluster analysis of community similarity (Bray dissimilarity) of CCR sediment samples based on normalized bandintensity data of RISA phyotypes.

Table S1. Variability as characterized by standard deviation (σ) and replicate measurements (m) for average CCR-1 O2 concentration data presented in Fig. 2.

Table S2. Variability as characterized by standard deviation (σ), replicate measurements (m), and error in measurement for average CCR-1 O2, Fe, Mn, and TOC data presented in Fig. 3.

Table S3. Chemistry data for sediment and overlying water throughout 2006 oxygentation season in CCR.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.