Active Filters

  • (-) Organizational Unit = Water Resources and Drinking Water W+T
  • (-) Keywords ≠ chlorination
  • (-) Keywords ≠ Switzerland
  • (-) Keywords ≠ water quality
  • (-) Keywords = groundwater
Search Results 1 - 20 of 35
Select Page
Arsenic removal with zero-valent iron filters in Burkina Faso: field and laboratory insights
Bretzler, A., Nikiema, J., Lalanne, F., Hoffmann, L., Biswakarma, J., Siebenaller, L., Demange, D., Schirmer, M., & Hug, S. J. (2020). Arsenic removal with zero-valent iron filters in Burkina Faso: field and laboratory insights. Science of the Total Environment, 737, 139466 (13 pp.). https://doi.org/10.1016/j.scitotenv.2020.139466
Missing atmospheric noble gases in a large, tropical lake: the case of Lake Kivu, East-Africa
Bärenbold, F., Schmid, M., Brennwald, M. S., & Kipfer, R. (2020). Missing atmospheric noble gases in a large, tropical lake: the case of Lake Kivu, East-Africa. Chemical Geology, 532, 119374 (9 pp.). https://doi.org/10.1016/j.chemgeo.2019.119374
Arsenic and other geogenic contaminants in groundwater - a global challenge
Hug, S. J., Winkel, L. H. E., Voegelin, A., Berg, M., & Johnson, A. C. (2020). Arsenic and other geogenic contaminants in groundwater - a global challenge. Chimia, 74(7/8), 524-537. https://doi.org/10.2533/chimia.2020.524
Chlorothalonil transformation products in drinking water resources: widespread and challenging to abate
Kiefer, K., Bader, T., Minas, N., Salhi, E., Janssen, E. M. L., von Gunten, U., & Hollender, J. (2020). Chlorothalonil transformation products in drinking water resources: widespread and challenging to abate. Water Research, 183, 116066 (11 pp.). https://doi.org/10.1016/j.watres.2020.116066
Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico
Knappett, P. S. K., Li, Y., Loza, I., Hernandez, H., Avilés, M., Haaf, D., Majumder, S., Huang, Y., Lynch, B., Piña, V., Wang, J., Winkel, L., Mahlknecht, J., Datta, S., Thurston, W., Terrell, D., & Nordstrom, D. K. (2020). Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico. Water Research, 185, 116257 (16 pp.). https://doi.org/10.1016/j.watres.2020.116257
Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India
Wu, R., Podgorski, J., Berg, M., & Polya, D. A. (2020). Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00655-7
Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health
Hollender, J., Rothardt, J., Radny, D., Loos, M., Epting, J., Huggenberger, P., Borer, P., & Singer, H. (2018). Comprehensive micropollutant screening using LC-HRMS/MS at three riverbank filtration sites to assess natural attenuation and potential implications for human health. Water Research X, 1, 100007 (12 pp.). https://doi.org/10.1016/j.wroa.2018.100007
Biogeochemical phosphorus cycling in groundwater ecosystems – insights from South and Southeast Asian floodplain and delta aquifers
Neidhardt, H., Schoeckle, D., Schleinitz, A., Eiche, E., Berner, Z., Tram, P. T. K., Lan, V. M., Viet, P. H., Biswas, A., Majumder, S., Chatterjee, D., Oelmann, Y., & Berg, M. (2018). Biogeochemical phosphorus cycling in groundwater ecosystems – insights from South and Southeast Asian floodplain and delta aquifers. Science of the Total Environment, 644, 1357-1370. https://doi.org/10.1016/j.scitotenv.2018.07.056
Insights into arsenic retention dynamics of Pleistocene aquifer sediments by <i>in situ</i> sorption experiments
Neidhardt, H., Winkel, L. H. E., Kaegi, R., Stengel, C., Trang, P. T. K., Lan, V. M., Viet, P. H., & Berg, M. (2018). Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research, 129, 123-132. https://doi.org/10.1016/j.watres.2017.11.018
Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: application to the Ceneri Base Tunnel (Switzerland)
