Active Filters

  • (-) … = eawag-units:25
  • (-) Eawag Authors = Melián, Carlos J.
Search Results 1 - 20 of 24
Select Page
An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning
Anaya-Rojas, J. M., Best, R. J., Brunner, F. S., Eizaguirre, C., Leal, M. C., Melián, C. J., … Matthews, B. (2019). An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning. Ecology, 100(8), e02744 (12 pp.). https://doi.org/10.1002/ecy.2744
Eco‐evolutionary feedbacks - theoretical models and perspectives
Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., … Matthews, B. (2019). Eco‐evolutionary feedbacks - theoretical models and perspectives. Functional Ecology, 33(1), 13-30. https://doi.org/10.1111/1365-2435.13241
Detecting the macroevolutionary signal of species interactions
Harmon, L. J., Andreazzi, C. S., Débarre, F., Drury, J., Goldberg, E. E., Martins, A. B., … Matthews, B. (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology, 32(8), 769-782. https://doi.org/10.1111/jeb.13477
Principles of ecology revisited: integrating information and ecological theories for a more unified science
O'Connor, M. I., Pennell, M. W., Altermatt, F., Matthews, B., Melián, C. J., & Gonzalez, A. (2019). Principles of ecology revisited: integrating information and ecological theories for a more unified science. Frontiers in Ecology and Evolution, 7, 219 (20 pp.). https://doi.org/10.3389/fevo.2019.00219
Deciphering the interdependence between ecological and evolutionary networks
Melián, C. J., Matthews, B., de Andreazzi, C. S., Rodríguez, J. P., Harmon, L. J., & Fortuna, M. A. (2018). Deciphering the interdependence between ecological and evolutionary networks. Trends in Ecology and Evolution, 33(7), 504-512. https://doi.org/10.1016/j.tree.2018.04.009
Comparing species interaction networks along environmental gradients
Pellissier, L., Albouy, C., Bascompte, J., Farwig, N., Graham, C., Loreau, M., … Gravel, D. (2018). Comparing species interaction networks along environmental gradients. Biological Reviews, 93(2), 785-800. https://doi.org/10.1111/brv.12366
Eco-evolutionary feedbacks promote fluctuating selection and long-term stability of antagonistic networks
de Andreazzi, C. S., Guimarães, P. R., & Melián, C. J. (2018). Eco-evolutionary feedbacks promote fluctuating selection and long-term stability of antagonistic networks. Proceedings of the Royal Society B: Biological Sciences, 285(1874), 20172596 (9 pp.). https://doi.org/10.1098/rspb.2017.2596
Reintroducing environmental change drivers in biodiversity–ecosystem functioning research
De Laender, F., Rohr, J. R., Ashauer, R., Baird, D. J., Berger, U., Eisenhauer, N., … Van den Brink, P. J. (2016). Reintroducing environmental change drivers in biodiversity–ecosystem functioning research. Trends in Ecology and Evolution, 31(12), 905-915. https://doi.org/10.1016/j.tree.2016.09.007
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, F., Descombes, P., Gaboriau, T., Cowman, P. F., Parravicini, V., Kulbicki, M., … Pelissier, L. (2016). Plate tectonics drive tropical reef biodiversity dynamics. Nature Communications, 7, 11461 (8 pp.). https://doi.org/10.1038/ncomms11461
Condition-dependent movement and dispersal in experimental metacommunities
Fronhofer, E. A., Klecka, J., Melián, C. J., & Altermatt, F. (2015). Condition-dependent movement and dispersal in experimental metacommunities. Ecology Letters, 18(9), 954-963. https://doi.org/10.1111/ele.12475
Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services
Hines, J., van der Putten, W. H., De Deyn, G. B., Wagg, C., Voigt, W., Mulder, C., … Eisenhauer, N. (2015). Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. In G. Woodwar & D. A. Bohan (Eds.), Advances in Ecological Research: Vol. 53. Ecosystem Services From Biodiversity to Society, Part 1 (pp. 161-199). https://doi.org/10.1016/bs.aecr.2015.09.001
Dispersal dynamics in food webs
Melián, C. J., Křivan, V., Altermatt, F., Starý, P., Pellissier, L., & De Laender, F. (2015). Dispersal dynamics in food webs. American Naturalist, 185(2), 157-168. https://doi.org/10.1086/679505
Diversification and biodiversity dynamics of hot and cold spots
Melián, C. J., Seehausen, O., Eguíluz, V. M., Fortuna, M. A., & Deiner, K. (2015). Diversification and biodiversity dynamics of hot and cold spots. Ecography, 38(4), 393-401. https://doi.org/10.1111/ecog.01162
Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species
Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R., & Tella, J. L. (2015). Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology, 96(6), 1650-1660. https://doi.org/10.1890/14-0437.1
The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients
De Laender, F., Melian, C. J., Bindler, R., Van den Brink, P. J., Daam, M., Roussel, H., … Janssen, C. R. (2014). The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecology Letters, 17(1), 72-81. https://doi.org/10.1111/ele.12210
Individual trait variation and diversity in food webs
Melián, C. J., Baldó, F., Matthews, B., Vilas, C., González-Ortegón, E., Drake, P., & Williams, R. J. (2014). Individual trait variation and diversity in food webs. In J. Moya-Laraño, J. Rowntree, & G. Woodward (Eds.), Advances in Ecological Research: Vol. 50. Eco-evolutionary dynamics (pp. 207-241). https://doi.org/10.1016/B978-0-12-801374-8.00006-2
Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence
Moya-Laraño, J., Bilbao-Castro, J. R., Barrionuevo, G., Ruiz-Lupión, D., Casado, L. G., Montserrat, M., … Magalhães, S. (2014). Eco-evolutionary spatial dynamics: rapid evolution and isolation explain food web persistence. Advances in Ecological Research: Vol. 50. (pp. 74-143). https://doi.org/10.1016/B978-0-12-801374-8.00003-7
Effects of two traits of the ecological state equation on our understanding of species coexistence and ecosystem services
Rodríguez, R. A., Delgado, J. D., Herrera, A. M., Riera, R., Navarro, R. M., Melián, C., … Quirós, Á. (2013). Effects of two traits of the ecological state equation on our understanding of species coexistence and ecosystem services. Ecological Modelling, 265, 1-13. https://doi.org/10.1016/j.ecolmodel.2013.06.001
Does sex speed up evolutionary rate and increase biodiversity?
Melián, C. J., Alonso, D., Allesina, S., Condit, R. S., & Etienne, R. S. (2012). Does sex speed up evolutionary rate and increase biodiversity? PLoS Computational Biology, 8(3), 1-9. https://doi.org/10.1371/journal.pcbi.1002414
Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification
Davies, T. J., Allen, A. P., Borda-de-Água, L., Regetz, J., & Melián, C. J. (2011). Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution, International Journal of Organic Evolution, 65(7), 1841-1850. https://doi.org/10.1111/j.1558-5646.2011.01265.x