Active Filters

  • (-) Eawag Authors = Kägi, Ralf
Search Results 1 - 20 of 125

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Electrophoretic deposition of nanoporous oxide coatings from concentrated CuO nanoparticle dispersions
Dörner, L., Schmutz, P., Kägi, R., Kovalenko, M. V., & Jeurgens, L. P. H. (2020). Electrophoretic deposition of nanoporous oxide coatings from concentrated CuO nanoparticle dispersions. Langmuir, 36(28), 8075-8085. https://doi.org/10.1021/acs.langmuir.0c00720
Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics
Frehland, S., Kaegi, R., Hufenus, R., & Mitrano, D. M. (2020). Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics. Water Research, 182, 115860 (9 pp.). https://doi.org/10.1016/j.watres.2020.115860
Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets
Geitner, N. K., Ogilvie Hendren, C., Cornelis, G., Kaegi, R., Lead, J. R., Lowry, G. V., Lynch, I., Nowack, B., Petersen, E., Bernhardt, E., Brown, S., Chen, W., de Garidel-Thoron, C., Hanson, J., Harper, S., Jones, K., von der Kammer, F., Kennedy, A., Kidd, J., … Wiesner, M. R. (2020). Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 7(1), 13-36. https://doi.org/10.1039/c9en00448c
Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns
Gogos, A., Wielinski, J., Voegelin, A., Kammer, F. von der, & Kaegi, R. (2020). Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns. Water Research X, 9, 100059 (8 pp.). https://doi.org/10.1016/j.wroa.2020.100059
Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater
Hagemann, N., Schmidt, H. P., Kägi, R., Böhler, M., Sigmund, G., Maccagnan, A., McArdell, C. S., & Bucheli, T. D. (2020). Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater. Science of the Total Environment, 730, 138417 (11 pp.). https://doi.org/10.1016/j.scitotenv.2020.138417
Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution
Hoffmann, K., Bouchet, S., Christl, I., Kaegi, R., & Kretzschmar, R. (2020). Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution. Environmental Science: Nano, 7(4), 1163-1178. https://doi.org/10.1039/c9en01448a
Characterization of nanomaterials by transmission electron microscopy: measurement procedures
Mast, J., Verleysen, E., Hodoroaba, V. D., & Kaegi, R. (2020). Characterization of nanomaterials by transmission electron microscopy: measurement procedures. In V. D. Hodoroaba, W. E. S. Unger, & A. G. Shard (Eds.), Micro and nano technologies. Characterization of nanoparticles. Measurement processes for nanoparticles (pp. 29-48). https://doi.org/10.1016/B978-0-12-814182-3.00004-3
Mercury loads and fluxes from wastewater: a nationwide survey in Switzerland
Suess, E., Berg, M., Bouchet, S., Cayo, L., Hug, S. J., Kaegi, R., Voegelin, A., Winkel, L. H. E., Tessier, E., Amouroux, D., & Buser, A. M. (2020). Mercury loads and fluxes from wastewater: a nationwide survey in Switzerland. Water Research, 175, 115708 (10 pp.). https://doi.org/10.1016/j.watres.2020.115708
Key principles and operational practices for improved nanotechnology environmental exposure assessment
Svendsen, C., Walker, L. A., Matzke, M., Lahive, E., Harrison, S., Crossley, A., Park, B., Lofts, S., Lynch, I., Vázquez-Campos, S., Kaegi, R., Gogos, A., Asbach, C., Cornelis, G., von der Kammer, F., van den Brink, N. W., Mays, C., & Spurgeon, D. J. (2020). Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nanotechnology, 15, 731-742. https://doi.org/10.1038/s41565-020-0742-1
Accurate quantification of TiO<sub>2</sub> nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification
Velimirovic, M., Wagner, S., Monikh, F. A., Uusimäki, T., Kaegi, R., Hofmann, T., & von der Kammer, F. (2020). Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. Talanta, 215, 120921 (10 pp.). https://doi.org/10.1016/j.talanta.2020.120921
Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: development of criteria for uncertainty analysis
Wielinski, J., Marafatto, F. F., Gogos, A., Scheidegger, A., Voegelin, A., Müller, C. R., Morgenroth, E., & Kaegi, R. (2020). Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: development of criteria for uncertainty analysis. Journal of Analytical Atomic Spectrometry, 35, 567-579. https://doi.org/10.1039/C9JA00394K
Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron
Xu, J., Avellan, A., Li, H., Liu, X., Noël, V., Lou, Z., Wang, Y., Kaegi, R., Henkelman, G., & Lowry, G. V. (2020). Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Advanced Materials, 32(17), 1906010 (10 pp.). https://doi.org/10.1002/adma.201906910
Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout <em>Oncorhynchus mykiss</em>
Zeumer, R., Hermsen, L., Kaegi, R., Kühr, S., Knopf, B., & Schlechtriem, C. (2020). Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss. Science of the Total Environment, 706, 135695 (12 pp.). https://doi.org/10.1016/j.scitotenv.2019.135695
Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite
Aeppli, M., Vranic, S., Kaegi, R., Kretzschmar, R., Brown, A. R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental Science and Technology, 53(15), 8736-8746. https://doi.org/10.1021/acs.est.9b01299
Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science and Technology, 53(7), 3568-3578. https://doi.org/10.1021/acs.est.8b07190
Assessing the impacts of sewage sludge amendment containing nano-TiO<sub>2</sub> on tomato plants: a life cycle study
Bakshi, M., Liné, C., Bedolla, D. E., Stein, R. J., Kaegi, R., Sarret, G., Pradas del Real, A. E., Castillo-Michel, H., Abhilash, P. C., & Larue, C. (2019). Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: a life cycle study. Journal of Hazardous Materials, 369, 191-198. https://doi.org/10.1016/j.jhazmat.2019.02.036
Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area
Dörner, L., Cancellieri, C., Rheingans, B., Walter, M., Kägi, R., Schmutz, P., Kovalenko, M. V., & Jeurgens, L. P. H. (2019). Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 9, 11758 (15 pp.). https://doi.org/10.1038/s41598-019-48020-8
Transformation of cerium dioxide nanoparticles during sewage sludge incineration
Gogos, A., Wielinski, J., Voegelin, A., Emerich, H., & Kaegi, R. (2019). Transformation of cerium dioxide nanoparticles during sewage sludge incineration. Environmental Science: Nano, 6, 1765-1776. https://doi.org/10.1039/C9EN00281B
Aktivkohle - Made in Switzerland!
Hagemann, N., Bucheli, T. D., Schmidt, H. P., Kägi, R., Böhler, M., & McArdell, C. S. (2019). Aktivkohle - Made in Switzerland!. Aqua & Gas, 99(1), 32-38.
Long-term outdoor lysimeter study with cerium dioxide nanomaterial
Hoppe, M., Schlich, K., Wielinski, J., Köser, J., Rückamp, D., Kaegi, R., & Hund-Rinke, K. (2019). Long-term outdoor lysimeter study with cerium dioxide nanomaterial. NanoImpact, 14, 100170 (9 pp.). https://doi.org/10.1016/j.impact.2019.100170
 

Pages