Active Filters

  • (-) Publication Year = 2006 - 2018
  • (-) Eawag Authors ≠ Pronk, Wouter
  • (-) Publication Status = Published
  • (-) Full Text ≠ Open Access
  • (-) Eawag Departments ≠ Eawag
  • (-) Eawag Departments = Water Resources and Drinking Water W+T
Search Results 1 - 20 of 424

Pages

  • RSS Feed
Select Page
Reaction and transformation of antibacterial agents with aqueous chlorine under relevant water treatment conditions
Huang, C. H., Dodd, M. C., & Shah, A. D. (2007). Reaction and transformation of antibacterial agents with aqueous chlorine under relevant water treatment conditions. In D. S. Aga (Ed.), Fate of pharmaceuticals in the environment and in water treatment systems (pp. 261-289). https://doi.org/10.1201/9781420052336
Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O<sub>3</sub> and O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>
Rivera-Utrilla, J., Méndez-Díaz, J., Sánchez-Polo, M., Ferro-García, M. A., & Bautista-Toledo, I. (2006). Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Research, 40(8), 1717-1725. https://doi.org/10.1016/j.watres.2006.02.015
Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions
Sánchez-Polo, M., Rivera-Utrilla, J., & von Gunten, U. (2006). Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Research, 40(18), 3375-3384. https://doi.org/10.1016/j.watres.2006.07.020
Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite
Wiederhold, J. G., Kraemer, S. M., Teutsch, N., Borer, P. M., Halliday, A. N., & Kretzschmar, R. (2006). Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environmental Science and Technology, 40(12), 3787-3793. https://doi.org/10.1021/es052228y
Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy
Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., … Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70(13), 3299-3312. https://doi.org/10.1016/j.gca.2006.03.020
Calorimetric determination of the enthalpies of formation of hydrotalcite-like solids and their use in the geochemical modeling of metals in natural waters
Allada, R. K., Peltier, E., Navrotsky, A., Casey, W. H., Johnson, C. A., Berbeco, H. T., & Sparks, D. L. (2006). Calorimetric determination of the enthalpies of formation of hydrotalcite-like solids and their use in the geochemical modeling of metals in natural waters. Clays and Clay Minerals, 54(4), 409-417. https://doi.org/10.1346/CCMN.2006.0540401
Photooxidation of naphthalenesulphonic acids in presence of transition metal-doped carbon aerogels
Sánchez-Polo, M., & Rivera-Utrilla, J. (2006). Photooxidation of naphthalenesulphonic acids in presence of transition metal-doped carbon aerogels. Applied Catalysis B: Environmental, 69(1-2), 93-100. https://doi.org/10.1016/j.apcatb.2006.05.019
How electron flow controls contaminant dynamics
Borch, T., Campbell, K., Kretzschmar, R., Voegelin, A., Totsche, K. U., Ginder-Vogel, M., & Barth, J. A. C. (2010). How electron flow controls contaminant dynamics. Environmental Science and Technology, 44(1), 3-6. https://doi.org/10.1021/es903264z
Trace element-deficient soils
Schulin, R., Johnson, A., & Frossard, E. (2010). Trace element-deficient soils. In P. S. Hooda (Ed.), Trace elements in soils (pp. 175-197). https://doi.org/10.1002/9781444319477.ch9
Spatial characterization of hydraulic conductivity in alluvial graveland-sand aquifers: a comparison of methods
Diem, S., Vogt, T., & Hoehn, E. (2010). Spatial characterization of hydraulic conductivity in alluvial graveland-sand aquifers: a comparison of methods. Bulletin fuer Angewandte Geologie, 15(2), 53-58.
Incineration: solid residues
Hjelmar, O., Johnson, A., & Comans, R. (2011). Incineration: solid residues. In T. H. Christensen (Ed.), Solid waste technology & management. Volume 1 (pp. 430-462). https://doi.org/10.1002/9780470666883.ch29
Reply to comment on "effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical"
Canonica, S., Gunten, U. V., & Wenk, J. (2011). Reply to comment on "effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical". Environmental Science and Technology, 45(18), 7947-7948. https://doi.org/10.1021/es202439z
A triggered depth-dependent sampling system to overcome the carry-over effects of the membrane interface probe
Bumberger, J., Peisker, K., Reiche, N., Radny, D., & Dietrich, P. (2016). A triggered depth-dependent sampling system to overcome the carry-over effects of the membrane interface probe. Ground Water Monitoring and Remediation, 36(3), 54-61. https://doi.org/10.1111/gwmr.12163
Consumption and occurrence
von Gunten, U., Janex-Habibi, M. L., Ternes, T. A., & Weber, L. (2006). Consumption and occurrence. In T. A. Ternes & A. Joss (Eds.), Human pharmaceuticals, hormones and fragrances. The challenge of micropollutants in urban water management (pp. 293-322).
Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat
Besold, J., Biswas, A., Suess, E., Scheinost, A. C., Rossberg, A., Mikutta, C., … Planer-Friedrich, B. (2018). Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat. Environmental Science and Technology, 52(13), 7317-7326. https://doi.org/10.1021/acs.est.8b01542
Reactions of ferrate(VI) with iodide and hypoiodous acid: kinetics, pathways, and implications for the fate of iodine during water treatment
Shin, J., von Gunten, U., Reckhow, D. A., Allard, S., & Lee, Y. (2018). Reactions of ferrate(VI) with iodide and hypoiodous acid: kinetics, pathways, and implications for the fate of iodine during water treatment. Environmental Science and Technology, 52(13), 7458-7467. https://doi.org/10.1021/acs.est.8b01565
Behavior of NDMA precursors at 21 full-scale water treatment facilities
Krasner, S. W., Westerhoff, P., Mitch, W. A., Hanigan, D., McCurry, D. L., & von Gunten, U. (2018). Behavior of NDMA precursors at 21 full-scale water treatment facilities. Environmental Science: Water Research and Technology, 4(12), 1966-1978. https://doi.org/10.1039/C8EW00442K
In situ formation of free chlorine during ClO<sub>2</sub> treatment: implications on the formation of disinfection byproducts
Rougé, V., Allard, S., Croué, J. P., & von Gunten, U. (2018). In situ formation of free chlorine during ClO2 treatment: implications on the formation of disinfection byproducts. Environmental Science and Technology, 52(22), 13421-13429. https://doi.org/10.1021/acs.est.8b04415
Secondary Fe-As-Tl mineralization in soils near Buus in the Swiss Jura Mountains
Herrmann, J., Voegelin, A., Palatinus, L., Mangold, S., & Majzlan, J. (2018). Secondary Fe-As-Tl mineralization in soils near Buus in the Swiss Jura Mountains. European Journal of Mineralogy, 30(5), 887-898. https://doi.org/10.1127/ejm/2018/0030-2766
Influence of organic compounds on the sulfidation of copper oxide nanoparticles
Gogos, A., Voegelin, A., & Kaegi, R. (2018). Influence of organic compounds on the sulfidation of copper oxide nanoparticles. Environmental Science: Nano, 5(11), 2560-2569. https://doi.org/10.1039/C8EN00523K
 

Pages