Active Filters

  • (-) Eawag Departments = Water Resources and Drinking Water W+T
  • (-) Journal ≠ Water Resources Research
  • (-) Eawag Authors = Hug, Stephan J.
Search Results 1 - 20 of 83

Pages

  • RSS Feed
Select Page
Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium
Klump, S., Kipfer, R., Cirpka, O. A., Harvey, C. F., Brennwald, M. S., Ashfaque, K. N., … Imboden, D. M. (2006). Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environmental Science and Technology, 40(1), 243-250. https://doi.org/10.1021/es051284w
Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation
Leuz, A. K., Hug, S. J., Wehrli, B., & Johnson, C. A. (2006). Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environmental Science and Technology, 40(8), 2565-2571. https://doi.org/10.1021/es052059h
Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR
Hug, S. J., & Bahnemann, D. (2006). Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR. Journal of Electron Spectroscopy and Related Phenomena, 150(2-3), 208-219. https://doi.org/10.1016/j.elspec.2005.05.006
Ensuring safe drinking water in Bangladesh
Ahmed, M. F., Ahuja, S., Alauddin, M., Hug, S. J., Lloyd, J. R., Pfaff, A., … van Geen, A. (2006). Ensuring safe drinking water in Bangladesh. Science, 314(5806), 1687-1688. https://doi.org/10.1126/science.1133146
Photolysis of citrate on the surface of lepidocrocite: an in situ attenuated total reflection infrared spectroscopy study
Borer, P., Hug, S. J., Sulzberger, B., Kraemer, S. M., & Kretzschmar, R. (2007). Photolysis of citrate on the surface of lepidocrocite: an in situ attenuated total reflection infrared spectroscopy study. Journal of Physical Chemistry C, 111(28), 10560-10569. https://doi.org/10.1021/jp0685941
Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 1. irrigation water
Roberts, L. C., Hug, S. J., Dittmar, J., Voegelin, A., Saha, G. C., Ali, M. A., … Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 1. irrigation water. Environmental Science and Technology, 41(17), 5960-5966. https://doi.org/10.1021/es070298u
Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil
Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., … Kretzschmar, R. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environmental Science and Technology, 41(17), 5967-5972. https://doi.org/10.1021/es0702972
Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment
Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383(1-3), 128-140. https://doi.org/10.1016/j.scitotenv.2007.04.035
Statistical modeling of global geogenic arsenic contamination in groundwater
Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., … Johnson, C. A. (2008). Statistical modeling of global geogenic arsenic contamination in groundwater. Environmental Science and Technology, 42(10), 3669-3675. https://doi.org/10.1021/es702859e
Predicting groundwater arsenic contamination in Southeast Asia from surface parameters
Winkel, L., Berg, M., Amini, M., Hug, S. J., & Johnson, C. A. (2008). Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1, 536-542. https://doi.org/10.1038/ngeo254
Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in northern Greece
Katsoyiannis, I. A., Zikoudi, A., & Hug, S. (2008). Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in northern Greece. Desalination, 224(1–3), 330-339. https://doi.org/10.1016/j.desal.2007.06.014
Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation
Hug, S. J., Leupin, O. X., & Berg, M. (2008). Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environmental Science and Technology, 42(17), 6318-6323. https://doi.org/10.1021/es7028284
pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water
Katsoyiannis, I. A., Ruettimann, T., & Hug, S. J. (2008). pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology, 42(19), 7424-7430. https://doi.org/10.1021/es800649p
Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy
Voegelin, A., Kaegi, R., Frommer, J., Vantelon, D., & Hug, S. J. (2010). Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 74(1), 164-186. https://doi.org/10.1016/j.gca.2009.09.020
Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period
Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., … Kretzschmar, R. (2010). Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period. Environmental Science and Technology, 44(8), 2925-2931. https://doi.org/10.1021/es903117r
Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water
Kaegi, R., Voegelin, A., Folini, D., & Hug, S. (2010). Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochimica et Cosmochimica Acta, 74(20), 5798-5816. https://doi.org/10.1016/j.gca.2010.07.017
Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies
Dittmar, J., Voegelin, A., Maurer, F., Roberts, L. C., Hug, S. J., Saha, G. C., … Kretzschmar, R. (2010). Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Environmental Science and Technology, 44(23), 8842-8848. https://doi.org/10.1021/es101962d
Arsenic release from paddy soils during monsoon flooding
Roberts, L. C., Hug, S. J., Dittmar, J., Voegelin, A., Kretzschmar, R., Wehrli, B., … Badruzzaman, A. B. M. (2010). Arsenic release from paddy soils during monsoon flooding. Nature Geoscience, 3(1), 53-59. https://doi.org/10.1038/ngeo723
Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh
Roberts, L. C., Hug, S. J., Voegelin, A., Dittmar, J., Kretzschmar, R., Wehrli, B., … Ali, M. A. (2011). Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Environmental Science and Technology, 45(3), 971-976. https://doi.org/10.1021/es102882q
Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania)
Rowland, H. A. L., Omoregie, E. O., Millot, R., Jimenez, C., Mertens, J., Baciu, C., … Berg, M. (2011). Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Applied Geochemistry, 26(1), 1-17. https://doi.org/10.1016/j.apgeochem.2010.10.006
 

Pages