Active Filters

  • (-) Full Text ≠ Restricted
  • (-) Funding (EC, SNSF) = Eco-evolutionary dynamics in aquatic ecosystems
Search Results 1 - 16 of 16
  • RSS Feed
Select Page
Eco‐evolutionary feedbacks - theoretical models and perspectives
Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., … Matthews, B. (2019). Eco‐evolutionary feedbacks - theoretical models and perspectives. Functional Ecology, 33(1), 13-30. https://doi.org/10.1111/1365-2435.13241
Rapid divergence of predator functional traits affects prey composition in aquatic communities
Schmid, D. W., McGee, M. D., Best, R. J., Seehausen, O., & Matthews, B. (2019). Rapid divergence of predator functional traits affects prey composition in aquatic communities. American Naturalist, 193(3), 331-345. https://doi.org/10.1086/701784
Ecosystem tipping points in an evolving world
Dakos, V., Matthews, B., Hendry, A. P., Levine, J., Loeuille, N., Norberg, J., … De Meester, L. (2019). Ecosystem tipping points in an evolving world. Nature Ecology & Evolution, 3(3), 355-362. https://doi.org/10.1038/s41559-019-0797-2
A key metabolic gene for recurrent freshwater colonization and radiation in fishes
Ishikawa, A., Kabeya, N., Ikeya, K., Kakioka, R., Cech, J. N., Osada, N., … Kitano, J. (2019). A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 364(6443), 886-889. https://doi.org/10.1126/science.aau5656
An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning
Anaya-Rojas, J. M., Best, R. J., Brunner, F. S., Eizaguirre, C., Leal, M. C., Melián, C. J., … Matthews, B. (2019). An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning. Ecology, 100(8), e02744 (12 pp.). https://doi.org/10.1002/ecy.2744
Detecting the macroevolutionary signal of species interactions
Harmon, L. J., Andreazzi, C. S., Débarre, F., Drury, J., Goldberg, E. E., Martins, A. B., … Matthews, B. (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology, 32(8), 769-782. https://doi.org/10.1111/jeb.13477
Principles of ecology revisited: integrating information and ecological theories for a more unified science
O'Connor, M. I., Pennell, M. W., Altermatt, F., Matthews, B., Melián, C. J., & Gonzalez, A. (2019). Principles of ecology revisited: integrating information and ecological theories for a more unified science. Frontiers in Ecology and Evolution, 7, 219 (20 pp.). https://doi.org/10.3389/fevo.2019.00219
On biological evolution and environmental solutions
Matthews, B., Jokela, J., Narwani, A., Räsänen, K., Pomati, F., Altermatt, F., … Vorburger, C. (2020). On biological evolution and environmental solutions. Science of the Total Environment, 724, 138194 (7 pp.). https://doi.org/10.1016/j.scitotenv.2020.138194
Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (<em>Gasterosteus aculeatus</em>)
Archambeault, S. L., Durston, D. J., Wan, A., El‐Sabaawi, R. W., Matthews, B., & Peichel, C. L. (2020). Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus). Evolution, International Journal of Organic Evolution, 74(9), 2088-2104. https://doi.org/10.1111/evo.14044
Active learning for anomaly detection in environmental data
Russo, S., Lürig, M., Hao, W., Matthews, B., & Villez, K. (2020). Active learning for anomaly detection in environmental data. Environmental Modelling and Software, 134, 104869 (11 pp.). https://doi.org/10.1016/j.envsoft.2020.104869
Threespine stickleback in Lake Constance: the ecology and genomic substrate of a recent invasion
Hudson, C. M., Lucek, K., Marques, D. A., Alexander, T. J., Moosmann, M., Spaak, P., … Matthews, B. (2021). Threespine stickleback in Lake Constance: the ecology and genomic substrate of a recent invasion. Frontiers in Ecology and Evolution, 8, 611672 (22 pp.). https://doi.org/10.3389/fevo.2020.611672
Non‐additive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation
Lürig, M. D., Narwani, A., Penson, H., Wehrli, B., Spaak, P., & Matthews, B. (2021). Non‐additive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation. Ecology, 102(7), e03371 (14 pp.). https://doi.org/10.1002/ecy.3371
The evolutionary ecology of fatty-acid variation: implications for consumer adaptation and diversification
Twining, C. W., Bernhardt, J. R., Derry, A. M., Hudson, C. M., Ishikawa, A., Kabeya, N., … Matthews, B. (2021). The evolutionary ecology of fatty-acid variation: implications for consumer adaptation and diversification. Ecology Letters, 24(8), 1709-1731. https://doi.org/10.1111/ele.13771
On the evolution of trophic position
Moosmann, M., Cuenca-Cambronero, M., De Lisle, S., Greenway, R., Hudson, C. M., Lürig, M., & Matthews, B. (2021). On the evolution of trophic position. Ecology Letters, 24(12), 2549-2562. https://doi.org/10.1111/ele.13888
Fit and fatty freshwater fish: contrasting polyunsaturated fatty acid phenotypes between hybridizing stickleback lineages
Hudson, C. M., Ladd, S. N., Leal, M. C., Schubert, C. J., Seehausen, O., & Matthews, B. (2022). Fit and fatty freshwater fish: contrasting polyunsaturated fatty acid phenotypes between hybridizing stickleback lineages. Oikos, 2022(7), e08558 (14 pp.). https://doi.org/10.1111/oik.08558
The influence of predator community composition on photoprotective traits of copepods
Oester, R., Greenway, R., Moosmann, M., Sommaruga, R., Tartarotti, B., Brodersen, J., & Matthews, B. (2022). The influence of predator community composition on photoprotective traits of copepods. Ecology and Evolution, 12(4), e8862 (10 pp.). https://doi.org/10.1002/ece3.8862