Active Filters

  • (-) Eawag Authors = Leitão, João P.
Search Results 1 - 20 of 60
Select Page
A drainage network-based impact matrix to support targeted blue-green-grey stormwater management solutions
Li, S., Leitão, J. P., Wang, Z., & Bach, P. M. (2024). A drainage network-based impact matrix to support targeted blue-green-grey stormwater management solutions. Science of the Total Environment, 912, 168623 (10 pp.). https://doi.org/10.1016/j.scitotenv.2023.168623
Management of urban drainage infrastructure
Carriço, N., do Céu Almeida, M., & Leitão, J. P. (2023). Management of urban drainage infrastructure. In T. Bolognesi, F. Silva Pinto, & M. Farrelly (Eds.), Routledge environment and sustainability handbooks. Routledge handbook of urban water governance (pp. 145-162). https://doi.org/10.4324/9781003057574-12
Innovative methods for mapping the suitability of nature-based solutions for landslide risk reduction
Devanand, V. B., Mubeen, A., Vojinovic, Z., Sanchez Torres, A., Paliaga, G., Abdullah, A. F., … Fröhle, P. (2023). Innovative methods for mapping the suitability of nature-based solutions for landslide risk reduction. Land, 12(7), 1357 (15 pp.). https://doi.org/10.3390/land12071357
A framework for modelling in-sewer thermal-hydraulic dynamic anomalies driven by stormwater runoff and seasonal effects
Figueroa, A., Hadengue, B., Leitão, J. P., & Blumensaat, F. (2023). A framework for modelling in-sewer thermal-hydraulic dynamic anomalies driven by stormwater runoff and seasonal effects. Water Research, 229, 119492 (10 pp.). https://doi.org/10.1016/j.watres.2022.119492
Using satellite imagery to investigate Blue-Green Infrastructure establishment time for urban cooling
Gobatti, L., Bach, P. M., Scheidegger, A., & Leitão, J. P. (2023). Using satellite imagery to investigate Blue-Green Infrastructure establishment time for urban cooling. Sustainable Cities and Society, 97, 104768 (11 pp.). https://doi.org/10.1016/j.scs.2023.104768
Editorial: Urban drainage in a context of climate and land cover changes
Jato-Espino, D., Charlesworth, S., Leitão, J. P., & Rodríguez Sánchez, J. P. (2023). Editorial: Urban drainage in a context of climate and land cover changes. Frontiers in Water, 4, 1118338 (2 pp.). https://doi.org/10.3389/frwa.2022.1118338
Editorial: UWJ special edition on water management in developing countries
Nascimento, N., Armitage, N., Sanches, J. P. R., & Leitao, J. P. (2023). Editorial: UWJ special edition on water management in developing countries. Urban Water Journal, 20(10), 1231-1236. https://doi.org/10.1080/1573062X.2023.2266635
Brief communication: the potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings
Peleg, N., Torelló-Sentelles, H., Mariéthoz, G., Benoit, L., Leitão, J. P., & Marra, F. (2023). Brief communication: the potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings. Natural Hazards and Earth System Sciences, 23(3), 1233-1240. https://doi.org/10.5194/nhess-23-1233-2023
European stakeholders' visions and needs for stormwater in future urban drainage systems
Tondera, K., Brelot, E., Fontanel, F., Cherqui, F., Ellerbæk Nielsen, J., Brüggemann, T., … Anta, J. (2023). European stakeholders' visions and needs for stormwater in future urban drainage systems. Urban Water Journal, 20(7), 831-843. https://doi.org/10.1080/1573062X.2023.2211559
Flood uncertainty estimation using deep ensembles
Chaudhary, P., Leitão, J. P., Donauer, T., D’Aronco, S., Perraudin, N., Obozinski, G., … Russo, S. (2022). Flood uncertainty estimation using deep ensembles. Water, 14(19), 2980 (24 pp.). https://doi.org/10.3390/w14192980
Data-driven rapid flood prediction mapping with catchment generalizability
Guo, Z., Moosavi, V., & Leitão, J. P. (2022). Data-driven rapid flood prediction mapping with catchment generalizability. Journal of Hydrology, 609, 127726 (12 pp.). https://doi.org/10.1016/j.jhydrol.2022.127726
Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers
Harpaz, C., Russo, S., Leitão, J. P., & Penn, R. (2022). Potential of supervised machine learning algorithms for estimating the impact of water efficient scenarios on solids accumulation in sewers. Water Research, 216, 118247 (16 pp.). https://doi.org/10.1016/j.watres.2022.118247
Asset management for blue-green infrastructures: a scoping review
Langeveld, J. G., Cherqui, F., Tscheikner-Gratl, F., Muthanna, T. M., Fernandez-Delgado Juarez, M., Leitão, J. P., … Rulleau, B. (2022). Asset management for blue-green infrastructures: a scoping review. Blue-Green Systems, 4(2), 272-290. https://doi.org/10.2166/bgs.2022.019
Mapping storm spatial profiles for flood impact assessments
Peleg, N., Ban, N., Gibson, M. J., Chen, A. S., Paschalis, A., Burlando, P., & Leitão, J. P. (2022). Mapping storm spatial profiles for flood impact assessments. Advances in Water Resources, 166, 104258 (11 pp.). https://doi.org/10.1016/j.advwatres.2022.104258
Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions
Probst, N., Bach, P. M., Cook, L. M., Maurer, M., & Leitão, J. P. (2022). Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions. Blue-Green Systems, 4(2), 348-376. https://doi.org/10.2166/bgs.2022.028
Stormwater management impacts of small urbanising towns: The necessity of investigating the 'devil in the detail'
Browne, S., Lintern, A., Jamali, B., Leitão, J. P., & Bach, P. M. (2021). Stormwater management impacts of small urbanising towns: The necessity of investigating the 'devil in the detail'. Science of the Total Environment, 757, 143835 (13 pp.). https://doi.org/10.1016/j.scitotenv.2020.143835
A distributed heat transfer model for thermal-hydraulic analyses in sewer networks
Figueroa, A., Hadengue, B., Leitão, J. P., Rieckermann, J., & Blumensaat, F. (2021). A distributed heat transfer model for thermal-hydraulic analyses in sewer networks. Water Research, 204, 117649 (11 pp.). https://doi.org/10.1016/j.watres.2021.117649
Data-driven flood emulation: speeding up urban flood predictions by deep convolutional neural networks
Guo, Z., Leitão, J. P., Simões, N. E., & Moosavi, V. (2021). Data-driven flood emulation: speeding up urban flood predictions by deep convolutional neural networks. Journal of Flood Risk Management, 14(1), e12684 (14 pp.). https://doi.org/10.1111/jfr3.12684
Machine learning for accelerating 2D flood models: potential and challenges
Jamali, B., Haghighat, E., Ignjatovic, A., Leitão, J. P., & Deletic, A. (2021). Machine learning for accelerating 2D flood models: potential and challenges. Hydrological Processes, 35(4), e14064 (14 pp.). https://doi.org/10.1002/hyp.14064
Not all SuDS are created equal: impact of different approaches on combined sewer overflows
Joshi, P., Leitão, J. P., Maurer, M., & Bach, P. M. (2021). Not all SuDS are created equal: impact of different approaches on combined sewer overflows. Water Research, 191, 116780 (13 pp.). https://doi.org/10.1016/j.watres.2020.116780