Active Filters

  • (-) Eawag Departments = Water Resources and Drinking Water W+T
  • (-) Keywords ≠ disinfection
  • (-) Eawag Authors ≠ Borer, Paul
  • (-) Eawag Authors = Tomonaga, Yama
Search Results 1 - 20 of 40
Select Page
New experimental approaches enabling the continuous monitoring of gas species in hydrothermal fluids
Giroud, S., Tomonaga, Y., Brennwald, M. S., Takahata, N., Shibata, T., Sano, Y., & Kipfer, R. (2023). New experimental approaches enabling the continuous monitoring of gas species in hydrothermal fluids. Frontiers in Water, 4, 1032094 (10 pp.). https://doi.org/10.3389/frwa.2022.1032094
Estimation of the depth of origin of fluids using noble gases in the surface sediments of submarine mud volcanoes off Tanegashima Island
Mitsutome, Y., Toki, T., Kagoshima, T., Sano, Y., Tomonaga, Y., & Ijiri, A. (2023). Estimation of the depth of origin of fluids using noble gases in the surface sediments of submarine mud volcanoes off Tanegashima Island. Scientific Reports, 13(1), 5051 (12 pp.). https://doi.org/10.1038/s41598-023-31582-z
Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers
Schilling, O. S., Nagaosa, K., Schilling, T. U., Brennwald, M. S., Sohrin, R., Tomonaga, Y., … Kato, K. (2023). Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers. Nature Water, 1, 60-73. https://doi.org/10.1038/s44221-022-00001-4
Drilling overdeepened Alpine Valleys (ICDP-DOVE): Quantifying the age, extent, and environmental impact of Alpine glaciations
Anselmetti, F. S., Bavec, M., Crouzet, C., Fiebig, M., Gabriel, G., Preusser, F., … Wonik, T. (2022). Drilling overdeepened Alpine Valleys (ICDP-DOVE): Quantifying the age, extent, and environmental impact of Alpine glaciations. Scientific Drilling, 31, 51-70. https://doi.org/10.5194/sd-31-51-2022
New experimental tools to use noble gases as artificial tracers for groundwater flow
Brennwald, M. S., Peel, M., Blanc, T., Tomonaga, Y., Kipfer, R., Brunner, P., & Hunkeler, D. (2022). New experimental tools to use noble gases as artificial tracers for groundwater flow. Frontiers in Water, 4, 925294 (8 pp.). https://doi.org/10.3389/frwa.2022.925294
Mantle helium in pore fluids of deep-sea sediments around the Azores archipelago
Engelhardt, E., Tomonaga, Y., Brennwald, M. S., Maden, C., Hansteen, T. H., Schmidt, C., & Kipfer, R. (2022). Mantle helium in pore fluids of deep-sea sediments around the Azores archipelago. Chemical Geology, 608, 121038 (7 pp.). https://doi.org/10.1016/j.chemgeo.2022.121038
Gas-bentonite interactions: towards a better understanding of gas dynamics in Engineered Barrier Systems
Tomonaga, Y., Wersin, P., Rufer, D., Pastina, B., Koho, P., Heino, V., & Kipfer, R. (2022). Gas-bentonite interactions: towards a better understanding of gas dynamics in Engineered Barrier Systems. Applied Geochemistry, 138, 105205 (8 pp.). https://doi.org/10.1016/j.apgeochem.2022.105205
Noble gases in sediment pore water yield insights into hydrothermal fluid transport in the northern Guaymas Basin
Horstmann, E., Tomonaga, Y., Brennwald, M. S., Schmidt, M., Liebetrau, V., & Kipfer, R. (2021). Noble gases in sediment pore water yield insights into hydrothermal fluid transport in the northern Guaymas Basin. Marine Geology, 434, 106419 (9 pp.). https://doi.org/10.1016/j.margeo.2021.106419
Noble gases as tracers for the gas dynamics in methane supersaturated lacustrine sediments
Tyroller, L., Brennwald, M. S., Tomonaga, Y., Maden, C., & Kipfer, R. (2021). Noble gases as tracers for the gas dynamics in methane supersaturated lacustrine sediments. Chemical Geology, 568, 119905 (11 pp.). https://doi.org/10.1016/j.chemgeo.2020.119905
Noble gas tracers in gas streams at Norwegian CO<sub>2</sub> capture plants
