Active Filters

  • (-) Eawag Departments = Water Resources and Drinking Water W+T
  • (-) Publication Type ≠ Bachelor Thesis
Search Results 61 - 80 of 1,302
Select Page
Holocene variations in Lake Titicaca water level and their implications for sociopolitical developments in the central Andes
Guédron, S., Delaere, C., Fritz, S. C., Tolu, J., Sabatier, P., Devel, A. L., … Baker, P. A. (2023). Holocene variations in Lake Titicaca water level and their implications for sociopolitical developments in the central Andes. Proceedings of the National Academy of Sciences of the United States of America PNAS, 120(2), e2215882120 (9 pp.). https://doi.org/10.1073/pnas.2215882120
Groundwater salinity in the Horn of Africa: spatial prediction modeling and estimated people at risk
Araya, D., Podgorski, J., & Berg, M. (2023). Groundwater salinity in the Horn of Africa: spatial prediction modeling and estimated people at risk. Environment International, 176, 107925 (12 pp.). https://doi.org/10.1016/j.envint.2023.107925
Critical review on bromate formation during ozonation and control options for its minimization
Morrison, C. M., Hogard, S., Pearce, R., Mohan, A., Pisarenko, A. N., Dickenson, E. R. V., … Wert, E. C. (2023). Critical review on bromate formation during ozonation and control options for its minimization. Environmental Science and Technology, 57(47), 18393-18409. https://doi.org/10.1021/acs.est.3c00538
Chlorination of amides: kinetics and mechanisms of formation of <em>N</em>-chloramides and their reactions with phenolic compounds
Zhang, T., & von Gunten, U. (2023). Chlorination of amides: kinetics and mechanisms of formation of N-chloramides and their reactions with phenolic compounds. Water Research, 242, 120131 (9 pp.). https://doi.org/10.1016/j.watres.2023.120131
Formation of carbonyl compounds during ozonation of lake water and wastewater: development of a non-target screening method and quantification of target compounds
Manasfi, T., Houska, J., Gebhardt, I., & von Gunten, U. (2023). Formation of carbonyl compounds during ozonation of lake water and wastewater: development of a non-target screening method and quantification of target compounds. Water Research, 237, 119751 (14 pp.). https://doi.org/10.1016/j.watres.2023.119751
Climate change adaptation and mitigation measures for alluvial aquifers - solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR)
Jannis, E., Love, R. V., Annette, A., Stefan, S., & Schilling, O. S. (2023). Climate change adaptation and mitigation measures for alluvial aquifers - solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR). Water Research, 238, 119988 (11 pp.). https://doi.org/10.1016/j.watres.2023.119988
Unique geochemistry of arsenic-contaminated groundwater and corresponding mitigation efforts in southern Nepal
Mueller, B., Chan, M. C. K., & Hug, S. J. (2023). Unique geochemistry of arsenic-contaminated groundwater and corresponding mitigation efforts in southern Nepal. ACS ES, 3(6), 1527-1535. https://doi.org/10.1021/acsestwater.2c00404
Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time
Nenonen, V. V., Kaegi, R., Hug, S. J., Göttlicher, J., Mangold, S., Winkel, L. H. E., & Voegelin, A. (2023). Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time. Geochimica et Cosmochimica Acta, 360, 207-230. https://doi.org/10.1016/j.gca.2023.09.004
Weakening of springtime Arctic ozone depletion with climate change
Friedel, M., Chiodo, G., Sukhodolov, T., Keeble, J., Peter, T., Seeber, S., … Josse, B. (2023). Weakening of springtime Arctic ozone depletion with climate change. Atmospheric Chemistry and Physics, 23(17), 10235-10254. https://doi.org/10.5194/acp-23-10235-2023
Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers
Schilling, O. S., Nagaosa, K., Schilling, T. U., Brennwald, M. S., Sohrin, R., Tomonaga, Y., … Kato, K. (2023). Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers. Nature Water, 1, 60-73. https://doi.org/10.1038/s44221-022-00001-4
