Active Filters

  • (-) … = eawag-units:20
  • (-) Journal ≠ Science of the Total Environment
  • (-) Eawag Authors = Kägi, Ralf
Search Results 1 - 20 of 152

Pages

  • RSS Feed
Select Page
Structural effects of aluminum and iron occupancy in minerals of the jarosite-alunite solid solution
Grigg, A. R. C., Notini, L., Kaegi, R., ThomasArrigo, L. K., & Kretzschmar, R. (2024). Structural effects of aluminum and iron occupancy in minerals of the jarosite-alunite solid solution. ACS Earth and Space Chemistry, 8(2), 194-206. https://doi.org/10.1021/acsearthspacechem.3c00174
Depth-dependent transformation of ZnO and Ag nanoparticles in sulfate-reducing sediments tracked using scanning transmission electron microscopy
Stetten, L., Kaegi, R., Hofmann, T., & von der Kammer, F. (2024). Depth-dependent transformation of ZnO and Ag nanoparticles in sulfate-reducing sediments tracked using scanning transmission electron microscopy. Environmental Science: Nano, 11(1), 136-148. https://doi.org/10.1039/d3en00550j
First evidence of nanoparticle uptake through leaves and roots in beech (<em>Fagus sylvatica</em> L.) and pine (<em>Pinus sylvestris</em> L.)
Ballikaya, P., Brunner, I., Cocozza, C., Grolimund, D., Kaegi, R., Murazzi, M. E., … Cherubini, P. (2023). First evidence of nanoparticle uptake through leaves and roots in beech (Fagus sylvatica L.) and pine (Pinus sylvestris L.). Tree Physiology, 43(2), 262-276. https://doi.org/10.1093/treephys/tpac117
Nanoparticles are everywhere, even inside trees
Ballikaya, P., Brunner, I., Cocozza, C., Grolimund, D., Kaegi, R., Murazzi, M. E., … Cherubini, P. (2023). Nanoparticles are everywhere, even inside trees. Chimia, 77(4), 256. https://doi.org/10.2533/chimia.2023.256
Predicting accidental release of engineered nanomaterials to the environment
Gottschalk, F., Debray, B., Klaessig, F., Park, B., Lacome, J. M., Vignes, A., … Kaegi, R. (2023). Predicting accidental release of engineered nanomaterials to the environment. Nature Nanotechnology, 18, 412-418. https://doi.org/10.1038/s41565-022-01290-2
Competitive incorporation of Mn and Mg in vivianite at varying salinity and effects on crystal structure and morphology
Joëlle Kubeneck, L., ThomasArrigo, L. K., Rothwell, K. A., Kaegi, R., & Kretzschmar, R. (2023). Competitive incorporation of Mn and Mg in vivianite at varying salinity and effects on crystal structure and morphology. Geochimica et Cosmochimica Acta, 346, 231-244. https://doi.org/10.1016/j.gca.2023.01.029
Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time
Nenonen, V. V., Kaegi, R., Hug, S. J., Göttlicher, J., Mangold, S., Winkel, L. H. E., & Voegelin, A. (2023). Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time. Geochimica et Cosmochimica Acta, 360, 207-230. https://doi.org/10.1016/j.gca.2023.09.004
Rückhalt von Nanoplastik-Partikeln bei der Wasseraufbereitung
Pulido-Reyes, G., Bianco, C., Magherini, L., Sethi, R., von Gunten, U., Kaegi, R., & Mitrano, D. M. (2023). Rückhalt von Nanoplastik-Partikeln bei der Wasseraufbereitung. Aqua & Gas, 103(7-8), 30-35.
Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries
Sodnikar, K., Kaegi, R., Christl, I., Schroth, M. H., & Sander, M. (2023). Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries. Environmental Science: Processes and Impacts, 25(12), 2067-2080. https://doi.org/10.1039/d3em00294b
Particle-scale understanding of arsenic interactions with sulfidized nanoscale zerovalent iron and their impacts on dehalogenation reactivity
