Active Filters

  • (-) Eawag Authors = Kohler, Hans-Peter E.
Search Results 1 - 20 of 179

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Photochemical transformation of poly(butylene adipate-<i>co</i>-terephthalate) and its effects on enzymatic hydrolyzability
De Hoe, G. X., Zumstein, M. T., Getzinger, G. J., Rüegsegger, I., Kohler, H. P. E., Maurer-Jones, M. A., … McNeill, K. (2019). Photochemical transformation of poly(butylene adipate-co-terephthalate) and its effects on enzymatic hydrolyzability. Environmental Science and Technology, 53(5), 2472-2481. https://doi.org/10.1021/acs.est.8b06458
Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase
Heeb, N. V., Schalles, S., Lehner, S., Schinkel, L., Schilling, I., Lienemann, P., … Kohler, H. P. E. (2019). Biotransformation of short-chain chlorinated paraffins (SCCPs) with LinA2: a HCH and HBCD converting bacterial dehydrohalogenase. Chemosphere, 226, 744-754. https://doi.org/10.1016/j.chemosphere.2019.03.169
Modelling carbofuran biotransformation by: <i>Novosphingobium</i> sp. KN65.2 in the presence of coincidental carbon and indigenous microbes
Liu, L., Helbling, D. E., Kohler, H. P. E., & Smets, B. F. (2019). Modelling carbofuran biotransformation by: Novosphingobium sp. KN65.2 in the presence of coincidental carbon and indigenous microbes. Environmental Science: Water Research and Technology, 5(4), 798-807. https://doi.org/10.1039/c8ew00929e
&lt;em&gt;Aminobacter&lt;/em&gt; sp. MSH1 mineralises the groundwater micropollutant 2,6-dichlorobenzamide through a unique chlorobenzoate catabolic pathway.
Raes, B., Horemans, B., Rentsch, D., T'Syen, J., Ghequire, M. G. K., De Mot, R., … Springael, D. (2019). Aminobacter sp. MSH1 mineralises the groundwater micropollutant 2,6-dichlorobenzamide through a unique chlorobenzoate catabolic pathway. Environmental Science and Technology, 53(17), 10146-10156. https://doi.org/10.1021/acs.est.9b02021
Assessing the environmental transformation of nanoplastic through <sup>13</sup>C-labelled polymers
Sander, M., Kohler, H. P. E., & McNeill, K. (2019). Assessing the environmental transformation of nanoplastic through 13C-labelled polymers. Nature Nanotechnology, 14(4), 301-303. https://doi.org/10.1038/s41565-019-0420-3
Kinetic isotope effects of the enzymatic transformation of <i>γ</i>-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2
Schilling, I. E., Hess, R., Bolotin, J., Lal, R., Hofstetter, T. B., & Kohler, H. P. E. (2019). Kinetic isotope effects of the enzymatic transformation of γ-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2. Environmental Science and Technology, 53(5), 2353-2363. https://doi.org/10.1021/acs.est.8b04234
Ion trapping of amines in protozoa: a novel removal mechanism for micropollutants in activated sludge
Gulde, R., Anliker, S., Kohler, H. P. E., & Fenner, K. (2018). Ion trapping of amines in protozoa: a novel removal mechanism for micropollutants in activated sludge. Environmental Science and Technology, 52(1), 52-60. https://doi.org/10.1021/acs.est.7b03556
Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: comparison of <i>in vitro</i> and <i>in silico</i> results
Heeb, N. V., Mazenauer, M., Wyss, S., Geueke, B., Kohler, H. P. E., & Lienemann, P. (2018). Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: comparison of in vitro and in silico results. Chemosphere, 207, 118-129. https://doi.org/10.1016/j.chemosphere.2018.05.057
Labeling and protecting <i>N</i>-terminal protein positions by <i>β</i>-peptidyl aminopeptidase-catalyzed attachment of <i>β</i>-amino-acid residues – insulin as a first example
Kolesinska, B., Wasko, J., Kaminski, Z., Geueke, B., Kohler, H. P. E., & Seebach, D. (2018). Labeling and protecting N-terminal protein positions by β-peptidyl aminopeptidase-catalyzed attachment of β-amino-acid residues – insulin as a first example. Helvetica Chimica Acta, 101(1), e1700259 (10 pp.). https://doi.org/10.1002/hlca.201700259
Isolation of the (+)-pinoresinol-mineralizing <i>Pseudomonas</i> sp. strain SG-MS2 and elucidation of its catabolic pathway
