Active Filters

  • (-) Eawag Departments = Water Resources and Drinking Water W+T
  • (-) Eawag Authors = Hofstetter, Thomas B.
Search Results 1 - 20 of 34
Select Page
Hydrogen peroxide formation during ozonation of olefins and phenol: mechanistic insights from oxygen isotope signatures
Houska, J., Stocco, L., Hofstetter, T. B., & Gunten, U. von. (2023). Hydrogen peroxide formation during ozonation of olefins and phenol: mechanistic insights from oxygen isotope signatures. Environmental Science and Technology, 57, 18950-18959. https://doi.org/10.1021/acs.est.3c00788
Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles
Aeppli, M., Giroud, S., Vranic, S., Voegelin, A., Hofstetter, T. B., & Sander, M. (2022). Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles. Proceedings of the National Academy of Sciences of the United States of America PNAS, 119(3), e2115629119 (8 pp.). https://doi.org/10.1073/pnas.2115629119
Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite
Aeppli, M., Vranic, S., Kaegi, R., Kretzschmar, R., Brown, A. R., Voegelin, A., … Sander, M. (2019). Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental Science and Technology, 53(15), 8736-8746. https://doi.org/10.1021/acs.est.9b01299
Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science and Technology, 53(7), 3568-3578. https://doi.org/10.1021/acs.est.8b07190
Mediated electrochemical reduction of iron (oxyhydr-)oxides under defined thermodynamic boundary conditions
Aeppli, M., Voegelin, A., Gorski, C. A., Hofstetter, T. B., & Sander, M. (2018). Mediated electrochemical reduction of iron (oxyhydr-)oxides under defined thermodynamic boundary conditions. Environmental Science and Technology, 52(2), 560-570. https://doi.org/10.1021/acs.est.7b04411
Carbon, hydrogen, and nitrogen isotope fractionation trends in <i>N</i>-nitrosodimethylamine reflect the formation pathway during chloramination of tertiary amines
Spahr, S., von Gunten, U., & Hofstetter, T. B. (2017). Carbon, hydrogen, and nitrogen isotope fractionation trends in N-nitrosodimethylamine reflect the formation pathway during chloramination of tertiary amines. Environmental Science and Technology, 51(22), 13170-13179. https://doi.org/10.1021/acs.est.7b03919
Formation of <I>N</I>-Nitrosodimethylamine during chloramination of secondary and tertiary amines: role of molecular oxygen and radical intermediates
Spahr, S., Cirpka, O. A., von Gunten, U., & Hofstetter, T. B. (2017). Formation of N-Nitrosodimethylamine during chloramination of secondary and tertiary amines: role of molecular oxygen and radical intermediates. Environmental Science and Technology, 51(1), 280-290. https://doi.org/10.1021/acs.est.6b04780
Measurement of oxygen isotope ratios (<SUP>18</SUP>O/<SUP>16</SUP>O) of aqueous O<SUB>2</SUB> in small samples by gas chromatography/isotope ratio mass spectrometry
Pati, S. G., Bolotin, J., Brennwald, M. S., Kohler, H. P. E., Werner, R. A., & Hofstetter, T. B. (2016). Measurement of oxygen isotope ratios (18O/16O) of aqueous O2 in small samples by gas chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 30(6), 684-690. https://doi.org/10.1002/rcm.7481
Isotope fractionation associated with the direct photolysis of 4-chloroaniline
Ratti, M., Canonica, S., McNeill, K., Erickson, P. R., Bolotin, J., & Hofstetter, T. B. (2015). Isotope fractionation associated with the direct photolysis of 4-chloroaniline. Environmental Science and Technology, 49(7), 4263-4273. https://doi.org/10.1021/es505784a
Isotope fractionation associated with the indirect photolysis of substituted anilines in aqueous solution
Ratti, M., Canonica, S., McNeill, K., Bolotin, J., & Hofstetter, T. B. (2015). Isotope fractionation associated with the indirect photolysis of substituted anilines in aqueous solution. Environmental Science and Technology, 49(21), 12766-12773. https://doi.org/10.1021/acs.est.5b03119
Isotope fractionation associated with the photochemical dechlorination of chloroanilines
Ratti, M., Canonica, S., McNeill, K., Bolotin, J., & Hofstetter, T. B. (2015). Isotope fractionation associated with the photochemical dechlorination of chloroanilines. Environmental Science and Technology, 49(16), 9797-9806. https://doi.org/10.1021/acs.est.5b02602
Compound-specific carbon, nitrogen, and hydrogen isotope analysis of <I>N</I>-nitrosodimethylamine in aqueous solutions
Spahr, S., Bolotin, J., Schleucher, J., Ehlers, I., von Gunten, U., & Hofstetter, T. B. (2015). Compound-specific carbon, nitrogen, and hydrogen isotope analysis of N-nitrosodimethylamine in aqueous solutions. Analytical Chemistry, 87(5), 2916-2924. https://doi.org/10.1021/ac5044169
Den Pestiziden auf der Spur
Fenner, K., Hofstetter, T., & Canonica, S. (2014). Den Pestiziden auf der Spur. Eawag News [dtsch. Ausg.] (1), 1-7.
Tracking the fate of pesticides
Fenner, K., Hofstetter, T., & Canonica, S. (2014). Tracking the fate of pesticides. Eawag News [engl. ed.] (1), 1-7.
Devenir des pesticides dans l’environnement : la traque s’affine
Hofstetter, T., Fenner, K., & Canonica, S. (2014). Devenir des pesticides dans l’environnement : la traque s’affine. Eawag News [éd. fr.] (1), 1-7.
Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties
Gorski, C. A., Klüpfel, L. E., Voegelin, A., Sander, M., & Hofstetter, T. B. (2013). Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties. Environmental Science and Technology, 47(23), 13477-13485. https://doi.org/10.1021/es403824x
Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites
Gorski, C. A., Aeschbacher, M., Soltermann, D., Voegelin, A., Baeyens, B., Marques Fernandes, M., … Sander, M. (2012). Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environmental Science and Technology, 46(17), 9360-9368. https://doi.org/10.1021/es3020138
Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1
Gorski, C. A., Klüpfel, L., Voegelin, A., Sander, M., & Hofstetter, T. B. (2012). Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. Environmental Science and Technology, 46(17), 9369-9377. https://doi.org/10.1021/es302014u
Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis
Hofstetter, T. B., & Berg, M. (2011). Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. Trends in Analytical Chemistry, 30(4), 618-627. https://doi.org/10.1016/j.trac.2010.10.012
Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances
Aeppli, C., Hofstetter, T. B., Amaral, H. I. F., Kipfer, R., Schwarzenbach, R. P., & Berg, M. (2010). Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environmental Science and Technology, 44(10), 3705-3711. https://doi.org/10.1021/es903895b