Active Filters

  • (-) Eawag Departments = Environmental Microbiology UMIK
  • (-) Publication Year = 2006 - 2018
  • (-) Full Text = Restricted
  • (-) Eawag Authors = Kohler, Hans-Peter E.
Search Results 1 - 20 of 53
Select Page
Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: comparison of <i>in vitro</i> and <i>in silico</i> results
Heeb, N. V., Mazenauer, M., Wyss, S., Geueke, B., Kohler, H. P. E., & Lienemann, P. (2018). Kinetics and stereochemistry of LinB-catalyzed δ-HBCD transformation: comparison of in vitro and in silico results. Chemosphere, 207, 118-129. https://doi.org/10.1016/j.chemosphere.2018.05.057
Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in <i>Aminobacter</i> sp. MSH1
T'Syen, J., Raes, B., Horemans, B., Tassoni, R., Leroy, B., Lood, C., … Springael, D. (2018). Catabolism of the groundwater micropollutant 2,6-dichlorobenzamide beyond 2,6-dichlorobenzoate is plasmid encoded in Aminobacter sp. MSH1. Applied Microbiology and Biotechnology, 102(18), 7963-7979. https://doi.org/10.1007/s00253-018-9189-9
Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming <I>Sphingobium chinhatense</I> strain IP26
Heeb, N. V., Grubelnik, A., Geueke, B., Kohler, H. P. E., & Lienemann, P. (2017). Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming Sphingobium chinhatense strain IP26. Chemosphere, 182, 491-500. https://doi.org/10.1016/j.chemosphere.2017.05.047
Characterization of substrate, cosubstrate, and product isotope effects associated with enzymatic oxygenations of organic compounds based on compound-specific isotope analysis
Pati, S. G., Kohler, H. P. E., & Hofstetter, T. B. (2017). Characterization of substrate, cosubstrate, and product isotope effects associated with enzymatic oxygenations of organic compounds based on compound-specific isotope analysis. In M. E. Harris & V. E. Anderson (Eds.), Methods in enzymology: Vol. 596. Measurement and analysis of kinetic isotope effects (pp. 291-329). https://doi.org/10.1016/bs.mie.2017.06.044
Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation
Garg, N., Lata, P., Jit, S., Sangwan, N., Singh, A. K., Dwivedi, V., … Lal, R. (2016). Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 27(2), 179-193. https://doi.org/10.1007/s10532-016-9765-6
Measurement of oxygen isotope ratios (<SUP>18</SUP>O/<SUP>16</SUP>O) of aqueous O<SUB>2</SUB> in small samples by gas chromatography/isotope ratio mass spectrometry
Pati, S. G., Bolotin, J., Brennwald, M. S., Kohler, H. P. E., Werner, R. A., & Hofstetter, T. B. (2016). Measurement of oxygen isotope ratios (18O/16O) of aqueous O2 in small samples by gas chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 30(6), 684-690. https://doi.org/10.1002/rcm.7481
Stereochemistry of enzymatic transformations of (+)β- and (−)β-HBCD with LinA2 – a HCH-degrading bacterial enzyme of <I>Sphingobium indicum</I> B90A
Heeb, N. V., Wyss, S. A., Geueke, B., Fleischmann, T., Kohler, H. P. E., Schweizer, W. B., … Lienemann, P. (2015). Stereochemistry of enzymatic transformations of (+)β- and (−)β-HBCD with LinA2 – a HCH-degrading bacterial enzyme of Sphingobium indicum B90A. Chemosphere, 122, 70-78. https://doi.org/10.1016/j.chemosphere.2014.11.008
Degradation of sulfonamide antibiotics by <I>Microbacterium</I> sp. strain BR1 - elucidating the downstream pathway
Ricken, B., Fellmann, O., Kohler, H. P. E., Schäffer, A., Corvini, P. F. X., & Kolvenbach, B. A. (2015). Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway. New Biotechnology, 32(6), 710-715. https://doi.org/10.1016/j.nbt.2015.03.005
Slow biotransformation of carbon nanotubes by horseradish peroxidase
Flores-Cervantes, D. X., Maes, H. M., Schäffer, A., Hollender, J., & Kohler, H. P. E. (2014). Slow biotransformation of carbon nanotubes by horseradish peroxidase. Environmental Science and Technology, 48(9), 4826-4834. https://doi.org/10.1021/es4053279
LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs
Heeb, N. V., Wyss, S. A., Geueke, B., Fleischmann, T., Kohler, H. P. E., & Lienemann, P. (2014). LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 107, 194-202. https://doi.org/10.1016/j.chemosphere.2013.12.035
Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria
Kolvenbach, B. A., Helbling, D. E., Kohler, H. P. E., & Corvini, P. F. X. (2014). Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Current Opinion in Biotechnology, 27, 8-14. https://doi.org/10.1016/j.copbio.2013.08.017
A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes
Liu, L., Helbling, D. E., Kohler, H. P. E., & Smets, B. F. (2014). A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes. Environmental Science and Technology, 48(22), 13358-13366. https://doi.org/10.1021/es503491w
Genetic and metabolic analysis of the carbofuran catabolic pathway in <I>Novosphingobium</I> sp. KN65.2
Nguyen, T. P. O., Helbling, D. E., Bers, K., Fida, T. T., Wattiez, R., Kohler, H. P. E., … De Mot, R. (2014). Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2. Applied Microbiology and Biotechnology, 98(19), 8235-8252. https://doi.org/10.1007/s00253-014-5858-5
Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase
Pati, S. G., Kohler, H. P. E., Bolotin, J., Parales, R. E., & Hofstetter, T. B. (2014). Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase. Environmental Science and Technology, 48(18), 10750-10759. https://doi.org/10.1021/es5028844
Small <SUP>13</SUP>C/<SUP>12</SUP>C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids
Qiu, S., Gözdereliler, E., Weyrauch, P., Magana Lopez, E. C., Kohler, H. P. E., Sørensen, S. R., … Elsner, M. (2014). Small 13C/12C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids. Environmental Science and Technology, 48(10), 5501-5511. https://doi.org/10.1021/es405103g
Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?
Benner, J., Helbling, D. E., Kohler, H. P. E., Wittebol, J., Kaiser, E., Prasse, C., … Boon, N. (2013). Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Research, 47(16), 5955-5976. https://doi.org/10.1016/j.watres.2013.07.015
Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers
Geueke, B., Garg, N., Ghosh, S., Fleischmann, T., Holliger, C., Lal, R., & Kohler, H. P. E. (2013). Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environmental Microbiology, 15(4), 1040-1049. https://doi.org/10.1111/1462-2920.12009
Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol
Heeb, N. V., Zindel, D., Graf, H., Azara, V., Bernd Schweizer, W., Geueke, B., … Lienemann, P. (2013). Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere, 90(6), 1911-1919. https://doi.org/10.1016/j.chemosphere.2012.10.019
Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol
Gabriel, F. L. P., Mora, M. A., Kolvenbach, B. A., Corvini, P. F. X., & Kohler, H. P. E. (2012). Formation of toxic 2-nonyl-p-benzoquinones from α-tertiary 4-nonylphenol isomers during microbial metabolism of technical nonylphenol. Environmental Science and Technology, 46(11), 5979-5987. https://doi.org/10.1021/es300383m
Bacterial β-Aminopeptidases: structural insights and applications for biocatalysis
Heck, T., Geueke, B., & Kohler, H. P. E. (2012). Bacterial β-Aminopeptidases: structural insights and applications for biocatalysis. Chemistry and Biodiversity, 9(11), 2388-2409. https://doi.org/10.1002/cbdv.201200305