Active Filters

  • (-) Eawag Authors = Desmond, Peter
Search Results 1 - 9 of 9
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration
Javier, L., Farhat, N. M., Desmond, P., Valladares Linares, R., Bucs, S., Kruithof, J. C., & Vrouwenvelder, J. S. (2020). Biofouling control by phosphorus limitation strongly depends on the assimilable organic carbon concentration. Water Research, 183, 116051 (11 pp.). https://doi.org/10.1016/j.watres.2020.116051
Biofilm compressibility in ultrafiltration: a relation between biofilm morphology, mechanics and hydraulic resistance
Jafari, M., Derlon, N., Desmond, P., van Loosdrecht, M. C. M., Morgenroth, E., & Picioreanu, C. (2019). Biofilm compressibility in ultrafiltration: a relation between biofilm morphology, mechanics and hydraulic resistance. Water Research, 157, 335-345. https://doi.org/10.1016/j.watres.2019.03.073
Gravity-driven membrane filtration for water and wastewater treatment: a review
Pronk, W., Ding, A., Morgenroth, E., Derlon, N., Desmond, P., Burkhardt, M., … Fane, A. G. (2019). Gravity-driven membrane filtration for water and wastewater treatment: a review. Water Research, 149, 553-565. https://doi.org/10.1016/j.watres.2018.11.062
Source community and assembly processes affect the efficiency of microbial microcystin degradation on drinking water filtration membranes
Silva, M. O. D., Desmond, P., Derlon, N., Morgenroth, E., & Pernthaler, J. (2019). Source community and assembly processes affect the efficiency of microbial microcystin degradation on drinking water filtration membranes. Frontiers in Microbiology, 10, 843 (15 pp.). https://doi.org/10.3389/fmicb.2019.00843
Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms
Desmond, P., Best, J. P., Morgenroth, E., & Derlon, N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132, 211-221. https://doi.org/10.1016/j.watres.2017.12.058
Linking hydraulic resistance to the physical structure of membrane biofilms
Desmond, P. (2018). Linking hydraulic resistance to the physical structure of membrane biofilms [Doctoral dissertation, ETH Zurich]. https://doi.org/10.3929/ethz-b-000296862
Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration
Desmond, P., Morgenroth, E., & Derlon, N. (2018). Physical structure determines compression of membrane biofilms during Gravity Driven Membrane (GDM) ultrafiltration. Water Research, 143, 539-549. https://doi.org/10.1016/j.watres.2018.07.008
Stratification in the physical structure and cohesion of membrane biofilms – implications for hydraulic resistance
Desmond, P., Böni, L., Fischer, P., Morgenroth, E., & Derlon, N. (2018). Stratification in the physical structure and cohesion of membrane biofilms – implications for hydraulic resistance. Journal of Membrane Science, 564, 897-904. https://doi.org/10.1016/j.memsci.2018.07.088
Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study
Jafari, M., Desmond, P., van Loosdrecht, M. C. M., Derlon, N., Morgenroth, E., & Picioreanu, C. (2018). Effect of biofilm structural deformation on hydraulic resistance during ultrafiltration: A numerical and experimental study. Water Research, 145, 375-387. https://doi.org/10.1016/j.watres.2018.08.036