Hotspots of geogenic arsenic and manganese contamination in groundwater of the floodplains in lowland Amazonia (South America)
de Meyer, C. M. C., Wahnfried, I., Rodriguez Rodriguez, J. M., Kipfer, R., García Avelino, P. A., Carpio Deza, E. A., & Berg, M. (2023). Hotspots of geogenic arsenic and manganese contamination in groundwater of the floodplains in lowland Amazonia (South America). Science of the Total Environment, 860, 160407 (14 pp.). https://doi.org/10.1016/j.scitotenv.2022.160407
Radiocarbon signatures of carbon phases exported by Swiss rivers in the Anthropocene
Rhyner, T. M. Y., Bröder, L., White, M. E., Mittelbach, B. V. A., Brunmayr, A., Hagedorn, F., … Eglinton, T. I. (2023). Radiocarbon signatures of carbon phases exported by Swiss rivers in the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 381(2261), 20220326 (21 pp.). https://doi.org/10.1098/rsta.2022.0326
Can Zn isotopes in sediments record past eutrophication of freshwater lakes? A pilot study at Lake Baldegg (Switzerland)
Juillot, F., Noël, V., Louvat, P., Gelabert, A., Jouvin, D., Göttlicher, J., … Voegelin, A. (2023). Can Zn isotopes in sediments record past eutrophication of freshwater lakes? A pilot study at Lake Baldegg (Switzerland). Chemical Geology, 620, 121321 (12 pp.). https://doi.org/10.1016/j.chemgeo.2023.121321
Global assessment of chemical quality of drinking water: the case of trihalomethanes
Villanueva, C. M., Evlampidou, I., Ibrahim, F., Donat-Vargas, C., Valentin, A., Tugulea, A. M., … Kogevinas, M. (2023). Global assessment of chemical quality of drinking water: the case of trihalomethanes. Water Research, 230, 119568 (12 pp.). https://doi.org/10.1016/j.watres.2023.119568
Solute trapping and the mechanisms of non-fickian transport in partially saturated porous media
Ben-Noah, I., Hidalgo, J. J., Jimenez-Martinez, J., & Dentz, M. (2023). Solute trapping and the mechanisms of non-fickian transport in partially saturated porous media. Water Resources Research, 59(2), e2022WR033613 (15 pp.). https://doi.org/10.1029/2022WR033613
Reactivity of bromine radical with dissolved organic matter moieties and monochloramine: effect on bromate formation during ozonation
Lim, S., Barrios, B., Minakata, D., & Von Gunten, U. (2023). Reactivity of bromine radical with dissolved organic matter moieties and monochloramine: effect on bromate formation during ozonation. Environmental Science and Technology, 57(47), 18658-18667. https://doi.org/10.1021/acs.est.2c07694
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., … Fenicia, F. (2023). CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland. Earth System Science Data, 15(12), 5755-5784. https://doi.org/10.5194/essd-15-5755-2023
Drought cascade lag time estimation across Africa based on remote sensing of hydrological cycle components
Amazirh, A., Chehbouni, A., Bouras, E. H., Benkirane, M., Ait Hssaine, B., & Entekhabi, D. (2023). Drought cascade lag time estimation across Africa based on remote sensing of hydrological cycle components. Advances in Water Resources, 182, 104586 (11 pp.). https://doi.org/10.1016/j.advwatres.2023.104586
Oxidative water treatment: the track ahead
Lee, Y., Sedlak, D. L., & von Gunten, U. (2023). Oxidative water treatment: the track ahead. Environmental Science and Technology, 57(47), 18391-18392. https://doi.org/10.1021/acs.est.3c07785
Internal biofilm heterogeneities enhance solute mixing and chemical reactions in porous media
Markale, I., Carrel, M., Kurz, D. L., Morales, V. L., Holzner, M., & Jiménez-Martínez, J. (2023). Internal biofilm heterogeneities enhance solute mixing and chemical reactions in porous media. Environmental Science and Technology, 57(21), 8065-8074. https://doi.org/10.1021/acs.est.2c09082