Active Filters

  • (-) Eawag Departments = Environmental Chemistry UCHEM
  • (-) Publication Year = 2006 - 2018
  • (-) Keywords ≠ QSAR
  • (-) Eawag Authors = Schymanski, Emma L.
Search Results 1 - 20 of 36
Select Page
Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry
Alygizakis, N. A., Samanipour, S., Hollender, J., Ibáñez, M., Kaserzon, S., Kokkali, V., … Thomas, K. V. (2018). Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environmental Science and Technology, 52(9), 5135-5144. https://doi.org/10.1021/acs.est.8b00365
Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas
Frainay, C., Schymanski, E. L., Neumann, S., Merlet, B., Salek, R. M., Jourdan, F., & Yanes, O. (2018). Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas. Metabolites, 8(3), 51 (14 pp.). https://doi.org/10.3390/metabo8030051
Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS
Hu, M., Müller, E., Schymanski, E. L., Ruttkies, C., Schulze, T., Brack, W., & Krauss, M. (2018). Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS. Analytical and Bioanalytical Chemistry, 410(7), 1931-1941. https://doi.org/10.1007/s00216-018-0857-5
Nontarget screening with high resolution mass spectrometry in the environment: ready to go?
Hollender, J., Schymanski, E. L., Singer, H. P., & Ferguson, P. L. (2017). Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environmental Science and Technology, 51(20), 11505-11512. https://doi.org/10.1021/acs.est.7b02184
Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?
Metz, T. O., Baker, E. S., Schymanski, E. L., Renslow, R. S., Thomas, D. G., Causon, T. J., … Teeguarden, J. G. (2017). Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis, 9(1), 81-98. https://doi.org/10.4155/bio-2016-0244
Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products
Schollée, J. E., Schymanski, E. L., Stravs, M. A., Gulde, R., Thomaidis, N. S., & Hollender, J. (2017). Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products. Journal of the American Society for Mass Spectrometry, 28(12), 2692-2704. https://doi.org/10.1007/s13361-017-1797-6
Critical assessment of small molecule identification 2016: automated methods
Schymanski, E. L., Ruttkies, C., Krauss, M., Brouard, C., Kind, T., Dührkop, K., … Neumann, S. (2017). Critical assessment of small molecule identification 2016: automated methods. Journal of Cheminformatics, 9, 1-21. https://doi.org/10.1186/s13321-017-0207-1
Open science for identifying “known unknown” chemicals
Schymanski, E. L., & Williams, A. J. (2017). Open science for identifying “known unknown” chemicals. Environmental Science and Technology, 51(10), 5357-5359. https://doi.org/10.1021/acs.est.7b01908
Effect-directed analysis supporting monitoring of aquatic environments — an in-depth overview
Brack, W., Ait-Aissa, S., Burgess, R. M., Busch, W., Creusot, N., Di Paolo, C., … Krauss, M. (2016). Effect-directed analysis supporting monitoring of aquatic environments — an in-depth overview. Science of the Total Environment, 544, 1073-1118. https://doi.org/10.1016/j.scitotenv.2015.11.102
Nontarget analysis of environmental samples based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS)
Gago-Ferrero, P., Schymanski, E. L., Hollender, J., & Thomaidis, N. S. (2016). Nontarget analysis of environmental samples based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). In S. Pérez, P. Eichhorn, & D. Barceló (Eds.), Comprehensive analytical chemistry: Vol. 71. Applications of time-of-flight and orbitrap mass spectrometry in environmental, food, doping, and forensic analysis (pp. 381-403). https://doi.org/10.1016/bs.coac.2016.01.012
Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge
Gulde, R., Meier, U., Schymanski, E. L., Kohler, H. P. E., Helbling, D. E., Derrer, S., … Fenner, K. (2016). Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environmental Science and Technology, 50(6), 2908-2920. https://doi.org/10.1021/acs.est.5b05186
Temporal trend analysis on LC-HRMS measurements of lake sediments to prioritize organic contaminants
Günthardt, B. F. (2016). Temporal trend analysis on LC-HRMS measurements of lake sediments to prioritize organic contaminants [Master thesis].
MetFrag relaunched: incorporating strategies beyond <I>in silico</I> fragmentation
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 8, 3 (16 pp.). https://doi.org/10.1186/s13321-016-0115-9
Statistical approaches for LC-HRMS data to characterize, prioritize, and identify transformation products from water treatment processes
Schollée, J. E., Schymanski, E. L., & Hollender, J. (2016). Statistical approaches for LC-HRMS data to characterize, prioritize, and identify transformation products from water treatment processes. In J. E. Drewes & T. Letzel (Eds.), ACS symposium series: Vol. 1241. Assessing transformation products of chemicals by non-target and suspect screening - strategies and workflows. Volume 1 (pp. 45-65). https://doi.org/10.1021/bk-2016-1241.ch004
Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects
Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends in Analytical Chemistry, 78, 23-35. https://doi.org/10.1016/j.trac.2015.09.005
SPLASH, a hashed identifier for mass spectra
Wohlgemuth, G., Mehta, S. S., Mejia, R. F., Neumann, S., Pedrosa, D., Pluskal, T., … Fiehn, O. (2016). SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 34(11), 1099-1101. https://doi.org/10.1038/nbt.3689
Computational metabolomics
Böcker, S., Rousu, J., & Schymansky, E. (Eds.). (2016). Computational metabolomics. Dagstuhl Reports: Vol. 5. Dagstuhl Seminar 15492. https://doi.org/10.4230/DagRep.5.11.180
Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods
Abate-Pella, D., Freund, D. M., Ma, Y., Simón-Manso, Y., Hollender, J., Broeckling, C. D., … Boswell, P. G. (2015). Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 1412, 43-51. https://doi.org/10.1016/j.chroma.2015.07.108
Future water quality monitoring - adapting tools to deal with mixtures of pollutants in water resource management
Ait-Aissa, S., Altenburger, R., Antczak, P., Backhaus, T., Barceló, D., Seiler, T. B., … Brack, W. (2015). Future water quality monitoring - adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 512-513, 540-551. https://doi.org/10.1016/j.scitotenv.2014.12.057
Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS
Gago-Ferrero, P., Schymanski, E. L., Bletsou, A. A., Aalizadeh, R., Hollender, J., & Thomaidis, N. S. (2015). Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environmental Science and Technology, 49(20), 12333-12341. https://doi.org/10.1021/acs.est.5b03454