Active Filters

  • (-) Journal = Environmental Science and Technology
Search Results 1 - 20 of 709

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Relating metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities
Achermann, S., Mansfeldt, C. B., Müller, M., Johnson, D. R., & Fenner, K. (2020). Relating metatranscriptomic profiles to the micropollutant biotransformation potential of complex microbial communities. Environmental Science and Technology, 54(1), 235-244. https://doi.org/10.1021/acs.est.9b05421
Linking isotope exchange with Fe(II)-catalyzed dissolution of iron(hydr)oxides in the presence of the bacterial siderophore desferrioxamine-B
Biswakarma, J., Kang, K., Schenkeveld, W. D. C., Kraemer, S. M., Hering, J. G., & Hug, S. J. (2020). Linking isotope exchange with Fe(II)-catalyzed dissolution of iron(hydr)oxides in the presence of the bacterial siderophore desferrioxamine-B. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b04235
Common gene expression patterns in environmental model organisms exposed to engineered nanomaterials: a meta-analysis
Burkard, M., Betz, A., Schirmer, K., & Zupanic, A. (2020). Common gene expression patterns in environmental model organisms exposed to engineered nanomaterials: a meta-analysis. Environmental Science and Technology, 54(1), 335-344. https://doi.org/10.1021/acs.est.9b05170
A new in situ method for tracing denitrification in riparian groundwater
Popp, A. L., Manning, C. C., Brennwald, M. S., & Kipfer, R. (2020). A new in situ method for tracing denitrification in riparian groundwater. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b05393
Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite
Aeppli, M., Vranic, S., Kaegi, R., Kretzschmar, R., Brown, A. R., Voegelin, A., … Sander, M. (2019). Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environmental Science and Technology, 53(15), 8736-8746. https://doi.org/10.1021/acs.est.9b01299
Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental Science and Technology, 53(7), 3568-3578. https://doi.org/10.1021/acs.est.8b07190
Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system
Albergamo, V., Schollée, J. E., Schymanski, E. L., Helmus, R., Timmer, H., Hollender, J., & de Voogt, P. (2019). Non-target screening reveals time trends of polar micropollutants in a riverbank filtration system. Environmental Science and Technology, 53(13), 7584-7594. https://doi.org/10.1021/acs.est.9b01750
Health risks for sanitation service workers along a container-based urine collection system and resource recovery value chain
Bischel, H. N., Caduff, L., Schindelholz, S., Kohn, T., & Julian, T. R. (2019). Health risks for sanitation service workers along a container-based urine collection system and resource recovery value chain. Environmental Science and Technology, 7055-7067. https://doi.org/10.1021/acs.est.9b01092
Fe(II)-catalyzed ligand-controlled dissolution of iron(hydr)oxides
Biswakarma, J., Kang, K., Borowski, S. C., Schenkeveld, W. D. C., Kraemer, S. M., Hering, J. G., & Hug, S. J. (2019). Fe(II)-catalyzed ligand-controlled dissolution of iron(hydr)oxides. Environmental Science and Technology, 53(1), 88-97. https://doi.org/10.1021/acs.est.8b03910
How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan
Blumensaat, F., Leitão, J. P., Ort, C., Rieckermann, J., Scheidegger, A., Vanrolleghem, P. A., & Villez, K. (2019). How urban storm- and wastewater management prepares for emerging opportunities and threats: digital transformation, ubiquitous sensing, new data sources, and beyond – a horizon scan. Environmental Science and Technology, 53(15), 8488-8498. https://doi.org/10.1021/acs.est.8b06481
Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical
Canonica, S., & Schönenberger, U. (2019). Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical. Environmental Science and Technology, 53(20), 11783-11791. https://doi.org/10.1021/acs.est.9b04105
Photochemical transformation of poly(butylene adipate-<i>co</i>-terephthalate) and its effects on enzymatic hydrolyzability
De Hoe, G. X., Zumstein, M. T., Getzinger, G. J., Rüegsegger, I., Kohler, H. P. E., Maurer-Jones, M. A., … McNeill, K. (2019). Photochemical transformation of poly(butylene adipate-co-terephthalate) and its effects on enzymatic hydrolyzability. Environmental Science and Technology, 53(5), 2472-2481. https://doi.org/10.1021/acs.est.8b06458
Mechanistic model describing the uptake of chemicals by aquatic integrative samplers: comparison to data and implications for improved sampler configurations
Endo, S., Matsuura, Y., & Vermeirssen, E. L. M. (2019). Mechanistic model describing the uptake of chemicals by aquatic integrative samplers: comparison to data and implications for improved sampler configurations. Environmental Science and Technology, 53(3), 1482-1489. https://doi.org/10.1021/acs.est.8b06225
Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry
García, R. A., Chiaia-Hernández, A. C., Lara-Martin, P. A., Loos, M., Hollender, J., Oetjen, K., … Field, J. A. (2019). Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry. Environmental Science and Technology, 53(14), 8068-8077. https://doi.org/10.1021/acs.est.9b01895
Role of implementation factors for the success of community-led total sanitation on latrine coverage. A case study from rural Ghana
Harter, M., Lilje, J., & Mosler, H. J. (2019). Role of implementation factors for the success of community-led total sanitation on latrine coverage. A case study from rural Ghana. Environmental Science and Technology, 53, 5466-5472. https://doi.org/10.1021/acs.est.9b01055
Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream
Jaeger, A., Posselt, M., Betterle, A., Schaper, J., Mechelke, J., Coll, C., & Lewandowski, J. (2019). Spatial and temporal variability in attenuation of polar organic micropollutants in an urban lowland stream. Environmental Science and Technology, 53(5), 2383-2395. https://doi.org/10.1021/acs.est.8b05488
Low Fe(II) concentrations catalyze the dissolution of various Fe(III) (hydr)oxide minerals in the presence of diverse ligands and over a broad pH range
Kang, K., Schenkeveld, W. D. C., Biswakarma, J., Borowski, S. C., Hug, S. J., Hering, J. G., & Kraemer, S. M. (2019). Low Fe(II) concentrations catalyze the dissolution of various Fe(III) (hydr)oxide minerals in the presence of diverse ligands and over a broad pH range. Environmental Science and Technology, 53(1), 98-107. https://doi.org/10.1021/acs.est.8b03909
Effects of ozone on the photochemical and photophysical properties of dissolved organic matter
Leresche, F., McKay, G., Kurtz, T., von Gunten, U., Canonica, S., & Rosario-Ortiz, F. L. (2019). Effects of ozone on the photochemical and photophysical properties of dissolved organic matter. Environmental Science and Technology, 53(10), 5622-5632. https://doi.org/10.1021/acs.est.8b06410
Nutrient behavior in hydrothermal carbonization aqueous phase following recirculation and reuse
Mau, V., Neumann, J., Wehrli, B., & Gross, A. (2019). Nutrient behavior in hydrothermal carbonization aqueous phase following recirculation and reuse. Environmental Science and Technology, 53(17), 10426-10434. https://doi.org/10.1021/acs.est.9b03080
Hypobromous acid as an unaccounted sink for marine dimethyl sulfide?
Müller, E., von Gunten, U., Bouchet, S., Droz, B., & Winkel, L. H. E. (2019). Hypobromous acid as an unaccounted sink for marine dimethyl sulfide? Environmental Science and Technology, 53(22), 13146-13157. https://doi.org/10.1021/acs.est.9b04310
 

Pages