Tomonaga, Y., Marzocchi, R., Pera, S., Pfeifer, H. R., Kipfer, R., Decrouy, L., & Vennemann, T. (2017). Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: application to the Ceneri Base Tunnel (Switzerland). Journal of Hydrology, 545, 395-409. https://doi.org/10.1016/j.jhydrol.2016.11.043
Layered double hydroxide and its calcined product for fluoride removal from groundwater of Ethiopian rift valley
Dessalegne, M., Zewge, F., Pfenninger, N., Johnson, C. A., & Diaz, I. (2016). Layered double hydroxide and its calcined product for fluoride removal from groundwater of Ethiopian rift valley. Water, Air, and Soil Pollution, 227(10), 381 (13 pp.). https://doi.org/10.1007/s11270-016-3079-5
Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment
Moeck, C., Radny, D., Borer, P., Rothardt, J., Auckenthaler, A., Berg, M., & Schirmer, M. (2016). Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment. Journal of Hydrology, 542, 437-449. https://doi.org/10.1016/j.jhydrol.2016.09.023
The geogenic contamination handbook: addressing arsenic and fluoride in drinking water
Bretzler, A., & Johnson, C. A. (2015). The geogenic contamination handbook: addressing arsenic and fluoride in drinking water. Applied Geochemistry, 63, 642-646. https://doi.org/10.1016/j.apgeochem.2015.08.016
Arsenic removal from drinking water by a household sand filter in Vietnam - effect of filter usage practices on arsenic removal efficiency and microbiological water quality
Nitzsche, K. S., Lan, V. M., Trang, P. T. K., Viet, P. H., Berg, M., Voegelin, A., Planer-Friedrich, B., Zahoransky, J., Müller, S. K., Byrne, J. M., Schröder, C., Behrens, S., & Kappler, A. (2015). Arsenic removal from drinking water by a household sand filter in Vietnam - effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 502(1), 526-536. https://doi.org/10.1016/j.scitotenv.2014.09.055
Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ<SUP>15</SUP>N) values
Norrman, J., Sparrenbom, C. J., Berg, M., Dang, D. N., Jacks, G., Harms-Ringdahl, P., Pham, Q. N., & Rosqvist, H. (2015). Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Applied Geochemistry, 61, 248-258. https://doi.org/10.1016/j.apgeochem.2015.06.009
Human exposure to arsenic from drinking water in Vietnam
Agusa, T., Trang, P. T. K., Lan, V. M., Anh, D. H., Tanabe, S., Viet, P. H., & Berg, M. (2014). Human exposure to arsenic from drinking water in Vietnam. Science of the Total Environment, 488-489, 562-569. https://doi.org/10.1016/j.scitotenv.2013.10.039
River flow regimes and vegetation dynamics along a river transect
Doulatyari, B., Basso, S., Schirmer, M., & Botter, G. (2014). River flow regimes and vegetation dynamics along a river transect. Advances in Water Resources, 73, 30-43. https://doi.org/10.1016/j.advwatres.2014.06.015
Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations
Johnston, R., Hug, S. J., Inauen, J., Khan, N. I., Mosler, H. J., & Yang, H. (2014). Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations. Science of the Total Environment, 488-489(1), 477-483. https://doi.org/10.1016/j.scitotenv.2013.11.143
Conquering the outdoors with on-site mass spectrometry
Mächler, L., Brennwald, M. S., Tyroller, L., Livingstone, D. M., & Kipfer, R. (2014). Conquering the outdoors with on-site mass spectrometry. Chimia, 68(3), 155-159. https://doi.org/10.2533/chimia.2014.155
Processes controlling <SUP>220</SUP>Rn concentrations in the gas and water phases of porous media
Huxol, S., Brennwald, M. S., & Kipfer, R. (2013). Processes controlling 220Rn concentrations in the gas and water phases of porous media. Chemical Geology, 335, 87-92. https://doi.org/10.1016/j.chemgeo.2012.10.049