Active Filters

  • (-) Eawag Departments = Environmental Microbiology UMIK
  • (-) Publication Year = 2006 - 2018
  • (-) Full Text = Restricted
  • (-) Keywords = biological stability
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection
Nescerecka, A., Juhna, T., & Hammes, F. (2016). Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection. Water Research, 101, 490-497. https://doi.org/10.1016/j.watres.2016.05.087
A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems
Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2016). A systematic approach for the assessment of bacterial growth-controlling factors linked to biological stability of drinking water in distribution systems. Water Science and Technology: Water Supply, 16(4), 865-880. https://doi.org/10.2166/ws.2016.001
Dynamics of bacterial communities before and after distribution in a full-scale drinking water network
El-Chakhtoura, J., Prest, E., Saikaly, P., van Loosdrecht, M., Hammes, F., & Vrouwenvelder, H. (2015). Dynamics of bacterial communities before and after distribution in a full-scale drinking water network. Water Research, 74, 180-190. https://doi.org/10.1016/j.watres.2015.02.015
Bacterial growth in batch-operated membrane filtration systems for drinking water treatment
Mimoso, J., Pronk, W., Morgenroth, E., & Hammes, F. (2015). Bacterial growth in batch-operated membrane filtration systems for drinking water treatment. Separation and Purification Technology, 156, 165-174. https://doi.org/10.1016/j.seppur.2015.09.070
Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization
Prest, E. I., El-Chakhtoura, J., Hammes, F., Saikaly, P. E., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2014). Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Research, 63, 179-189. https://doi.org/10.1016/j.watres.2014.06.020
A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks
Lautenschlager, K., Hwang, C., Liu, W. T., Boon, N., Köster, O., Vrouwenvelder, H., … Hammes, F. (2013). A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Research, 47(9), 3015-3025. https://doi.org/10.1016/j.watres.2013.03.002
Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method
Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M., & Vrouwenvelder, J. S. (2013). Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method. Water Research, 47(19), 7131-7142. https://doi.org/10.1016/j.watres.2013.07.051
A comparative study of three different assimilable organic carbon (AOC) methods: results of a round-robin test
Ross, P. S., Hammes, F., Dignum, M., Magic-Knezev, A., Hambsch, B., & Rietveld, L. C. (2013). A comparative study of three different assimilable organic carbon (AOC) methods: results of a round-robin test. Water Science and Technology: Water Supply, 13(4), 1024-1033. https://doi.org/10.2166/ws.2013.079
Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system
Hammes, F., Berger, C., Köster, O., & Egli, T. (2010). Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system. Journal of Water Supply: Research and Technology. Aqua, 59(1), 31-40. https://doi.org/10.2166/aqua.2010.052
Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton
Hammes, F., Meylan, S., Salhi, E., Köster, O., Egli, T., & von Gunten, U. (2007). Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water Research, 41(7), 1447-1454. https://doi.org/10.1016/j.watres.2007.01.001