Active Filters

  • (-) … = eawag-units:20
  • (-) Publication Status = Published
  • (-) Journal = Environmental Science and Technology
Search Results 1 - 20 of 76

Pages

  • RSS Feed
Select Page
Particle-scale understanding of arsenic interactions with sulfidized nanoscale zerovalent iron and their impacts on dehalogenation reactivity
Xu, J., Chen, C., Hu, X., Chen, D., Bland, G., Wielinski, J., … Lowry, G. V. (2023). Particle-scale understanding of arsenic interactions with sulfidized nanoscale zerovalent iron and their impacts on dehalogenation reactivity. Environmental Science and Technology, 57(51), 21917-21926. https://doi.org/10.1021/acs.est.3c08635
Global sensitivity analysis of background life cycle inventories
Kim, A., Mutel, C. L., Froemelt, A., & Hellweg, S. (2022). Global sensitivity analysis of background life cycle inventories. Environmental Science and Technology, 56(9), 5874-5885. https://doi.org/10.1021/acs.est.1c07438
Coexisting goethite promotes Fe(II)-catalyzed transformation of ferrihydrite to goethite
Notini, L., ThomasArrigo, L. K., Kaegi, R., & Kretzschmar, R. (2022). Coexisting goethite promotes Fe(II)-catalyzed transformation of ferrihydrite to goethite. Environmental Science and Technology, 56(17), 12723-12733. https://doi.org/10.1021/acs.est.2c03925
Formation of fiber fragments during abrasion of polyester textiles
Cai, Y., Mitrano, D. M., Hufenus, R., & Nowack, B. (2021). Formation of fiber fragments during abrasion of polyester textiles. Environmental Science and Technology, 55(12), 8001-8009. https://doi.org/10.1021/acs.est.1c00650
Mercury reduction by nanoparticulate vivianite
Etique, M., Bouchet, S., Byrne, J. M., Thomasarrigo, L. K., Kaegi, R., & Kretzschmar, R. (2021). Mercury reduction by nanoparticulate vivianite. Environmental Science and Technology, 55(5), 3399-3407. https://doi.org/10.1021/acs.est.0c05203
Stabilization of ferrihydrite and lepidocrocite by silicate during Fe(II)-catalyzed mineral transformation: impact on particle morphology and silicate distribution
Schulz, K., ThomasArrigo, L. K., Kaegi, R., & Kretzschmar, R. (2021). Stabilization of ferrihydrite and lepidocrocite by silicate during Fe(II)-catalyzed mineral transformation: impact on particle morphology and silicate distribution. Environmental Science and Technology, 56(9), 5929-5938. https://doi.org/10.1021/acs.est.1c08789
Systematic study of microplastic fiber release from 12 different polyester textiles during washing
Cai, Y., Yang, T., Mitrano, D. M., Heuberger, M., Hufenus, R., & Nowack, B. (2020). Systematic study of microplastic fiber release from 12 different polyester textiles during washing. Environmental Science and Technology, 54(8), 4847-4855. https://doi.org/10.1021/acs.est.9b07395
A research agenda for the future of urban water management: exploring the potential of non-grid, small-grid, and hybrid solutions
Hoffmann, S., Feldmann, U., Bach, P. M., Binz, C., Farrelly, M., Frantzeskaki, N., … Udert, K. M. (2020). A research agenda for the future of urban water management: exploring the potential of non-grid, small-grid, and hybrid solutions. Environmental Science and Technology, 54(9), 5312-5322. https://doi.org/10.1021/acs.est.9b05222
Transport of nano- and microplastic through unsaturated porous media from sewage sludge application
Keller, A. S., Jimenez-Martinez, J., & Mitrano, D. M. (2020). Transport of nano- and microplastic through unsaturated porous media from sewage sludge application. Environmental Science and Technology, 54(2), 911-920. https://doi.org/10.1021/acs.est.9b06483
Benchmarking soft sensors for remote monitoring of on-site wastewater treatment plants
Schneider, M. Y., Furrer, V., Sprenger, E., Carbajal, J. P., Villez, K., & Maurer, M. (2020). Benchmarking soft sensors for remote monitoring of on-site wastewater treatment plants. Environmental Science and Technology, 54(17), 10840-10849. https://doi.org/10.1021/acs.est.9b07760
Looking at silver-based nanoparticles in environmental water samples: repetitive cloud point extraction bridges gaps in electron microscopy for naturally occurring nanoparticles
Urstoeger, A., Wimmer, A., Kaegi, R., Reiter, S., & Schuster, M. (2020). Looking at silver-based nanoparticles in environmental water samples: repetitive cloud point extraction bridges gaps in electron microscopy for naturally occurring nanoparticles. Environmental Science and Technology, 54(19), 12063-12071. https://doi.org/10.1021/acs.est.0c02878
Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron
Xu, J., Avellan, A., Li, H., Clark, E. A., Henkelman, G., Kaegi, R., & Lowry, G. V. (2020). Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent iron. Environmental Science and Technology, 54(20), 13294-13303. https://doi.org/10.1021/acs.est.0c03879
Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite
Aeppli, M., Vranic, S., Kaegi, R., Kretzschmar, R., Brown, A. R., Voegelin, A., … Sander, M. (2019). Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental Science and Technology, 53(15), 8736-8746. https://doi.org/10.1021/acs.est.9b01299
Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science and Technology, 53(7), 3568-3578. https://doi.org/10.1021/acs.est.8b07190
How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan
Blumensaat, F., Leitão, J. P., Ort, C., Rieckermann, J., Scheidegger, A., Vanrolleghem, P. A., & Villez, K. (2019). How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan. Environmental Science and Technology, 53(15), 8488-8498. https://doi.org/10.1021/acs.est.8b06481
Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands
ThomasArrigo, L. K., Kaegi, R., & Kretzschmar, R. (2019). Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands. Environmental Science and Technology, 53(23), 13636-13647. https://doi.org/10.1021/acs.est.9b03952
Transformation of nanoscale and ionic Cu and Zn during the incineration of digested sewage sludge (biosolids)
Wielinski, J., Gogos, A., Voegelin, A., Müller, C., Morgenroth, E., & Kaegi, R. (2019). Transformation of nanoscale and ionic Cu and Zn during the incineration of digested sewage sludge (biosolids). Environmental Science and Technology, 53(20), 11704-11713. https://doi.org/10.1021/acs.est.9b01983
Dissolved organic matter and associated trace metal dynamics from river to lake, under ice-covered and ice-free conditions
Worms, I. A. M., Chmiel, H. E., Traber, J., Tofield-Pasche, N., & Slaveykova, V. I. (2019). Dissolved organic matter and associated trace metal dynamics from river to lake, under ice-covered and ice-free conditions. Environmental Science and Technology, 53(24), 14134-14143. https://doi.org/10.1021/acs.est.9b02184
Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties
Xu, J., Wang, Y., Weng, C., Bai, W., Jiao, Y., Kaegi, R., & Lowry, G. V. (2019). Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environmental Science and Technology, 53(10), 5936-5945. https://doi.org/10.1021/acs.est.9b00511
Trends in micropollutant biotransformation along a solids retention time gradient
Achermann, S., Falås, P., Joss, A., Mansfeldt, C., Men, Y., Vogler, B., & Fenner, K. (2018). Trends in micropollutant biotransformation along a solids retention time gradient. Environmental Science and Technology, 52(20), 11601-11611. https://doi.org/10.1021/acs.est.8b02763
 

Pages