Active Filters

  • (-) … = eawag-units:19
  • (-) Keywords ≠ dispersal
  • (-) Keywords = Aphis fabae
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Similar cost of <em>Hamiltonella</em> <em>defensa</em> in experimental and natural aphid‐endosymbiont associations
Kaech, H., Jud, S., & Vorburger, C. (2022). Similar cost of Hamiltonella defensa in experimental and natural aphid‐endosymbiont associations. Ecology and Evolution, 12(1), e8551 (13 pp.). https://doi.org/10.1002/ece3.8551
Horizontal transmission of the heritable protective endosymbiont &lt;em&gt;Hamiltonella&lt;/em&gt; &lt;em&gt;defensa&lt;/em&gt; depends on titre and haplotype
Kaech, H., & Vorburger, C. (2021). Horizontal transmission of the heritable protective endosymbiont Hamiltonella defensa depends on titre and haplotype. Frontiers in Microbiology, 11, 628755 (10 pp.). https://doi.org/10.3389/fmicb.2020.628755
Parasitoids as drivers of symbiont diversity in an insect host
Hafer-Hahmann, N., & Vorburger, C. (2020). Parasitoids as drivers of symbiont diversity in an insect host. Ecology Letters, 23(8), 1232-1241. https://doi.org/10.1111/ele.13526
Estimating costs of aphid resistance to parasitoids conferred by a protective strain of the bacterial endosymbiont &lt;em&gt;Regiella insecticola&lt;/em&gt;
Jamin, A. R., & Vorburger, C. (2019). Estimating costs of aphid resistance to parasitoids conferred by a protective strain of the bacterial endosymbiont Regiella insecticola. Entomologia Experimentalis et Applicata, 167(3), 252-260. https://doi.org/10.1111/eea.12749
Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids
Käch, H., Mathé-Hubert, H., Dennis, A. B., & Vorburger, C. (2018). Rapid evolution of symbiont-mediated resistance compromises biological control of aphids by parasitoids. Evolutionary Applications, 11(2), 220-230. https://doi.org/10.1111/eva.12532
The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid <I>Aphis fabae</I>
Schillewaert, S., Parmentier, T., Vantaux, A., Van den Ende, W., Vorburger, C., & Wenseleers, T. (2017). The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid Aphis fabae. Physiological Entomology, 42(2), 125-133. https://doi.org/10.1111/phen.12181
Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat
Vorburger, C., Herzog, J., & Rouchet, R. (2017). Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat. Journal of Evolutionary Biology, 30(4), 762-772. https://doi.org/10.1111/jeb.13040
Faithful vertical transmission but ineffective horizontal transmission of bacterial endosymbionts during sexual reproduction of the black bean aphid, <i>Aphis fabae</i>
Vorburger, C., Siegrist, G., & Rhyner, N. (2017). Faithful vertical transmission but ineffective horizontal transmission of bacterial endosymbionts during sexual reproduction of the black bean aphid, Aphis fabae. Ecological Entomology, 42(2), 202-209. https://doi.org/10.1111/een.12379
Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition
Rothacher, L., Ferrer-Suay, M., & Vorburger, C. (2016). Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition. Ecology, 97(7), 1712-1723. https://doi.org/10.1890/15-2022.1
Symbiont-conferred protection against Hymenopteran parasitoids in aphids: how general is it?
Cayetano, L., & Vorburger, C. (2015). Symbiont-conferred protection against Hymenopteran parasitoids in aphids: how general is it? Ecological Entomology, 40(1), 85-93. https://doi.org/10.1111/een.12161
Experimental evolution of parasitoid infectivity on symbiont-protected hosts leads to the emergence of genotype specificity
Rouchet, R., & Vorburger, C. (2014). Experimental evolution of parasitoid infectivity on symbiont-protected hosts leads to the emergence of genotype specificity. Evolution, International Journal of Organic Evolution, 68(6), 1607-1616. https://doi.org/10.1111/evo.12377
Genotype-by-genotype specificity remains robust to average temperature variation in an aphid/endosymbiont/parasitoid system
Cayetano, L., & Vorburger, C. (2013). Genotype-by-genotype specificity remains robust to average temperature variation in an aphid/endosymbiont/parasitoid system. Journal of Evolutionary Biology, 26(7), 1603-1610. https://doi.org/10.1111/jeb.12154
Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids
Vorburger, C., Ganesanandamoorthy, P., & Kwiatkowski, M. (2013). Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecology and Evolution, 3(3), 706-713. https://doi.org/10.1002/ece3.491
Parasitoids as vectors of facultative bacterial endosymbionts in aphids
Gehrer, L., & Vorburger, C. (2012). Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 8(4), 613-615. https://doi.org/10.1098/rsbl.2012.0144
Strong specificity in the interaction between parasitoids and symbiont-protected hosts
Rouchet, R., & Vorburger, C. (2012). Strong specificity in the interaction between parasitoids and symbiont-protected hosts. Journal of Evolutionary Biology, 25(11), 2369-2375. https://doi.org/10.1111/j.1420-9101.2012.02608.x
Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids
Schmid, M., Sieber, R., Zimmermann, Y. S., & Vorburger, C. (2012). Development, specificity and sublethal effects of symbiont-conferred resistance to parasitoids in aphids. Functional Ecology, 26(1), 207-215. https://doi.org/10.1111/j.1365-2435.2011.01904.x
Climate effects on life cycle variation and population genetic architecture of the black bean aphid, <i>Aphis fabae</i>
Sandrock, C., Razmjou, J., & Vorburger, C. (2011). Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae. Molecular Ecology, 20(19), 4165-4181. https://doi.org/10.1111/j.1365-294X.2011.05242.x