Active Filters

  • (-) Journal = Analytical and Bioanalytical Chemistry
Search Results 1 - 20 of 26
Select Page
Estrogenic activity of food contact materials - evaluation of 20 chemicals using a yeast estrogen screen on HPTLC or 96-well plates
Bergmann, A. J., Simon, E., Schifferli, A., Schönborn, A., & Vermeirssen, E. L. M. (2020). Estrogenic activity of food contact materials - evaluation of 20 chemicals using a yeast estrogen screen on HPTLC or 96-well plates. Analytical and Bioanalytical Chemistry, 412, 4527-4536. https://doi.org/10.1007/s00216-020-02701-w
GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in <sup>13</sup>C-based metabolic flux analysis
Mairinger, T., Sanderson, J., & Hann, S. (2019). GC–QTOFMS with a low-energy electron ionization source for advancing isotopologue analysis in 13C-based metabolic flux analysis. Analytical and Bioanalytical Chemistry, 411(8), 1495-1502. https://doi.org/10.1007/s00216-019-01590-y
Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples
Mechelke, J., Longrée, P., Singer, H., & Hollender, J. (2019). Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Analytical and Bioanalytical Chemistry, 411(12), 2555-2567. https://doi.org/10.1007/s00216-019-01696-3
Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag
Ruttkies, C., Schymanski, E. L., Strehmel, N., Hollender, J., Neumann, S., Williams, A. J., & Krauss, M. (2019). Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Analytical and Bioanalytical Chemistry, 411(19), 4683-4700. https://doi.org/10.1007/s00216-019-01885-0
Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid-liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionizati
Rösch, A., Beck, B., Hollender, J., & Singer, H. (2019). Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid-liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization. Analytical and Bioanalytical Chemistry, 411(14), 3151-3164. https://doi.org/10.1007/s00216-019-01787-1
Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis—effects of sample volume on recoveries
Simon, E., Schifferli, A., Bucher, T. B., Olbrich, D., Werner, I., & Vermeirssen, E. L. M. (2019). Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis—effects of sample volume on recoveries. Analytical and Bioanalytical Chemistry, 411(10), 2057-2069. https://doi.org/10.1007/s00216-019-01628-1
Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS
Hu, M., Müller, E., Schymanski, E. L., Ruttkies, C., Schulze, T., Brack, W., & Krauss, M. (2018). Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS. Analytical and Bioanalytical Chemistry, 410(7), 1931-1941. https://doi.org/10.1007/s00216-018-0857-5
Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry
Stravs, M. A., Mechelke, J., Ferguson, P. L., Singer, H., & Hollender, J. (2016). Microvolume trace environmental analysis using peak-focusing online solid-phase extraction–nano-liquid chromatography–high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 408, 1879-1890. https://doi.org/10.1007/s00216-015-9294-x
Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis
Schymanski, E. L., Singer, H. P., Slobodnik, J., Ipolyi, I. M., Oswald, P., Krauss, M., … Hollender, J. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 407(21), 6237-6255. https://doi.org/10.1007/s00216-015-8681-7
LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters
Ammann, A. A., Macikova, P., Groh, K. J., Schirmer, K., & Suter, M. J. F. (2014). LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. Analytical and Bioanalytical Chemistry, 406(29), 7653-7665. https://doi.org/10.1007/s00216-014-8206-9
Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments
Chiaia-Hernandez, A. C., Schymanski, E. L., Kumar, P., Singer, H. P., & Hollender, J. (2014). Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Analytical and Bioanalytical Chemistry, 406(28), 7323-7335. https://doi.org/10.1007/s00216-014-8166-0
Integrated biological–chemical approach for the isolation and selection of polyaromatic mutagens in surface water
Gallampois, C. M. J., Schymanski, E. L., Bataineh, M., Buchinger, S., Krauss, M., Reifferscheid, G., & Brack, W. (2013). Integrated biological–chemical approach for the isolation and selection of polyaromatic mutagens in surface water. Analytical and Bioanalytical Chemistry, 405(28), 9101-9112. https://doi.org/10.1007/s00216-013-7349-4
Maik A. Jochmann and Torsten C. Schmidt: Compound-specific stable isotope analysis
Hofstetter, T. B. (2013). Maik A. Jochmann and Torsten C. Schmidt: Compound-specific stable isotope analysis. Analytical and Bioanalytical Chemistry, 405(9), 2753-2754. https://doi.org/10.1007/s00216-013-6729-0
Compound-specific isotope analysis of benzotriazole and its derivatives
Spahr, S., Huntscha, S., Bolotin, J., Maier, M. P., Elsner, M., Hollender, J., & Hofstetter, T. B. (2013). Compound-specific isotope analysis of benzotriazole and its derivatives. Analytical and Bioanalytical Chemistry, 405(9), 2843-2856. https://doi.org/10.1007/s00216-012-6526-1
Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler
Vermeirssen, E. L. M., Dietschweiler, C., Escher, B. I., van der Voet, J., & Hollender, J. (2013). Uptake and release kinetics of 22 polar organic chemicals in the Chemcatcher passive sampler. Analytical and Bioanalytical Chemistry, 405(15), 5225-5236. https://doi.org/10.1007/s00216-013-6878-1
Current challenges in compound-specific stable isotope analysis of environmental organic contaminants
Elsner, M., Jochmann, M. A., Hofstetter, T. B., Hunkeler, D., Bernstein, A., Schmidt, T. C., & Schimmelmann, A. (2012). Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Analytical and Bioanalytical Chemistry, 403(9), 2471-2491. https://doi.org/10.1007/s00216-011-5683-y
Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications
Hammes, F., & Egli, T. (2010). Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Analytical and Bioanalytical Chemistry, 397(3), 1083-1095. https://doi.org/10.1007/s00216-010-3646-3
LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns
Krauss, M., Singer, H., & Hollender, J. (2010). LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry, 397(3), 943-951. https://doi.org/10.1007/s00216-010-3608-9
Transcriptomics in ecotoxicology
Schirmer, K., Fischer, B. B., Madureira, D. J., & Pillai, S. (2010). Transcriptomics in ecotoxicology. Analytical and Bioanalytical Chemistry, 397(3), 917-923. https://doi.org/10.1007/s00216-010-3662-3
Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants
Giger, W. (2009). Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants. Analytical and Bioanalytical Chemistry, 393(1), 37-44. https://doi.org/10.1007/s00216-008-2481-2