Active Filters

  • (-) Organizational Unit = Environmental Chemistry UCHEM
  • (-) Keywords ≠ groundwater
  • (-) Journal = Environmental Science and Technology
  • (-) Eawag Authors = Gorski, Christopher A.
Search Results 1 - 9 of 9
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Thermodynamic characterization of iron oxide–aqueous Fe<SUP>2+</SUP> redox couples
Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B., & Stewart, S. M. (2016). Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environmental Science and Technology, 50(16), 8538-8547. https://doi.org/10.1021/acs.est.6b02661
Electrochemical analyses of redox-active iron minerals: A review of nonmediated and mediated approaches
Sander, M., Hofstetter, T. B., & Gorski, C. A. (2015). Electrochemical analyses of redox-active iron minerals: A review of nonmediated and mediated approaches. Environmental Science and Technology, 49(10), 5862-5878. https://doi.org/10.1021/acs.est.5b00006
Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties
Gorski, C. A., Klüpfel, L. E., Voegelin, A., Sander, M., & Hofstetter, T. B. (2013). Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environmental Science and Technology, 47(23), 13477-13485. https://doi.org/10.1021/es403824x
Coal fly ash as a source of iron in atmospheric dust
Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., & Grassian, V. H. (2012). Coal fly ash as a source of iron in atmospheric dust. Environmental Science and Technology, 46(4), 2112-2120. https://doi.org/10.1021/es204102f
Fe atom exchange between aqueous Fe<SUP>2+</SUP> and magnetite
Gorski, C. A., Handler, R. M., Beard, B. L., Pasakarnis, T., Johnson, C. M., & Scherer, M. M. (2012). Fe atom exchange between aqueous Fe2+ and magnetite. Environmental Science and Technology, 46(22), 12399-12407. https://doi.org/10.1021/es204649a
Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites
Gorski, C. A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Marques Fernandes, M., … Sander, M. (2012). Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environmental Science and Technology, 46(17), 9360-9368. https://doi.org/10.1021/es3020138
Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1
Gorski, C. A., Klüpfel, L., Voegelin, A., Sander, M., & Hofstetter, T. B. (2012). Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environmental Science and Technology, 46(17), 9369-9377. https://doi.org/10.1021/es302014u
Influence of magnetite stoichiometry on U<SUP>VI</SUP> reduction
Latta, D. E., Gorski, C. A., Boyanov, M. I., O'Loughlin, E. J., Kemner, K. M., & Scherer, M. M. (2012). Influence of magnetite stoichiometry on UVI reduction. Environmental Science and Technology, 46(2), 778-786. https://doi.org/10.1021/es2024912
Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral
Schaefer, M. V., Gorski, C. A., & Scherer, M. M. (2011). Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environmental Science and Technology, 45(2), 540-545. https://doi.org/10.1021/es102560m