Active Filters

  • (-) Journal = Analytical Chemistry
Search Results 1 - 20 of 45
Select Page
<sup>13</sup>C- and <sup>15</sup>N-isotope analysis of desphenylchloridazon by liquid chromatography–isotope-ratio mass spectrometry and derivatization gas chromatography–isotope-ratio mass spectrometry
Melsbach, A., Ponsin, V., Torrentó, C., Lihl, C., Hofstetter, T. B., Hunkeler, D., & Elsner, M. (2019). 13C- and 15N-isotope analysis of desphenylchloridazon by liquid chromatography–isotope-ratio mass spectrometry and derivatization gas chromatography–isotope-ratio mass spectrometry. Analytical Chemistry, 91(5), 3412-3420. https://doi.org/10.1021/acs.analchem.8b04906
Molecularly imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments
Bakkour, R., Bolotin, J., Sellergren, B., & Hofstetter, T. B. (2018). Molecularly imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments. Analytical Chemistry, 90(12), 7292-7301. https://doi.org/10.1021/acs.analchem.8b00493
Stable isotope labeling-assisted metabolite probing for emerging contaminants in plants
Fu, Q., Dudley, S., Sun, C., Schlenk, D., & Gan, J. (2018). Stable isotope labeling-assisted metabolite probing for emerging contaminants in plants. Analytical Chemistry, 90(18), 11040-11047. https://doi.org/10.1021/acs.analchem.8b02807
Quantification of total <I>N</I>-nitrosamine concentrations in aqueous samples via UV-photolysis and chemiluminescence detection of nitric oxide
Breider, F., & von Gunten, U. (2017). Quantification of total N-nitrosamine concentrations in aqueous samples via UV-photolysis and chemiluminescence detection of nitric oxide. Analytical Chemistry, 89(3), 1574-1582. https://doi.org/10.1021/acs.analchem.6b03595
<I>In situ</I> ammonium profiling using solid-contact ion-selective electrodes in eutrophic lakes
Athavale, R., Kokorite, I., Dinkel, C., Bakker, E., Wehrli, B., Crespo, G. A., & Brand, A. (2015). In situ ammonium profiling using solid-contact ion-selective electrodes in eutrophic lakes. Analytical Chemistry, 87(24), 11990-11997. https://doi.org/10.1021/acs.analchem.5b02424
Accelerated isotope fine structure calculation using pruned transition trees
Loos, M., Gerber, C., Corona, F., Hollender, J., & Singer, H. (2015). Accelerated isotope fine structure calculation using pruned transition trees. Analytical Chemistry, 87(11), 5738-5744. https://doi.org/10.1021/acs.analchem.5b00941
Prioritizing unknown transformationproducts from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic
Schollée, J. E., Schymanski, E. L., Avak, S. E., Loos, M., & Hollender, J. (2015). Prioritizing unknown transformationproducts from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Analytical Chemistry, 87(24), 12121-12129. https://doi.org/10.1021/acs.analchem.5b02905
Compound-specific carbon, nitrogen, and hydrogen isotope analysis of <I>N</I>-nitrosodimethylamine in aqueous solutions
Spahr, S., Bolotin, J., Schleucher, J., Ehlers, I., von Gunten, U., & Hofstetter, T. B. (2015). Compound-specific carbon, nitrogen, and hydrogen isotope analysis of N-nitrosodimethylamine in aqueous solutions. Analytical Chemistry, 87(5), 2916-2924. https://doi.org/10.1021/ac5044169
Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry
Moschet, C., Piazzoli, A., Singer, H., & Hollender, J. (2013). Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry. Analytical Chemistry, 85(21), 10312-10320. https://doi.org/10.1021/ac4021598
Robust algorithm for aligning two-dimensional chromatograms
Gros, J., Nabi, D., Dimitriou-Christidis, P., Rutler, R., & Arey, J. S. (2012). Robust algorithm for aligning two-dimensional chromatograms. Analytical Chemistry, 84(21), 9033-9040. https://doi.org/10.1021/ac301367s
Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach - a comparison to transmission electron microscopy and batch dynamic light scattering
Hagendorfer, H., Kaegi, R., Parlinska, M., Sinnet, B., Ludwig, C., & Ulrich, A. (2012). Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach - a comparison to transmission electron microscopy and batch dynamic light scattering. Analytical Chemistry, 84(6), 2678-2685. https://doi.org/10.1021/ac202641d
Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties
Schymanski, E. L., Gallampois, C. M. J., Krauss, M., Meringer, M., Neumann, S., Schulze, T., … Brack, W. (2012). Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Analytical Chemistry, 84(7), 3287-3295. https://doi.org/10.1021/ac203471y
Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry
Backe, W. J., Ort, C., Brewer, A. J., & Field, J. A. (2011). Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry. Analytical Chemistry, 83(7), 2622-2630. https://doi.org/10.1021/ac103013h
PH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS
Skarpeli-Liati, M., Turgeon, A., Garr, A. N., Arnold, W. A., Cramer, C. J., & Hofstetter, T. B. (2011). PH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS. Analytical Chemistry, 83(5), 1641-1648. https://doi.org/10.1021/ac102667y
Analysis of nitrosamines in wastewater: exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer
Krauss, M., & Hollender, J. (2008). Analysis of nitrosamines in wastewater: exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 80(3), 834-842. https://doi.org/10.1021/ac701804y
Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS
Berg, M., Bolotin, J., & Hofstetter, T. B. (2007). Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS. Analytical Chemistry, 79(6), 2386-2393. https://doi.org/10.1021/ac0622577
Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly(dimethylsiloxane) and water
Kwon, J. H., Wuethrich, T., Mayer, P., & Escher, B. I. (2007). Dynamic permeation method to determine partition coefficients of highly hydrophobic chemicals between poly(dimethylsiloxane) and water. Analytical Chemistry, 79(17), 6816-6822. https://doi.org/10.1021/ac0710073
Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry
Göbel, A., McArdell, C. S., Suter, M. J. F., & Giger, W. (2004). Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Analytical Chemistry, 76(16), 4756-4764. https://doi.org/10.1021/ac0496603
Complexation of copper by zwitterionic aminosulfonic (good) buffers
Mash, H. E., Chin, Y. P., Sigg, L., Hari, R., & Xue, H. (2003). Complexation of copper by zwitterionic aminosulfonic (good) buffers. Analytical Chemistry, 75(3), 671-677. https://doi.org/10.1021/ac0261101
Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range
Zwank, L., Berg, M., Schmidt, T. C., & Haderlein, S. B. (2003). Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Analytical Chemistry, 75(20), 5575-5583. https://doi.org/10.1021/ac034230i