Shettigar, M., Balotra, S., Cahill, D., Warden, A. C., Lacey, M. J., Kohler, H. P. E., … Pandey, G. (2018). Isolation of the (+)-pinoresinol-mineralizing Pseudomonas sp. strain SG-MS2 and elucidation of its catabolic pathway. Applied and Environmental Microbiology, 84(4), e02531-17 (14 pp.). https://doi.org/10.1128/AEM.02531-17
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in <i>Aminobacter</i> sp. MSH1
T'Syen, J., Raes, B., Horemans, B., Tassoni, R., Leroy, B., Lood, C., … Springael, D. (2018). Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Applied Microbiology and Biotechnology, 102(18), 7963-7979. https://doi.org/10.1007/s00253-018-9189-9
Biodegradation of synthetic polymers in soils: Tracking carbon into CO<sub>2</sub> and microbial biomass
Zumstein, M. T., Schintlmeister, A., Nelson, T. F., Baumgartner, R., Woebken, D., Wagner, M., … Sander, M. (2018). Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances, 4(7), eaas9024 (8 pp.). https://doi.org/10.1126/sciadv.aas9024
Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming <I>Sphingobium chinhatense</I> strain IP26
Heeb, N. V., Grubelnik, A., Geueke, B., Kohler, H. P. E., & Lienemann, P. (2017). Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26. Chemosphere, 182, 491-500. https://doi.org/10.1016/j.chemosphere.2017.05.047
Characterization of substrate, cosubstrate, and product isotope effects associated with enzymatic oxygenations of organic compounds based on compound-specific isotope analysis
Pati, S. G., Kohler, H. P. E., & Hofstetter, T. B. (2017). Characterization of substrate, cosubstrate, and product isotope effects associated with enzymatic oxygenations of organic compounds based on compound-specific isotope analysis. In M. E. Harris & V. E. Anderson (Eds.), Methods in enzymology: Vol. 596. Measurement and analysis of kinetic isotope effects (pp. 291-329). https://doi.org/10.1016/bs.mie.2017.06.044
FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in <i>Microbacterium</i> sp strain BR1 subsisting on sulfonamide antibiotics
Ricken, B., Kolvenbach, B. A., Bergesch, C., Benndorf, D., Kroll, K., Strnad, H., … Corvini, P. F. X. (2017). FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports, 7, 15783 (11 pp.). https://doi.org/10.1038/s41598-017-16132-8
Important amino acid residues of hexachlorocyclohexane dehydrochlorinases (LinA) for enantioselective transformation of hexachlorocyclohexane isomers
Shrivastava, N., Macwan, A. S., Kohler, H. P. E., & Kumar, A. (2017). Important amino acid residues of hexachlorocyclohexane dehydrochlorinases (LinA) for enantioselective transformation of hexachlorocyclohexane isomers. Biodegradation, 28(2-3), 171-180. https://doi.org/10.1007/s10532-017-9786-9
Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility
Zumstein, M. T., Rechsteiner, D., Roduner, N., Perz, V., Ribitsch, D., Guebitz, G. M., … Sander, M. (2017). Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environmental Science and Technology, 51(13), 7476-7485. https://doi.org/10.1021/acs.est.7b01330
High-throughput analysis of enzymatic hydrolysis of biodegradable polyesters by monitoring cohydrolysis of a polyester-embedded fluorogenic probe
Zumstein, M. T., Kohler, H. P. E., McNeill, K., & Sander, M. (2017). High-throughput analysis of enzymatic hydrolysis of biodegradable polyesters by monitoring cohydrolysis of a polyester-embedded fluorogenic probe. Environmental Science and Technology, 51(8), 4358-4367. https://doi.org/10.1021/acs.est.6b06060
Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation
Garg, N., Lata, P., Jit, S., Sangwan, N., Singh, A. K., Dwivedi, V., … Lal, R. (2016). Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 27(2), 179-193. https://doi.org/10.1007/s10532-016-9765-6
Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge
Gulde, R., Meier, U., Schymanski, E. L., Kohler, H. P. E., Helbling, D. E., Derrer, S., … Fenner, K. (2016). Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environmental Science and Technology, 50(6), 2908-2920. https://doi.org/10.1021/acs.est.5b05186
 

Pages