Weber, U. W., Kipfer, R., Horstmann, E., Ringrose, P., Kampman, N., Tomonaga, Y., … Sundal, A. (2021). Noble gas tracers in gas streams at Norwegian CO2 capture plants. International Journal of Greenhouse Gas Control, 106, 103238 (11 pp.). https://doi.org/10.1016/j.ijggc.2020.103238
Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer
Brennwald, M. S., Tomonaga, Y., & Kipfer, R. (2020). Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer. MethodsX, 7, 101038 (11 pp.). https://doi.org/10.1016/j.mex.2020.101038
Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan)
Tomonaga, Y., Yagasaki, K., Park, J. O., Ashi, J., Toyoda, S., Takahata, N., & Sano, Y. (2020). Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan). ACS Earth and Space Chemistry, 4(11), 2105-2112. https://doi.org/10.1021/acsearthspacechem.0c00229
Marine transform faults and fracture zones: a joint perspective integrating seismicity, fluid flow and life
Hensen, C., Duarte, J. C., Vannucchi, P., Mazzini, A., Lever, M. A., Terrinha, P., … Nuzzo, M. (2019). Marine transform faults and fracture zones: a joint perspective integrating seismicity, fluid flow and life. Frontiers in Earth Science, 7, 39 (29 pp.). https://doi.org/10.3389/feart.2019.00039
Formation and migration of hydrocarbons in deeply buried sediments of the Gulf of Cadiz convergent plate boundary - insights from the hydrocarbon and helium isotope geochemistry of mud volcano fluids
Nuzzo, M., Tomonaga, Y., Schmidt, M., Valadares, V., Faber, E., Piñero, E., … Hensen, C. (2019). Formation and migration of hydrocarbons in deeply buried sediments of the Gulf of Cadiz convergent plate boundary - insights from the hydrocarbon and helium isotope geochemistry of mud volcano fluids. Marine Geology, 410, 56-69. https://doi.org/10.1016/j.margeo.2019.01.005
Geochemical characterization of the Nirano mud volcano, Italy
Sciarra, A., Cantucci, B., Ricci, T., Tomonaga, Y., & Mazzini, A. (2019). Geochemical characterization of the Nirano mud volcano, Italy. Applied Geochemistry, 102, 77-87. https://doi.org/10.1016/j.apgeochem.2019.01.006
On-line monitoring of the gas composition in the Full-scale Emplacement experiment at Mont Terri (Switzerland)
Tomonaga, Y., Giroud, N., Brennwald, M. S., Horstmann, E., Diomidis, N., Kipfer, R., & Wersin, P. (2019). On-line monitoring of the gas composition in the Full-scale Emplacement experiment at Mont Terri (Switzerland). Applied Geochemistry, 100, 234-243. https://doi.org/10.1016/j.apgeochem.2018.11.015
Analysis of a fragmentary diatom record from Lake Van (Turkey) reveals substantial lake-level variability during previous interglacials MIS7 and MIS5e
North, S. M., Stockhecke, M., Tomonaga, Y., & Mackay, A. W. (2018). Analysis of a fragmentary diatom record from Lake Van (Turkey) reveals substantial lake-level variability during previous interglacials MIS7 and MIS5e. Journal of Paleolimnology, 59(1), 119-133. https://doi.org/10.1007/s10933-017-9973-z
Direct tritium emissions to the ocean from the Fukushima Dai-ichi nuclear accident
Takahata, N., Tomonaga, Y., Kumamoto, Y., Yamada, M., & Sano, Y. (2018). Direct tritium emissions to the ocean from the Fukushima Dai-ichi nuclear accident. Geochemical Journal, 52(2), 211-217. https://doi.org/10.2343/geochemj.2.0499
Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications
Cukur, D., Krastel, S., Tomonaga, Y., Schmincke, H. U., Sumita, M., Meydan, A. F., … Horozal, S. (2017). Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications. International Journal of Earth Sciences, 106, 239-253. https://doi.org/10.1007/s00531-016-1312-5
Porewater salinity reveals past lake-level changes in Lake Van, the Earth’s largest soda lake
Tomonaga, Y., Brennwald, M. S., Livingstone, D. M., Kwiecien, O., Randlett, M. È., Stockhecke, M., … Kipfer, R. (2017). Porewater salinity reveals past lake-level changes in Lake Van, the Earth’s largest soda lake. Scientific Reports, 7, 1-10. https://doi.org/10.1038/s41598-017-00371-w