Active Filters

  • (-) Eawag Departments = Environmental Microbiology UMIK
  • (-) Publication Year = 2006 - 2018
  • (-) Keywords ≠ siderophore
  • (-) Eawag Departments = Eawag
Search Results 1 - 20 of 28
Select Page
Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment
Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., … Von Gunten, U. (2016). Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environmental Science and Technology, 50(21), 11862-11871. https://doi.org/10.1021/acs.est.6b02640
Biological stability in drinking water distribution systems
Prest, E. I. E. D. (2015). Biological stability in drinking water distribution systems [Doctoral dissertation]. University of Delft.
Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis
Hammes, F., Broger, T., Weilenmann, H. U., Vital, M., Helbing, J., Bosshart, U., … Sonnleitner, B. (2012). Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry Part A, 81A(6), 508-516. https://doi.org/10.1002/cyto.a.22048
Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate
Ramseier, M. K., von Gunten, U., Freihofer, P., & Hammes, F. (2011). Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate. Water Research, 45(3), 1490-1500. https://doi.org/10.1016/j.watres.2010.11.016
Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system
Hammes, F., Berger, C., Köster, O., & Egli, T. (2010). Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. Journal of Water Supply: Research and Technology. Aqua, 59(1), 31-40. https://doi.org/10.2166/aqua.2010.052
Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal
Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C. M., Kohler, H. P. E., & Giger, W. (2010). Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environmental Science and Pollution Research, 17(4), 834-843. https://doi.org/10.1007/s11356-009-0275-5
Efficiency and limitations of systems based on the ultra-low pressure ultrafiltration technology
Pronk, W., Peter-Varbanets, M., Margot, J., Li, W., Müller, S., Grau, M., … Hammes, F. (2010). Efficiency and limitations of systems based on the ultra-low pressure ultrafiltration technology. TECHNEAU.
Solar disinfection (SODIS) and subsequent dark storage of <em>Salmonella typhimurium</em> and <em>Shigella flexneri</em> monitored by flow cytometry
Bosshard, F., Berney, M., Scheifele, M., Weilenmann, H. U., & Egli, T. (2009). Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiology, 155(4), 1310-1317. https://doi.org/10.1099/mic.0.024794-0
Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry
Eganhouse, R. P., Pontolillo, J., Gaines, R. B., Frysinger, G. S., Gabriel, F. L. P., Kohler, H. P. E., … Barber, L. B. (2009). Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Environmental Science and Technology, 43(24), 9306-9313. https://doi.org/10.1021/es902622r
Environmental fate of phenolic endocrine disruptors: Field and laboratory studies
Giger, W., Gabriel, Frédéric L. P., Jonkers, N., Wettstein, F. E., & Kohler, H. P. E. (2009). Environmental fate of phenolic endocrine disruptors: Field and laboratory studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1904), 3941-3963. https://doi.org/10.1098/rsta.2009.0148
Mass flows of endocrine disruptors in the Glatt River during varying weather conditions
Jonkers, N., Kohler, H. P. E., Dammshäuser, A., & Giger, W. (2009). Mass flows of endocrine disruptors in the Glatt River during varying weather conditions. Environmental Pollution, 157(3), 714-723. https://doi.org/10.1016/j.envpol.2008.11.029
Isomer-specific degradation and endocrine disrupting activity of nonylphenols
Gabriel, F. L. P., Routledge, E. J., Heidlberger, A., Rentsch, D., Guenther, K., Giger, W., … Kohler, H. P. E. (2008). Isomer-specific degradation and endocrine disrupting activity of nonylphenols. Environmental Science and Technology, 42(17), 6399-6408. https://doi.org/10.1021/es800577a
Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland
Huset, C. A., Chiaia, A. C., Barofsky, D. F., Jonkers, N., Kohler, H. P. E., Ort, C., … Field, J. A. (2008). Occurrence and mass flows of fluorochemicals in the Glatt Valley watershed, Switzerland. Environmental Science and Technology, 42(17), 6369-6377. https://doi.org/10.1021/es703062f
Induction of the <I>yjbEFGH</I> operon is regulated by growth rate and oxygen concentration
Ionescu, M., Franchini, A., Egli, T., & Belkin, S. (2008). Induction of the yjbEFGH operon is regulated by growth rate and oxygen concentration. Archives of Microbiology, 189(3), 219-226. https://doi.org/10.1007/s00203-007-0311-0
<I>ipso</I>-substitution - a novel pathway for microbial metabolism of endocrine-disrupting 4-nonylphenols, 4-alkoxyphenols, and bisphenol A
Kohler, H. P. E., Gabriel, F. L. P., & Giger, W. (2008). ipso-substitution - a novel pathway for microbial metabolism of endocrine-disrupting 4-nonylphenols, 4-alkoxyphenols, and bisphenol A. Chimia, 62(5), 358-363. https://doi.org/10.2533/chimia.2008.358
Temporal trends, congener patterns, and sources of octa-, nona-, and decabromodiphenyl ethers (PBDE) and hexabromocyclododecanes (HBCD) in Swiss lake sediments
Kohler, M., Zennegg, M., Bogdal, C., Gerecke, A. C., Schmid, P., Heeb, N. V., … Giger, W. (2008). Temporal trends, congener patterns, and sources of octa-, nona-, and decabromodiphenyl ethers (PBDE) and hexabromocyclododecanes (HBCD) in Swiss lake sediments. Environmental Science and Technology, 42(17), 6378-6384. https://doi.org/10.1021/es702586r
Mechanisms of biofouling of UF membranes and evaluation of pretreatment on fouling of UF membranes
Peter-Varbanets, M., Pronk, W., Hammes, F., Vital, M., Margot, J., Li, W., & Mudryk, R. (2008). Mechanisms of biofouling of UF membranes and evaluation of pretreatment on fouling of UF membranes. TECHNEAU.
Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water
Siebel, E., Wang, Y., Egli, T., & Hammes, F. (2008). Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water. Drinking Water Engineering and Science, 1(1), 1-6. https://doi.org/10.5194/dwes-1-1-2008
<I>ipso</I>-substitution: a general biochemical and biodegradation mechanism to cleave <I>α</I>-quaternary alkylphenols and bisphenol A
Gabriel, F. L. P., Cyris, M., Giger, W., & Kohler, H. P. E. (2007). ipso-substitution: a general biochemical and biodegradation mechanism to cleave α-quaternary alkylphenols and bisphenol A. Chemistry and Biodiversity, 4(9), 2123-2137. https://doi.org/10.1002/cbdv.200790170
Elucidation of the <em>ipso</em>-substitution mechanism for side-chain cleavage of α-quaternary 4-nonylphenols and 4-<em>t</em>-butoxyphenol in <em>sphingobium xenophagum</em> bayram
Gabriel, F. L. P., Cyris, M., Jonkers, N., Giger, W., Guenther, K., & Kohler, H. P. E. (2007). Elucidation of the ipso-substitution mechanism for side-chain cleavage of α-quaternary 4-nonylphenols and 4-t-butoxyphenol in sphingobium xenophagum bayram. Applied and Environmental Microbiology, 73(10), 3320-3326. https://doi.org/10.1128/AEM.02994-06