Active Filters

  • (-) Eawag Authors = Hollender, Juliane
Search Results 1 - 20 of 263

Pages

  • RSS Feed
Select Page
Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening
Aalizadeh, R., Alygizakis, N. A., Schymanski, E. L., Krauss, M., Schulze, T., Ibáñez, M., … Thomaidis, N. S. (2021). Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Analytical Chemistry, 93(33), 11601-11611. https://doi.org/10.1021/acs.analchem.1c02348
Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate <em>Hyalella azteca</em>
Fu, Q., Scheidegger, A., Laczko, E., & Hollender, J. (2021). Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca. Environmental Science and Technology, 55(12), 7920-7929. https://doi.org/10.1021/acs.est.0c07887
Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation
Günthardt, B. F., Hollender, J., Scheringer, M., Hungerbühler, K., Nanusha, M. Y., Brack, W., & Bucheli, T. D. (2021). Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation. Science of the Total Environment, 798, 149128 (11 pp.). https://doi.org/10.1016/j.scitotenv.2021.149128
Retrospective HRMS screening and dedicated target analysis reveal a wide exposure to pyrrolizidine alkaloids in small streams
Günthardt, B. F., Wettstein, F. E., Hollender, J., Singer, H., Harri, J., Scheringer, M., … Bucheli, T. D. (2021). Retrospective HRMS screening and dedicated target analysis reveal a wide exposure to pyrrolizidine alkaloids in small streams. Environmental Science and Technology, 55, 1036-1044. https://doi.org/10.1021/acs.est.0c06411
Identification of LC-HRMS nontarget signals in groundwater after source related prioritization
Kiefer, K., Du, L., Singer, H., & Hollender, J. (2021). Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Research, 196, 116994 (12 pp.). https://doi.org/10.1016/j.watres.2021.116994
Polar micropollutants and their transformation products in groundwater: identification with LC-HRMS and their abatement in water treatment
Kiefer, K. (2021). Polar micropollutants and their transformation products in groundwater: identification with LC-HRMS and their abatement in water treatment [Doctoral dissertation, ETH Zurich]. https://doi.org/10.3929/ethz-b-000481187
Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater
Kruve, A., Kiefer, K., & Hollender, J. (2021). Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater. Analytical and Bioanalytical Chemistry, 413, 1549-1559. https://doi.org/10.1007/s00216-020-03109-2
Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS
Mairinger, T., Loos, M., & Hollender, J. (2021). Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Research, 190, 116745 (11 pp.). https://doi.org/10.1016/j.watres.2020.116745
Estrogene von Nutztieren. Matchentscheidend oder kaum relevant für die Gewässerbelastung?
Rechsteiner, D., Wettstein, F. E., Vermeirssen, E. L. M., Hollender, J., & Bucheli, T. D. (2021). Estrogene von Nutztieren. Matchentscheidend oder kaum relevant für die Gewässerbelastung? Aqua & Gas, 101(4), 40-46.
Natural estrogen emissions to subsurface tile drains from experimental grassland fields in Switzerland after application of livestock slurries and free compounds
Rechsteiner, D., Wettstein, F. E., Pfeiffer, N., Hollender, J., & Bucheli, T. D. (2021). Natural estrogen emissions to subsurface tile drains from experimental grassland fields in Switzerland after application of livestock slurries and free compounds. Science of the Total Environment, 779, 146351 (11 pp.). https://doi.org/10.1016/j.scitotenv.2021.146351
Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment
Schollée, J. E., Hollender, J., & McArdell, C. S. (2021). Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment. Water Research, 200, 117209 (13 pp.). https://doi.org/10.1016/j.watres.2021.117209
Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture
Schreiner, V. C., Link, M., Kunz, S., Szöcs, E., Scharmüller, A., Vogler, B., … Schäfer, R. B. (2021). Paradise lost? Pesticide pollution in a European region with considerable amount of traditional agriculture. Water Research, 188, 116528 (10 pp.). https://doi.org/10.1016/j.watres.2020.116528
Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis
Schulze, B., van Herwerden, D., Allan, I., Bijlsma, L., Etxebarria, N., Hansen, M., … Samanipour, S. (2021). Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 8, 223 (10 pp.). https://doi.org/10.1038/s41597-021-01002-w
Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening
Albergamo, V., Escher, B. I., Schymanski, E. L., Helmus, R., Dingemans, M. M. L., Cornelissen, E. R., … de Voogt, P. (2020). Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research and Technology, 6(1), 103-116. https://doi.org/10.1039/c9ew00741e
Coupling river concentration simulations with a toxicokinetic model effectively predicts the internal concentrations of wastewater-derived micropollutants in field gammarids
Arlos, M. J., Schürz, F., Fu, Q., Lauper, B. B., Stamm, C., & Hollender, J. (2020). Coupling river concentration simulations with a toxicokinetic model effectively predicts the internal concentrations of wastewater-derived micropollutants in field gammarids. Environmental Science and Technology, 54(3), 1710-1719. https://doi.org/10.1021/acs.est.9b05736
Improving risk assessment by predicting the survival of field gammarids exposed to dynamic pesticide mixtures
Arlos, M. J., Focks, A., Hollender, J., & Stamm, C. (2020). Improving risk assessment by predicting the survival of field gammarids exposed to dynamic pesticide mixtures. Environmental Science and Technology, 54(19), 12383-12392. https://doi.org/10.1021/acs.est.0c03939
Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments
Chiaia-Hernández, A. C., Scheringer, M., Müller, A., Stieger, G., Wächter, D., Keller, A., … Hollender, J. (2020). Target and suspect screening analysis reveals persistent emerging organic contaminants in soils and sediments. Science of the Total Environment, 740, 140181 (10 pp.). https://doi.org/10.1016/j.scitotenv.2020.140181
Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: a case study on antifungal azoles
Creusot, N., Casado-Martinez, C., Chiaia-Hernandez, A., Kiefer, K., Ferrari, B. J. D., Fu, Q., … Hollender, J. (2020). Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: a case study on antifungal azoles. Environment International, 139, 105708 (10 pp.). https://doi.org/10.1016/j.envint.2020.105708
The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let&#039;s cooperate!
Dulio, V., Koschorreck, J., van Bavel, B., van den Brink, P., Hollender, J., Munthe, J., … Slobodnik, J. (2020). The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 32(1), 100 (11 pp.). https://doi.org/10.1186/s12302-020-00375-w
Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms
Fu, Q., Fedrizzi, D., Kosfeld, V., Schlechtriem, C., Ganz, V., Derrer, S., … Hollender, J. (2020). Biotransformation changes bioaccumulation and toxicity of diclofenac in aquatic organisms. Environmental Science and Technology, 54, 4400-4408. https://doi.org/10.1021/acs.est.9b07127
 

Pages