Xu, J., Chen, C., Hu, X., Chen, D., Bland, G., Wielinski, J., … Lowry, G. V. (2023). Particle-scale understanding of arsenic interactions with sulfidized nanoscale zerovalent iron and their impacts on dehalogenation reactivity. Environmental Science and Technology, 57(51), 21917-21926. https://doi.org/10.1021/acs.est.3c08635
Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions
Grigg, A. R. C., ThomasArrigo, L. K., Schulz, K., Rothwell, K. A., Kaegi, R., & Kretzschmar, R. (2022). Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions. Environmental Science: Processes and Impacts, 24(10), 1867-1882. https://doi.org/10.1039/d2em00290f
Direct analysis of nanoparticles in organic solvents by ICPMS with microdroplet injection
Kocic, J., Dirin, D. N., Kägi, R., Kovalenko, M. V., Günther, D., & Hattendorf, B. (2022). Direct analysis of nanoparticles in organic solvents by ICPMS with microdroplet injection. Journal of Analytical Atomic Spectrometry, 37(8), 1738-1750. https://doi.org/10.1039/d1ja00358e
Can forest trees take up and transport nanoplastics?
Murazzi, M. E., Cherubini, P., Brunner, I., Kägi, R., Saurer, M., Ballikaya, P., … Gessler, A. (2022). Can forest trees take up and transport nanoplastics? iForest, 15(2), 128-132. https://doi.org/10.3832/ifor4021-015
Coexisting goethite promotes Fe(II)-catalyzed transformation of ferrihydrite to goethite
Notini, L., ThomasArrigo, L. K., Kaegi, R., & Kretzschmar, R. (2022). Coexisting goethite promotes Fe(II)-catalyzed transformation of ferrihydrite to goethite. Environmental Science and Technology, 56(17), 12723-12733. https://doi.org/10.1021/acs.est.2c03925
Nanoplastics removal during drinking water treatment: laboratory- and pilot-scale experiments and modeling
Pulido-Reyes, G., Magherini, L., Bianco, C., Sethi, R., von Gunten, U., Kaegi, R., & Mitrano, D. M. (2022). Nanoplastics removal during drinking water treatment: laboratory- and pilot-scale experiments and modeling. Journal of Hazardous Materials, 436, 129011 (13 pp.). https://doi.org/10.1016/j.jhazmat.2022.129011
Separation of microplastic particles from sewage sludge extracts using magnetic seeded filtration
Rhein, F., Nirschl, H., & Kaegi, R. (2022). Separation of microplastic particles from sewage sludge extracts using magnetic seeded filtration. Water Research X, 17, 100155 (11 pp.). https://doi.org/10.1016/j.wroa.2022.100155
Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body
Schwarzfischer, M., Niechcial, A., Lee, S. S., Sinnet, B., Wawrzyniak, M., Laimbacher, A., … Spalinger, M. R. (2022). Ingested nano- and microsized polystyrene particles surpass the intestinal barrier and accumulate in the body. NanoImpact, 25, 100374 (9 pp.). https://doi.org/10.1016/j.impact.2021.100374
Transformation of zinc oxide nanoparticles in freshwater sediments under oxic and anoxic conditions
Stetten, L., Hofmann, T., Proux, O., Landrot, G., Kaegi, R., & von der Kammer, F. (2022). Transformation of zinc oxide nanoparticles in freshwater sediments under oxic and anoxic conditions. Environmental Science: Nano, 9(11), 4255-4267. https://doi.org/10.1039/d2en00709f
Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS
Szakas, S. E., Lancaster, R., Kaegi, R., & Gundlach-Graham, A. (2022). Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environmental Science: Nano, 9, 1627-1638. https://doi.org/10.1039/d1en01039e
Quecksilber im Schweizer Abwasser. Konzentrationen, Massenflüsse, Speziierung und Rückhalt
Berg, M., Suess, E., Cayo, L., Bouchet, S., Hug, S. J., Kaegi, R., … Buser, A. M. (2021). Quecksilber im Schweizer Abwasser. Konzentrationen, Massenflüsse, Speziierung und Rückhalt. Aqua & Gas, 101(1), 14-20.
 

Pages