Active Filters

  • (-) Eawag Authors = Weilenmann, Hans-Ulrich
Search Results 1 - 20 of 25
Select Page
Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data
Props, R., Rubbens, P., Besmer, M., Buysschaert, B., Sigrist, J., Weilenmann, H., … Hammes, F. (2018). Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. Water Research, 145, 73-82. https://doi.org/10.1016/j.watres.2018.08.013
Routine bacterial analysis with automated flow cytometry
Van Nevel, S., Koetzsch, S., Weilenmann, H. U., Boon, N., & Hammes, F. (2013). Routine bacterial analysis with automated flow cytometry. Journal of Microbiological Methods, 94(2), 73-76. https://doi.org/10.1016/j.mimet.2013.05.007
Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis
Hammes, F., Broger, T., Weilenmann, H. U., Vital, M., Helbing, J., Bosshart, U., … Sonnleitner, B. (2012). Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry Part A, 81A(6), 508-516. https://doi.org/10.1002/cyto.a.22048
Development of biomass in a drinking water granular active carbon (GAC) filter
Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H. U., & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter. Water Research, 45(19), 6347-6354. https://doi.org/10.1016/j.watres.2011.09.017
<i>Chelativorans multitrophicus</i> gen. nov., sp. nov. and <i>Chelativorans oligotrophicus</i> sp. nov., aerobic EDTA-degrading bacteria
Doronina, N. V., Kaparullina, E. N., Trotsenko, Y. A., Nörtemann, B., Bucheli-Witschel, M., Weilenmann, H. U., & Egli, T. (2010). Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1044-1051. https://doi.org/10.1099/ijs.0.003152-0
Solar disinfection (SODIS) and subsequent dark storage of <I>Salmonella typhimurium</I> and <I>Shigella flexneri</I> monitored by flow cytometry
Bosshard, F., Berney, M., Scheifele, M., Weilenmann, H. U., & Egli, T. (2009). Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiology, 155(4), 1310-1317. https://doi.org/10.1099/mic.0.024794-0
Rapid, cultivation-independent assessment of microbial viability in drinking water
Berney, M., Vital, M., Hülshoff, I., Weilenmann, H. U., Egli, T., & Hammes, F. (2008). Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Research, 42(14), 4010-4018. https://doi.org/10.1016/j.watres.2008.07.017
Adaptation to UVA radiation of <I>E. coli</I> growing in continuous culture
Berney, M., Weilenmann, H. U., & Egli, T. (2007). Adaptation to UVA radiation of E. coli growing in continuous culture. Journal of Photochemistry and Photobiology B: Biology, 86(2), 149-159. https://doi.org/10.1016/j.jphotobiol.2006.08.014
Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry
Berney, M., Hammes, F., Bosshard, F., Weilenmann, H. U., & Egli, T. (2007). Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Applied and Environmental Microbiology, 73(10), 3283-3290. https://doi.org/10.1128/AEM.02750-06
Efficacy of solar disinfection of <I>Escherichia coli</I>, <I>Shigella flexneri</I>, <I>Salmonella</I> Typhimurium and <I>Vibrio cholerae</I>
Berney, M., Weilenmann, H. U., Simonetti, A., & Egli, T. (2006). Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae. Journal of Applied Microbiology, 101(4), 828-836. https://doi.org/10.1111/j.1365-2672.2006.02983.x
Flow-cytometric study of vital cellular functions in <I>Escherichia coli</I> during solar disinfection (SODIS)
Berney, M., Weilenmann, H. U., & Egli, T. (2006). Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology, 152(6), 1719-1729. https://doi.org/10.1099/mic.0.28617-0
Gene expression of <I>Escherichia coli</I> in continuous culture during adaptation to artificial sunlight
Berney, M., Weilenmann, H. U., & Egli, T. (2006). Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environmental Microbiology, 8(9), 1635-1647. https://doi.org/10.1111/j.1462-2920.2006.01057.x
Specific growth rate determines the sensitivity of <em>Escherichia coli</em> to Thermal, UVA, and solar disinfection
Berney, M., Weilenmann, H. U., Ihssen, J., Bassin, C., & Egli, T. (2006). Specific growth rate determines the sensitivity of Escherichia coli to Thermal, UVA, and solar disinfection. Applied and Environmental Microbiology, 72(4), 2586-2593. https://doi.org/10.1128/AEM.72.4.2586-2593.2006
Isolation and growth characteristics of an EDTA-degrading member of the α-subclass of <I>Proteobacteria</I>
Weilenmann, H. U., Engeli, B., Bucheli-Witschel, M., & Egli, T. (2004). Isolation and growth characteristics of an EDTA-degrading member of the α-subclass of Proteobacteria. Biodegradation, 15, 289-301. https://doi.org/10.1023/B:BIOD.0000042184.35056.ab
Tailored synthesis of poly([<I>R</I>]-3-hydroxybutyrate-<I>co</I>-3-hydroxyvalerate) (PHB/HV) in <I>Ralstonia eutropha</I> DSM 428
Zinn, M., Weilenmann, H. U., Hany, R., Schmid, M., & Egli, T. (2003). Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnologica, 23(2-3), 309-316. https://doi.org/10.1002/abio.200390039
The apparent clock-like evolution of <I>Escherichia coli</I> in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics
Wick, L. M., Weilenmann, H., & Egli, T. (2002). The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology, 148, 2889-2902. https://doi.org/10.1099/00221287-148-9-2889
Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions
Wanner, U., Kemmler, J., Weilenmann, H. U., Egli, T., El-Banna, T., & Auling, G. (1990). Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation, 1, 31-41. https://doi.org/10.1007/BF00117049
Isolation, characterization, and physiology of bacteria able to degrade nitrilotriacetate
Egli, T., & Weilenmann, H. U. (1989). Isolation, characterization, and physiology of bacteria able to degrade nitrilotriacetate. Toxicity Assessment, 4(1), 23-34. https://doi.org/10.1002/tox.2540040104
Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil
Egli, T., Weilenmann, H. U., El-Banna, T., & Auling, G. (1988). Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Systematic and Applied Microbiology, 10(3), 297-305. https://doi.org/10.1016/S0723-2020(88)80016-X
Isolation and growth of a nitrilotriacetate (NTA) degrading, denitrifying bacterium
Wanner, U., Kemmler, J., Egli, T., & Weilenmann, H. U. (1988). Isolation and growth of a nitrilotriacetate (NTA) degrading, denitrifying bacterium. G. Hamer (Ed.) (pp. 161-164). Presented at the Mixed and Multiple Substrates and Feedstocks. Hartung-Gorre, Konstanz.