Active Filters

  • (-) Journal = Atmospheric Environment
Search Results 1 - 20 of 21
Select Page
Variations in the depositional fluxes of cosmogenic beryllium on short time scales
Mann, M., Beer, J., Steinhilber, F., Abreu, J. A., Christl, M., & Kubik, P. W. (2011). Variations in the depositional fluxes of cosmogenic beryllium on short time scales. Atmospheric Environment, 45(17), 2836-2841. https://doi.org/10.1016/j.atmosenv.2011.03.005
Fractal analysis of wood combustion aggregates by contact mode atomic force microscopy
Mavrocordatos, D., Kaegi, R., & Schmatloch, V. (2002). Fractal analysis of wood combustion aggregates by contact mode atomic force microscopy. Atmospheric Environment, 36(36-37), 5653-5660. https://doi.org/10.1016/S1352-2310(02)00702-1
Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or black carbon
Jans, U., & Hoigné, J. (2000). Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or black carbon. Atmospheric Environment, 34, 1069-1085. https://doi.org/10.1016/S1352-2310(99)00361-1
OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water
Stemmler, K., & von Gunten, U. (2000). OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water. Atmospheric Environment, 34(25), 4241-4252. https://doi.org/10.1016/S1352-2310(00)00218-1
OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 2. Reactions of peroxyl radicals with transition metals
Stemmler, K., & von Gunten, U. (2000). OH radical-initiated oxidation of organic compounds in atmospheric water phases: part 2. Reactions of peroxyl radicals with transition metals. Atmospheric Environment, 34(25), 4253-4264. https://doi.org/10.1016/S1352-2310(00)00219-3
First-order sensitivity analysis of models with time-dependent parameters: an application to PAN and ozone
Seefeld, S., & Stockwell, W. R. (1999). First-order sensitivity analysis of models with time-dependent parameters: an application to PAN and ozone. Atmospheric Environment, 33(18), 2941-2953. https://doi.org/10.1016/S1352-2310(99)00092-8
Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relative humidities
Goss, K. U., & Eisenreich, S. J. (1997). Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relative humidities. Atmospheric Environment, 31(17), 2827-2834. https://doi.org/10.1016/S1352-2310(97)00048-4
The cloudwater chemistry of iron and copper at Great Dun Fell, U.K.
Sedlak, D. L., Hoigné, J., David, M. M., Colvile, R. N., Seyffer, E., Acker, K., … Fuzzi, S. (1997). The cloudwater chemistry of iron and copper at Great Dun Fell, U.K. Atmospheric Environment, 31(16), 2515-2526. https://doi.org/10.1016/S1352-2310(96)00080-5
Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters
Zuo, Y., & Hoigné, J. (1994). Photochemical decomposition of oxalic, glyoxalic and pyruvic acid catalysed by iron in atmospheric waters. Atmospheric Environment, 28(7), 1231-1239. https://doi.org/10.1016/1352-2310(94)90270-4
Transfer of atmospheric constituents into an Alpine snow field
Baltensperger, U., Schwikowski, M., Gäggeler, H. W., Jost, D. T., Beer, J., Siegenthaler, U., … Synal, H. A. (1993). Transfer of atmospheric constituents into an Alpine snow field. Atmospheric Environment, 27(12), 1881-1890. https://doi.org/10.1016/0960-1686(93)90293-8
The role of copper and oxalate in the redox cycling of iron in atmospheric waters
Sedlak, D. L., & Hoigné, J. (1993). The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmospheric Environment, 27A(14), 2173-2185. https://doi.org/10.1016/0960-1686(93)90047-3
Evaluated kinetic and photochemical data for atmospheric chemistry: supplement IV
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson Jr, R. F., Kerr, J. A., & Troe, J. (1992). Evaluated kinetic and photochemical data for atmospheric chemistry: supplement IV. Atmospheric Environment, 26A(7), 1187-1230. https://doi.org/10.1016/0960-1686(92)90383-V
Seasonal variations in the concentration of <SUP>10</SUP>Be, Cl<SUP>-</SUP>, NO<SUB>3</SUB><SUP>-</SUP>, SO<SUB>4</SUB><SUP>2-</SUP>, H<SUB>2</SUB>O<SUB>2</SUB>, <SUP>210</SUP>Pb, <SUP>3</SUP>H, mineral dust, and δ<SUP>18</SUP>O in Greenland snow
Beer, J., Finkel, R. C., Bonani, G., Gäggeler, H., Görlach, U., Jacob, P., … Wölfli, W. (1991). Seasonal variations in the concentration of 10Be, Cl-, NO3-, SO42-, H2O2, 210Pb, 3H, mineral dust, and δ18O in Greenland snow. Atmospheric Environment, 25A(5-6), 899-904. https://doi.org/10.1016/0960-1686(91)90131-P
Hydrophobic organic chemicals in urban fog
Capel, P. D., Leuenberger, C., & Giger, W. (1991). Hydrophobic organic chemicals in urban fog. Atmospheric Environment, 25A(7), 1335-1346. https://doi.org/10.1016/0960-1686(91)90244-2
Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain
Faust, B. C., & Hoigné, J. (1990). Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmospheric Environment, 24A(1), 79-89. https://doi.org/10.1016/0960-1686(90)90443-Q
Polycyclic aromatic hydrocarbons and combustion aerosol photoemission
McDow, S. R., Giger, W., Burtscher, H., Schmidt-Ott, A., & Siegmann, H. C. (1990). Polycyclic aromatic hydrocarbons and combustion aerosol photoemission. Atmospheric Environment, 24A(12), 2911-2916. https://doi.org/10.1016/0960-1686(90)90471-X
Interactions of aerosols (ammonium sulfate, ammonium nitrate and ammonium chloride) and of gases (HCl, HNO<SUB>3</SUB>) with fogwater
Ruprecht, H., & Sigg, L. (1990). Interactions of aerosols (ammonium sulfate, ammonium nitrate and ammonium chloride) and of gases (HCl, HNO3) with fogwater. Atmospheric Environment, 24A(3), 573-584. https://doi.org/10.1016/0960-1686(90)90012-C
Dominating influence of NH<SUB>3</SUB> on the oxidation of aqueous SO<SUB>2</SUB>: the coupling of NH<SUB>3</SUB> and SO<SUB>2</SUB> in atmospheric water
Behra, P., Sigg, L., & Stumm, W. (1989). Dominating influence of NH3 on the oxidation of aqueous SO2: the coupling of NH3 and SO2 in atmospheric water. Atmospheric Environment, 23(12), 2691-2707. https://doi.org/10.1016/0004-6981(89)90549-0
Seasonal and temporal changes of organic compounds in rain and snow
Czuczwa, J., Leuenberger, C., & Giger, W. (1988). Seasonal and temporal changes of organic compounds in rain and snow. Atmospheric Environment, 22(5), 907-916. https://doi.org/10.1016/0004-6981(88)90268-5
Aliphatic and polycyclic aromatic hydrocarbons in urban rain, snow and fog
Leuenberger, C., Czuczwa, J., Heyerdahl, E., & Giger, W. (1988). Aliphatic and polycyclic aromatic hydrocarbons in urban rain, snow and fog. Atmospheric Environment, 22(4), 695-705. https://doi.org/10.1016/0004-6981(88)90007-8