Active Filters

  • (-) Organizational Unit = Environmental Chemistry UCHEM
  • (-) Keywords ≠ biocides
  • (-) Keywords ≠ metabolites
  • (-) Eawag Authors = Schymanski, Emma L.
Search Results 1 - 20 of 43
Select Page
Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system
Albergamo, V., Schollée, J. E., Schymanski, E. L., Helmus, R., Timmer, H., Hollender, J., & de Voogt, P. (2019). Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system. Environmental Science and Technology, 53(13), 7584-7594. https://doi.org/10.1021/acs.est.9b01750
Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
Altenburger, R., Brack, W., Burgess, R. M., Busch, W., Escher, B. I., Focks, A., … Krauss, M. (2019). Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 31(1), 12 (17 pp.). https://doi.org/10.1186/s12302-019-0193-1
NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in "digitally frozen" environmental samples
Alygizakis, N. A., Oswald, P., Thomaidis, N. S., Schymanski, E. L., Aalizadeh, R., Schulze, T., … Slobodnik, J. (2019). NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in "digitally frozen" environmental samples. Trends in Analytical Chemistry, 115, 129-137. https://doi.org/10.1016/j.trac.2019.04.008
Ontology-based metabolomics data integration with quality control
Buendia, P., Bradley, R. M., Taylor, T. J., Schymanski, E. L., Patti, G. J., & Kabuka, M. R. (2019). Ontology-based metabolomics data integration with quality control. Bioanalysis, 11(12), 1139-1154. https://doi.org/10.4155/bio-2018-0303
The role of analytical chemistry in exposure science: focus on the aquatic environment
Hernández, F., Bakker, J., Bijlsma, L., de Boer, J., Botero-Coy, A. M., Bruinen de Bruin, Y., … Hogendoorn, E. A. (2019). The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere, 222, 564-583. https://doi.org/10.1016/j.chemosphere.2019.01.118
Annotating nontargeted LC-HRMS/MS data with two complementary tandem mass spectral libraries
Oberacher, H., Reinstadler, V., Kreidl, M., Stravs, M. A., Hollender, J., & Schymanski, E. L. (2019). Annotating nontargeted LC-HRMS/MS data with two complementary tandem mass spectral libraries. Metabolites, 9(1), 3 (15 pp.). https://doi.org/10.3390/metabo9010003
Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag
Ruttkies, C., Schymanski, E. L., Strehmel, N., Hollender, J., Neumann, S., Williams, A. J., & Krauss, M. (2019). Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Analytical and Bioanalytical Chemistry, 411(19), 4683-4700. https://doi.org/10.1007/s00216-019-01885-0
Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry
Alygizakis, N. A., Samanipour, S., Hollender, J., Ibáñez, M., Kaserzon, S., Kokkali, V., … Thomas, K. V. (2018). Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environmental Science and Technology, 52(9), 5135-5144. https://doi.org/10.1021/acs.est.8b00365
Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas
Frainay, C., Schymanski, E. L., Neumann, S., Merlet, B., Salek, R. M., Jourdan, F., & Yanes, O. (2018). Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas. Metabolites, 8(3), 51 (14 pp.). https://doi.org/10.3390/metabo8030051
Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS
Hu, M., Müller, E., Schymanski, E. L., Ruttkies, C., Schulze, T., Brack, W., & Krauss, M. (2018). Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS. Analytical and Bioanalytical Chemistry, 410(7), 1931-1941. https://doi.org/10.1007/s00216-018-0857-5
Nontarget screening with high resolution mass spectrometry in the environment: ready to go?
Hollender, J., Schymanski, E. L., Singer, H. P., & Ferguson, P. L. (2017). Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environmental Science and Technology, 51(20), 11505-11512. https://doi.org/10.1021/acs.est.7b02184
Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?
Metz, T. O., Baker, E. S., Schymanski, E. L., Renslow, R. S., Thomas, D. G., Causon, T. J., … Teeguarden, J. G. (2017). Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis, 9(1), 81-98. https://doi.org/10.4155/bio-2016-0244
Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products
Schollée, J. E., Schymanski, E. L., Stravs, M. A., Gulde, R., Thomaidis, N. S., & Hollender, J. (2017). Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products. Journal of the American Society for Mass Spectrometry, 28(12), 2692-2704. https://doi.org/10.1007/s13361-017-1797-6
Critical assessment of small molecule identification 2016: automated methods
Schymanski, E. L., Ruttkies, C., Krauss, M., Brouard, C., Kind, T., Dührkop, K., … Neumann, S. (2017). Critical assessment of small molecule identification 2016: automated methods. Journal of Cheminformatics, 9, 1-21. https://doi.org/10.1186/s13321-017-0207-1
Open science for identifying “known unknown” chemicals
Schymanski, E. L., & Williams, A. J. (2017). Open science for identifying “known unknown” chemicals. Environmental Science and Technology, 51(10), 5357-5359. https://doi.org/10.1021/acs.est.7b01908
Effect-directed analysis supporting monitoring of aquatic environments — an in-depth overview
Brack, W., Ait-Aissa, S., Burgess, R. M., Busch, W., Creusot, N., Di Paolo, C., … Krauss, M. (2016). Effect-directed analysis supporting monitoring of aquatic environments — an in-depth overview. Science of the Total Environment, 544, 1073-1118. https://doi.org/10.1016/j.scitotenv.2015.11.102
Nontarget Analysis of Environmental Samples Based on Liquid Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS)
Gago-Ferrero, P., Schymanski, E. L., Hollender, J., & Thomaidis, N. S. (2016). Nontarget Analysis of Environmental Samples Based on Liquid Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS). Comprehensive analytical chemistry: Vol. 71. (pp. 381-403). https://doi.org/10.1016/bs.coac.2016.01.012
Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge
Gulde, R., Meier, U., Schymanski, E. L., Kohler, H. P. E., Helbling, D. E., Derrer, S., … Fenner, K. (2016). Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environmental Science and Technology, 50(6), 2908-2920. https://doi.org/10.1021/acs.est.5b05186
Temporal trend analysis on LC-HRMS Measurements of lake sediments to prioritize organic contaminants
Günthardt, B. F. (2016). Temporal trend analysis on LC-HRMS Measurements of lake sediments to prioritize organic contaminants (Master thesis). 92 p.
MetFrag relaunched: incorporating strategies beyond <I>in silico</I> fragmentation
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 8, 3 (16 pp.). https://doi.org/10.1186/s13321-016-0115-9