Active Filters

  • (-) Eawag Departments = Environmental Chemistry UCHEM
  • (-) Keywords ≠ biocides
  • (-) Keywords ≠ non-target screening
  • (-) Eawag Authors = Schymanski, Emma L.
Search Results 1 - 20 of 41
Select Page
CASMI: and the winner is...
Schymanski, E. L., & Neumann, S. (2013). CASMI: and the winner is. Metabolites, 3(2), 412-439. https://doi.org/10.3390/metabo3020412
Small molecule identification with MOLGEN and mass spectrometry
Meringer, M., & Schymanski, E. L. (2013). Small molecule identification with MOLGEN and mass spectrometry. Metabolites, 3(2), 440-462. https://doi.org/10.3390/metabo3020440
The Critical Assessment of Small Molecule Identification (CASMI): challenges and solutions
Schymanski, E. L., & Neumann, S. (2013). The Critical Assessment of Small Molecule Identification (CASMI): challenges and solutions. Metabolites, 3(3), 517-538. https://doi.org/10.3390/metabo3030517
Automatic recalibration and processing of tandem mass spectra using formula annotation
Stravs, M. A., Schymanski, E. L., Singer, H. P., & Hollender, J. (2013). Automatic recalibration and processing of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 48(1), 89-99. https://doi.org/10.1002/jms.3131
Integrated biological–chemical approach for the isolation and selection of polyaromatic mutagens in surface water
Gallampois, C. M. J., Schymanski, E. L., Bataineh, M., Buchinger, S., Krauss, M., Reifferscheid, G., & Brack, W. (2013). Integrated biological–chemical approach for the isolation and selection of polyaromatic mutagens in surface water. Analytical and Bioanalytical Chemistry, 405(28), 9101-9112. https://doi.org/10.1007/s00216-013-7349-4
Solving CASMI 2013 with MetFrag, MetFusion and MOLGEN-MS/MS
Schymanski, E. L., Gerlich, M., Ruttkies, C., & Neumann, S. (2014). Solving CASMI 2013 with MetFrag, MetFusion and MOLGEN-MS/MS. Mass Spectrometry, 3(2), 1-10. https://doi.org/10.5702/massspectrometry.S0036
Mathematical chemistry and chemoinformatics. Structure generation, elucidation and quantitative structure-property relationships
Kerber, A., Laue, R., Meringer, M., Rücker, C., & Schymanski, E. (2014). Mathematical chemistry and chemoinformatics. Structure generation, elucidation and quantitative structure-property relationships. https://doi.org/10.1515/9783110254075
Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis
Huntscha, S., Hofstetter, T. B., Schymanski, E. L., Spahr, S., & Hollender, J. (2014). Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environmental Science and Technology, 48(8), 4435-4443. https://doi.org/10.1021/es405694z
Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments
Chiaia-Hernandez, A. C., Schymanski, E. L., Kumar, P., Singer, H. P., & Hollender, J. (2014). Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Analytical and Bioanalytical Chemistry, 406(28), 7323-7335. https://doi.org/10.1007/s00216-014-8166-0
Identifying small molecules via high resolution mass spectrometry: communicating confidence
Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science and Technology, 48(4), 2097-2098. https://doi.org/10.1021/es5002105
Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry
Schymanski, E. L., Singer, H. P., Longrée, P., Loos, M., Ruff, M., Stravs, M. A., … Hollender, J. (2014). Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environmental Science and Technology, 48(3), 1811-1818. https://doi.org/10.1021/es4044374
Metabolite identification: are you sure? And how do your peers gauge your confidence?
Creek, D. J., Dunn, W. B., Fiehn, O., Griffin, J. L., Hall, R. D., Lei, Z., … Wolfende, J. L. (2014). Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics, 10(3), 350-353. https://doi.org/10.1007/s11306-014-0656-8
Multicriteria approach to select polyaromatic river mutagen candidates
Gallampois, C. M. J., Schymanski, E. L., Krauss, M., Ulrich, N., Bataineh, M., & Brack, W. (2015). Multicriteria approach to select polyaromatic river mutagen candidates. Environmental Science and Technology, 49(5), 2959-2968. https://doi.org/10.1021/es503640k
Prioritizing unknown transformationproducts from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic
Schollée, J. E., Schymanski, E. L., Avak, S. E., Loos, M., & Hollender, J. (2015). Prioritizing unknown transformationproducts from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Analytical Chemistry, 87(24), 12121-12129. https://doi.org/10.1021/acs.analchem.5b02905
Future water quality monitoring - adapting tools to deal with mixtures of pollutants in water resource management
Ait-Aissa, S., Altenburger, R., Antczak, P., Backhaus, T., Barceló, D., Seiler, T. B., … Brack, W. (2015). Future water quality monitoring - adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 512-513, 540-551. https://doi.org/10.1016/j.scitotenv.2014.12.057
Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS
Gago-Ferrero, P., Schymanski, E. L., Bletsou, A. A., Aalizadeh, R., Hollender, J., & Thomaidis, N. S. (2015). Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environmental Science and Technology, 49(20), 12333-12341. https://doi.org/10.1021/acs.est.5b03454
Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods
Abate-Pella, D., Freund, D. M., Ma, Y., Simón-Manso, Y., Hollender, J., Broeckling, C. D., … Boswell, P. G. (2015). Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 1412, 43-51. https://doi.org/10.1016/j.chroma.2015.07.108
Temporal trend analysis on LC-HRMS measurements of lake sediments to prioritize organic contaminants
Günthardt, B. F. (2016). Temporal trend analysis on LC-HRMS measurements of lake sediments to prioritize organic contaminants [Master thesis].
Computational metabolomics
Böcker, S., Rousu, J., & Schymansky, E. (Eds.). (2016). Computational metabolomics. Dagstuhl Reports: Vol. 5. Dagstuhl Seminar 15492. https://doi.org/10.4230/DagRep.5.11.180
SPLASH, a hashed identifier for mass spectra
Wohlgemuth, G., Mehta, S. S., Mejia, R. F., Neumann, S., Pedrosa, D., Pluskal, T., … Fiehn, O. (2016). SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 34(11), 1099-1101. https://doi.org/10.1038/nbt.3689