Active Filters

  • (-) Organizational Unit = Environmental Microbiology UMIK
  • (-) Publication Year = 2006 - 2018
  • (-) Keywords ≠ bioaugmentation
  • (-) Eawag Authors ≠ Kötzsch, Stefan
  • (-) Keywords = flow cytometry
Search Results 1 - 20 of 24
Select Page
Identifying the underlying causes of biological instability in a full-scale drinking water supply system
Nescerecka, A., Juhna, T., & Hammes, F. (2018). Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Research, 135, 11-21. https://doi.org/10.1016/j.watres.2018.02.006
Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data
Props, R., Rubbens, P., Besmer, M., Buysschaert, B., Sigrist, J., Weilenmann, H., … Hammes, F. (2018). Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. Water Research, 145, 73-82. https://doi.org/10.1016/j.watres.2018.08.013
Flow cytometric assessment of bacterial abundance in soils, sediments and sludge
Frossard, A., Hammes, F., & Gessner, M. O. (2016). Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Frontiers in Microbiology, 7, 903 (8 pp.). https://doi.org/10.3389/fmicb.2016.00903
A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining
Nescerecka, A., Hammes, F., & Juhna, T. (2016). A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining. Journal of Microbiological Methods, 131, 172-180. https://doi.org/10.1016/j.mimet.2016.10.022
Biological stability of drinking water: controlling factors, methods, and challenges
Prest, E. I., Hammes, F., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2016). Biological stability of drinking water: controlling factors, methods, and challenges. Frontiers in Microbiology, 7, 45 (24 pp.). https://doi.org/10.3389/fmicb.2016.00045
Fluorescence-based tools for single-cell approaches in food microbiology
Bridier, A., Hammes, F., Canette, A., Bouchez, T., & Briandet, R. (2015). Fluorescence-based tools for single-cell approaches in food microbiology. International Journal of Food Microbiology, 213, 2-16. https://doi.org/10.1016/j.ijfoodmicro.2015.07.003
Dynamics of bacterial communities before and after distribution in a full-scale drinking water network
El-Chakhtoura, J., Prest, E., Saikaly, P., van Loosdrecht, M., Hammes, F., & Vrouwenvelder, H. (2015). Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research, 74, 180-190. https://doi.org/10.1016/j.watres.2015.02.015
Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization
Prest, E. I., El-Chakhtoura, J., Hammes, F., Saikaly, P. E., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2014). Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Research, 63, 179-189. https://doi.org/10.1016/j.watres.2014.06.020
Using coagulation to restrict microbial re-growth in tap water by phosphate limitation in water treatment
Wen, G., Ma, J., Huang, T. L., & Egli, T. (2014). Using coagulation to restrict microbial re-growth in tap water by phosphate limitation in water treatment. Journal of Hazardous Materials, 280, 348-355. https://doi.org/10.1016/j.jhazmat.2014.08.020
Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge
van der Merwe, R., Hammes, F., Lattemann, S., & Amy, G. (2014). Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge. Desalination, 343, 208-216. https://doi.org/10.1016/j.desal.2014.01.017
A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks
Lautenschlager, K., Hwang, C., Liu, W. T., Boon, N., Köster, O., Vrouwenvelder, H., … Hammes, F. (2013). A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Research, 47(9), 3015-3025. https://doi.org/10.1016/j.watres.2013.03.002
Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations
Nikolic, N., Barner, T., & Ackermann, M. (2013). Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations. BMC Microbiology, 13, 258 (13 pp.). https://doi.org/10.1186/1471-2180-13-258
Chemical extraction of microorganisms from water-saturated, packed sediment
Ugolini, F., Schroth, M. H., Bürgmann, H., Hammes, F., & Zeyer, J. (2013). Chemical extraction of microorganisms from water-saturated, packed sediment. Water Environment Research, 85(6), 503-513. https://doi.org/10.2175/106143012X13373575831475
Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems
Vital, M., Dignum, M., Magic-Knezev, A., Ross, P., Rietveld, L., & Hammes, F. (2012). Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems. Water Research, 46(15), 4665-4676. https://doi.org/10.1016/j.watres.2012.06.010
Cultivation-independent Assessment of Bacterial Viability
Hammes, F., Berney, M., & Egli, T. (2011). Cultivation-independent Assessment of Bacterial Viability. In S. Müller & T. Bley (Eds.), Advances in Biochemical Engineering/Biotechnology: Vol. 124. High Resolution Microbial Single Cell Analytics (pp. 123-150). https://doi.org/10.1007/10_2010_95
Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate
Ramseier, M. K., von Gunten, U., Freihofer, P., & Hammes, F. (2011). Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. Water Research, 45(3), 1490-1500. https://doi.org/10.1016/j.watres.2010.11.016
How to live at very low substrate concentration
Egli, T. (2010). How to live at very low substrate concentration. Water Research, 44(17), 4826-4837. https://doi.org/10.1016/j.watres.2010.07.023
Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system
Hammes, F., Berger, C., Köster, O., & Egli, T. (2010). Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. Journal of Water Supply: Research and Technology AQUA, 59(1), 31-40. https://doi.org/10.2166/aqua.2010.052
Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications
Hammes, F., & Egli, T. (2010). Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Analytical and Bioanalytical Chemistry, 397(3), 1083-1095. https://doi.org/10.1007/s00216-010-3646-3
Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments
Hammes, F., Goldschmidt, F., Vital, M., Wang, Y., & Egli, T. (2010). Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Research, 44(13), 3915-3923. https://doi.org/10.1016/j.watres.2010.04.015